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MULTIPLICATION IDEALS, MULTIPLICATION RINGS, 
AND THE RING R(X) 

D. D. ANDERSON 

1. I n t r o d u c t i o n . Let 7̂  be a commuta t ive ring with an identi ty. An ideal A 
of R is called a multiplication ideal if for every ideal B Ç A there exists an 
ideal C such t ha t B = AC. A ring R is called a multiplication ring if all its 
ideals are multiplication ideals. A ring R is called an almost multiplication ring 
if RM is a multiplication ring for every maximal ideal M of R. Multiplication 
rings and almost multiplication rings have been extensively studied—for 
example, see [4; 8; 9; 11; 12; 15; and 16]. 

In Section 2 we investigate multiplication ideals. T h e key result is t ha t a 
multiplication ideal in a quasi-local ring is principal. Multiplication ideals are 
then studied outside the quasi-local case. 

In Section 3 multiplication rings and almost multiplication rings are studied. 
We characterize those almost multiplication rings having few zero-divisors. 

Finally we show tha t the polynomial ring R[X~\ is an almost multiplication ring 
if and only if R is von Neumann regular. 

In Section 4 we consider the ring R{X). We show tha t R is an (almost) 
multiplication ring if and only if R{X) is an (almost) multiplication ring. W7e 
also show tha t if 7̂  is an ari thmetical ring, then R(X) is a Bézout ring and tha t 
R and R{X) have isomorphic lattices of ideals. Conversely, if R and R(X) have 
isomorphic lattices of ideals, then 7̂  is ar i thmetical . 

2. M u l t i p l i c a t i o n idea ls . W. W. Smith [17] lias shown tha t a finitely 
generated multiplication ideal in a quasi-local ring is principal. Our first 
theorem states that, every multiplication ideal in a quasi-local ring is principal. 

T H E O R E M 1. In a quasi-local ring every multiplication ideal is principal. 

Proof. Let (R, M) be a quasi-local ring and A a multiplication ideal in R. 
Suppose tha t A = J2 (x<*)- Then {xa) = ALa for some ideal La since A is a 
multiplication ideal. Hence A = E 0 0 = E ALa = A ( £ La). If £ La = R, 
then Lao = R for some index a{) because R is quasi-local. In this case A = ALa() = 
(xao). If Z La 9* R, then A = MA. Suppose tha t 0 ^ x Ç A. Then there 
exists an ideal C such tha t (x) = AC. But then (x) = AC = (MA)C = 
M {AC) = M{x), so x = 0 by N a k a y a m a ' s Lemma. 

Suppose tha t 7̂  is a commuta t ive ring, 5 is a multiplicatively closed set in R} 

and tha t A is a multiplication ideal in R. Then As is a multiplication ideal in 

Received July 25, 1975 and in revised form, March 18, 197G. 

760 

https://doi.org/10.4153/CJM-1976-072-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-072-1


MULTIPLICATION IDEALS 7G1 

Rs- Indeed, suppose tha t TV Ç As is an ideal in Rs. Then (TV H R) H A C A so 
tha t (TV H i?) H 4 = BA for some ideal B in i?. Hence TV = TV C\ As = 
((N f^ R) (^ A)s = BsAs. In particular, if A is a multiplication ideal and P 
is a prime ideal in R, then by Theorem 1, AP is a principal ideal in 7?P. 

From these remarks we draw several well-known conclusions. First, any 
localization of a multiplication ring is a multiplication ring. Theorem 1 yields 
t ha t a quasi-local multiplication ring is a principal ideal ring and hence either a 
DVR or a special principal ideal ring. Thus an almost multiplication ring is 
simply a ring R such tha t for every maximal ideal M of R} RM is either a D V R 
or a special principal ideal ring. Hence a multiplication ring is an almost 
multiplication ring and any localization of an almost multiplication ring is still 
an almost multiplication ring. 

While a multiplication ideal A is locally principal ( that is, AM is a principal 
ideal in RM for every maximal ideal M of R), a locally principal ideal need not 
be a multiplication ideal. However, it is easily verified tha t a finitely generated 
locally principal ideal is a multiplication ideal (see Theorem 3). For a discussion 
of such ideals, the reader is referred to [3] and [13]. As every ideal generated by 
idempotents is a multiplication ideal, one sees tha t a multiplication ideal need 
not be finitely generated. However, under circumstances somewhat more general 
than Theorem 1 we may still conclude tha t a multiplication ideal is principal. 

LEMMA 1. Let A be an ideal in a ring R such that {O'.A) is contained in only 
finitely many maximal ideals Mi, . . . , Mn of R. If AMi is a principal ideal in 
RMÎ for i = 1, . . . , n, then A is a principal ideal in R. 

Proof. Let AMi = {xt)Mi, where xt £ A. If M i s a maximal ideal of R distinct 
from M\, . . . