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Abstract

The combustion of a material can be modelled by two coupled parabolic partial
differential equations for the temperature and concentration of the material. This
paper deals with properties of the solution of these equations inside a cylinder or a
sphere and under given initial conditions. Bounds for the variation of the temperature
with the initial conditions are first established by considering a decoupled form of the
equations. Then the coupled system is used to obtain approximate expressions for the
temporal evolution of temperature and concentration.

1. Introduction

A simple model governing the combustion of a material can be formulated in the
non-dimensional form as follows

0(x,O) = /i(x), 0 = 0 on 3D, (3)

x(x,O) = 0(x), | ^ = 0 on 3D. (4)

Here, 6 is the temperature, x the concentration of the combustible material, x, t are
respectively the spatial and time variables, H, a are positive parameters and
e = exp(-a). Typically, the value of a is between 20 and 100 so that e <l. The
equations (1) and (2) are considered in a bounded domain D with initial and
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boundary values given in (3) and (4). The derivation of the above system can be
found in Frank-Kamenetskii [1], and discussions on the system can be found in
Gelfand [3], Parks [5], Sattinger [6], among others. It is known that, if the initial
concentration and the initial temperature are small, / decays very slowly and 6
remains of order one. Such a situation is referred to as the subcritical. However, if the
initial temperature and/or the initial concentration is sufficiently large, % decays
rapidly and 9 becomes extremely large before both finally decay to zero. Such a
situation is referred to as the supercritical state. For the subcritical case, Sattinger
obtained an asymptotic development for 9 and % based on E < 1. For the super-
critical case, no accurate approximation to the solution of (1) to (4) has been
obtained.

Recently, Tam [7] considered the case of V2 = d2/dx2, 0 < x < 1, and used a
comparison theorem to construct upper and lower solutions for the multiple steady
state solutions. For the time dependent case, when the initial data are 0(x, 0) = 0,
x(x, 0) = N, upper and lower solutions for both the sub- and super-critical cases were
obtained, although the time interval for the latter case is limited. When %(x, 0) = N
and HN is such that the steady state of

)
J

has multiple solutions, the role of the initial temperature was further examined by
Tam [8], again for V2 = 82/dx2, 0 < x < 1.

In this paper, we examine the problem for a sphere and a cylinder each of unit
radius. In Section 2, we consider the 0-equation by itself and obtain upper and lower
steady state solutions, from which we determine some bounds for the critical
parameter. When the steady state has multiple solutions, we obtain in Section 3 a
criterion to indicate how large an arbitrary initial temperature has to be for the
system to become super-critical. Finally, in Section 4, we consider the coupled
system and obtain approximate expressions for the temporal evolution of 9 and %.
The large parameter a, which contributes to the existence of multiple steady state
solutions for the 0-equation, also induces a multiple time scale phenomenon. This
feature has been exploited by some authors (see Kassoy [4]) who have treated
similar problems by singular perturbation methods.

2. The 6 equation

When x is treated as a constant, only the 0-equation remains to be considered. If
we write Hx = <5, we have

™ J ^ ) 0, (5)
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0(x,O) = fc(x), 0 = 0 on 3D. (6)

A function U(x, t) is an upper solution of (5) and (6), that is, 0(x, t) ^ U(\, t), if (see
[6], page 50)

PU = Ut-V
2 U-8exp(-^—\> 0.

U(\, 0) 55 0(x, 0), U ^ 0 on 3D.

A lower solution is similarly defined with the inequality signs reversed.
We first deal with the spherical case. Assuming only radial dependence, we have

V2 = (d2/dr2)+(2/r)8/dr. It is readily verified that a steady state upper solution is
given by

9 = A(l-r2), (7)

when A is chosen as a solution of the equation

\A * J \ (8)

A steady state lower solution is given by

d=C(l-r2)2, (9)

when C is chosen as a solution of the equation

Y (10)

Now the exponential function exp [txA/{ot + A)~\ in (8) is shaped like a logistic curve,
which has the value 1 at A = 0, and tends to e" as A -* oo. This curve is intersected by
the straight line (6/<5) A at one or more points, depending on the value of 8. It is
readily seen that equation (8) has only one solution if 5 < 5t or 8 > d3. The numbers
<5j and <53 are obtained by solving simultaneously equation (8) and the equation
obtained by differentiating (8) with respect to A. We have

where

/ ! 1 =^{(«-2)+ > / [a («-4) ]} and A3 = | { ( « - 2 ) -

In what follows, we write </>(r) = 0{\j/(r)) if there exists a constant A such that
| <$> | < A11]/1 for all r in the set K under consideration. If we compare two numerical
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constants, A = 0(B) simply means A and B are of comparable magnitude. When the
order symbol is used in an asymptotic sense, it would be qualified explicitly. We note
that the solution ofequation (8) is 0(1) if £ < 8 lt and 0(e") if 8 ><53.For<5, < 5 < 83,
equation (8) admits three solutions. Each solution of (8), when substituted into
equation (7), yields an upper solution for the steady state solution. A similar
consideration as given to (8) shows that, if 8 < 82 or S > 84, equation (10) has one
solution, while it has three solutions for 82 < 8 < <54. The numbers 82 and £4 are
given by

' ^ • ( d S c ] and

where

C2 = 3.125<x{IIa-2)+V[(a-2.8)(a-1.2)]} and

C4 = 3.1

Again we note that the solution of equation (10) is 0(1) if 8 < S2, and is O(e") if
8 > 5A. We can conclude from the above that, regardless of the initial data, the
steady-state solution is sub-critical if 5 < 8U and is super-critical if 5 > <54. When
d2 < S < S3, both the upper and lower steady state solutions admit three solutions.
If we denote their maximum values by U^S), U2(5), U3(S) and w1(8),w2(d),w3(S),
respectively, (£/, <U2 < U3, wt < w2 < w3), where Uh wf, i = 1,2,3, are de-
termined from (8) and (10), respectively, we find that wl < [/,, w3 < U3, whereas
w2 > U2- Thus, for this interval of S, there is a sub-critical steady-state solution of
equation (5) such that

w,(l - r 2)2<0(r , oo) <U1(l- r2),

and a super-critical steady-state solution of equation (5) such that

w3(l-r2)2 < 0(r, oo)

Using the construction procedure considered, we can also obtain the following
results regarding the influence of the initial data when d2 < 5 < <53. The proofs of
these are similar to that given in Tam [7], and will not be presented.

LEMMA 1. Let U^d) and U2(8) be the smallest and the middle solution, respectively,
of equation (8) when <5j < 8 < 83 and the smaller and larger solution when 8 = 8t or
8 = 83. If

r2), (11)

then the solution of the problem (5) and (6) is such that
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LEMMA 2. Let w2{S) and w3(6) be the middle and the largest solution, respectively, of
equation (9) and the smaller and larger solution when S = 32 or 5 = (54. / /

0(r,O)>w2(<5)(l-r2)2 (12)

then the solution of the problem (5) and (6) is such that

0(r,oo)>w3((5)(l-r2)2.

Since U^S) = 0(1) and w3(5) = 0(e"), we conclude that condition (11) leads to a
sub-critical solution for (5) and (6), while condition (12) leads to a super-critical
solution. In particular, if the initial condition is 6(x,0) = 0, then, for 6 < S3, the
solution is sub-critical and indeed we have

where A3 = (a/2) {(a — 2) — ̂ [ a ( a - 4)]} was obtained above. Clearly, the value S3

can be considered as a lower bound for the critical value of S.
The cylindrical case is treated in an entirely analogous manner. Assuming only

radial dependence, we have

, d2 1 d
v2 = - T + - - .

dr2 r dr

We shall quote the results, using the same notations as in the spherical case. We have
9 = A(l-r2),

where A is a solution of

4 , ( A \
- / l = e x p l — — - I ,
S \<x+AJ

and

9 = C(l-r2)2,

where C is a solution of

Further, we have

and
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where

Al = -{(a — 2) + ^ [ a ( a -4 ) ]} and A3 = -{(a — 2) — ^/[a(a — 4)]},

and

where

C2 = 2a{(a-2) + V[a(a-4)]} and C4 = 2a{(a-2)-V[a(a-4)]}.

Results corresponding to Lemmas 1 and 2 hold.

3. Initial data and criticality for the 0-equation

A consequence of the considerations in Section 2 is that there is a certain range of
values of 8 for which the steady state solution may be sub- or super-critical,
depending on the initial temperature 8(r, 0). We have also obtained some bounds on
0(r, 0) which would bring about a particular steady state.

In this Section, we want to approach the problem via the integral equation
obtainable from (5). We would like to answer the question that, for given S and a,
how large must 0(r, 0) be for the solution to be super-critical? Understandably, a
number of simplifications and approximations will have to be made in getting the
desired information from the non-linear integral equation. However, we can gauge
part of them with the results of Section 2, which are exact.

Let F(6) = exp[a0/(a + 0)], and G{r,£,,i) be the Green's function for the linear
boundary value problem obtained from equation (5) and (6) by omitting F(9). We
have (see Duff and Naylor [1, page 289])

where uk(r) and ^ are, respectively, the normalized eigenfunctions and eigenvalues of

subject to homogeneous boundary conditions. The solution of (5) and (6) can then be
obtained from the integral equation

9(r,t) = G(r,Z,tyh(l;) + 5 \ G(r,£,t-s)• F(9(l;,s))ds, (13)
Jo

where
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and v is the region under consideration.
We define the iteration scheme

H \ (Hr,t,t-s)-F(6JLZ,s))ds,
J

with

\
Jo

Clearly, it is not expected that we would be able to carry out the iteration
analytically. We observe, however, that to answer questions regarding the steady
state requires only a knowledge of the situation when r !• 1. We are thus led to the
following asymptotic considerations.

Let T be sufficiently large so that, for (t — s) > T, we have

G(r, c, t -s) ~ exp [ - X\{t - s)] Ul(r) Mltf).

Then, for t > T, we have

en+1~dUl(r) P Texp[-Af(t-s)]«1(O-F(e.«,s))ds
Jo

+ 5 P G(r,Z,t-s)-FMZ,s))ds
Jt-T

= <W) PexpC-A^-sfluJO-F^^s))*
Jo

+ 6 f [G(r, {, t - s) - exp [ - k\{t - s)] u,(r) «,

= iHl(r) f exp[-X\(t-s)-]uM)-F(6m(ls))ds

,̂ s)) ds

\
Jii - r

(14)

For t > T, the second term on the right is O(exp [ - 1 \{t - T)]). The third term on the
right is equal to
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JO
(15)

where t — T < s < t. To estimate the above, we make the following observations.
Since the iteration scheme is convergent, 0n(£,, s) will be close to 0(1;, s) when n is
sufficiently large. In addition, for (t — T) sufficiently large, and (t — T) < s < t, Qn(t;, s)
will be close to the steady state 0(<J, oo). We estimate 0(£, oo) by noting that it satisfies
the equation

If we expand both 0(£, oo) and F(0(£, oo)) in terms of the eigenfunctions {uk(£)}, we
have

k=l

and

where both ak and bt are unknown. However, substitution into the governing
equation will give

k = l

Here, S is a given constant and we can obtain its eigenfunction expansion

s=
*=

where ck is known. Therefore, we have

where

We know the shape of the exponential function since we have some a priori bounds
on 0(1;, oo) from the previous sections. We also know that «t(0 is positive while all
other ^ ( 0 for k ^ 2 change sign in 0 < £, < 1. Thus we expect that bx is dominant.
This, together with the fact that kx < X2 < A3..., implies that ax u,(<!;) will be the
dominant term in the eigenfunction expansion for 0(£, oo).

https://doi.org/10.1017/S0334270000002277 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002277


[9] Initial data in a combustion problem 201

Using the above information, we deduce that for n, s -> oo, we have
6n(t;, oo) = 0(Mu1(^)) for some positive constant M. Thus we have

Using this estimate, and the orthogonality of the eigenfunctions, (15) then becomes

(16)
k = 2

The series is convergent, so that (15) is 0(6). Using the same estimate for T< s < t,
we have, for n, s -> oo,

Thus, if we are interested in the case when M is large, (17) is dominant. We therefore
neglect the second and the third integrals on the right of (14) in approximating 9n+1,
and write

8Ul(r) P

Now suppose, for t > T, we have ut({;)- F(9n(£,s)) > Kn for some n, where Kn is
independent of s. Then, for t ^ 7̂  we have

Using the above representation for 0n+l, we can proceed to consider Uj(̂ ) • F(0n+1).
Supposing we have ul(£)-F(9n+l) ^ Kn+U which is independent of s. Clearly, by
repeating the above, we can generate a sequence of members Kt, i = n, n + 1,.... We
now compare Kn with Kn+l. If, for a fixed 5, we have Kn+l ^ Kn, then the sequence
{Kf} is monotone increasing. Since we know the solution 9 is bounded, {/C,} tends to
a limit. If the limit K „ = O(e"), then the solution of the initial value problem is super-
critical.

For the case of the sphere, we have
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sin nr
( ) a n d Xi = n-

Following the above considerations, we have to evaluate ux -F(6n+1). We have

sin *r exp
2 ,2y/(2n)

To render the integral tractable, a number of approximations must be made. We
approximate r"1 sin nr by ncos(nr/2), and make the change of variables
y = cos (nr/2) to obtain

Using a little numerical experimentation, we see that r2(y)/(l— _y2)* is well
approximated by (1— y). Thus we have

A , S *n

where

A = 7^—-— and v = KJ

In Figure 1 we have plotted Kn +, against v for a = 20. It is clear that a comparison of
Kn with X n + 1 becomes a comparison of the straight line v/8 with Xn + 1.

When 5 is sufficiently small, the straight line intersects Kn+1 at one point, where
X n + 1 is 0(1). When <5 is increased beyond a certain value, say 5, the straight line
intersects Kn +, at three points. When S is further increased to be greater than 3, say,
the number of intersections is reduced to one, where Kn+l is O(e"). This result is
interpreted as follows. When the parameter S is greater than or equal to <5, the
steady-state solution of (1) and (2) is supercritical, regardless of the initial data. Thus
3 is a critical or threshold value for the parameter. For 5 between 5 and 5, let the
coordinates of the middle intersection point of v/S and Kn+1 be denoted by (v*, K*).
If, for a given 5, there is a Kn such that 8Kn ^ v*, then the steady state solution of (1)
and (2) is super-critical. As an illustration, we have obtained a few numbers
graphically for a = 20:
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10 12 It 16

(a)

(b)

Fig. 1. Plots of £„+, against v for the sphere, with a = 20, (a) 3 = 3.53, (b) <5 = 1/3, 2/3, 1 and (c)
5= 1.5 xKT3
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(c)

Fig. 1. (continued)

5:

v*(5):

2

99 77
1

64

with S = 1.5 x 10"3 and 5 = <5cr = 3.53.
We note that the critical value <5cr obtained by Parks [5] is 3.51. Clearly, similar

results can be obtained for other values of 5, and also for different values of a.
With the information obtained in the above, we are in a position to answer the

questions set out at the beginning of Section 3. For fixed a and 8 > S(a), to see
whether a given initial 6(x, 0) must necessarily lead to a super-critical steady state
solution, we calculate the inner product u^) • F(90(%)). If the number so obtained is
not less than v*/5, the super-critical steady state will result.

For the case of the infinite cylinder, we have

1 Jo(At r) Xl = 2.405 and = 0.5191.
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(a)

(b)

Fig. 2. Plots of Kn + 1 against v for the cylinder, with a = 20, (a) 5 = 2.18, (b) <5 = 1/3, 2/3, 1 and (c)
5 = 8.2 x 10~5.
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Again, we have to evaluate

1000 2000

(c)

Fig. 2. (continued)

Jo^rjexp

We approximate J0(^ir) by cos(7tr/2), and make the change of variables
y = cos(7rr/2) to obtain

f1
 e x / *KJy \ rjy)

Mi) Jo >'eXPVaN/(7i)J1(A1)A? + /Cn^/sin(7t/2)r

Using (rcr/2) ^ sin (nr/2), we have

where

at;
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In Figure 2 we have plotted Kn+1 against v for a = 20. The critical values of 8 and
some typical values of S and v*(8) are tabulated as follows. The critical value Scr

obtained by Parks [5] is 2.11.

S: i ! 1
v*(d): 43.6 32 25.8

with 5 = 8.2 x 10~5 and 5 = <5cr = 2.18.

4 The temporal evolution for the system

With the information obtained in Section 3, we now attempt to construct an
approximate description of the temporal evolution of 9 for the system when the
super-critical state is reached. For simplicity, we shall take /(r, 0) = N.

We make the following observations about the 0- and /-equations, taken
separately. For / = constant and Hx = S > 5U the solution of the 0-equation will
become super-critical if 9(r, 9) is sufficiently large. If we construct upper and lower
solutions for 9 by replacing the nonlinear term F(9) = exp [oc0/(<x + 0)] with suitable
constants, then the resulting linear equation can be solved explicitly and it is seen
that the steady state is reached when t = 3/Aj. During this time interval, x in fact
decreases, but its rate of decrease is slower than Ne~'. At t = 3/A?, x wu"l stiH be
larger than N exp ( - 3/Af). Thus if HN exp ( - 3/1?) = 3* > 5, and 9{r, 0) is such that
ut -F(9) ^ v*(8*\ we are certain that the system will become super-critical. Let
(5(r) = Hx(t) and suppose 0(r, 0) is such that the 0-equation reaches a super-critical
state. Then 0max will remain exponentially large until 3 = <5. The duration of this
period is estimated as HNe~T = S; that is, T= In (HN/d). For HN = 0(1), we have
TK 10 for both the sphere and cylinder. For t > T, we have Hx < 5 and 9m3x will
change rapidly from the exponentially large value to 0(1). From then on, x will
decrease as O(e~a). Based on the above considerations, we construct the following
approximate description for 9(r, t):

0(r, t) = G(r& t) • 0(£ 0) + H«,(r) f' exp [ - X\{t -1)] utf) • ZF(0) Ax,
Jo

where

= Ne~xF(jS) for^^

= Ne~Te-"F(d) for t
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The functions 9 and 9 are obtained as follows:

where K is the largest value of Kn+1 satisfying the functional equation

for each fixed T, and

where K is the (unique) value of Kn+l satisfying the functional equation

HAT c e £t

for each fixed i. The multiple time scale effect of the phenomenon is apparent in the
above description for 9.
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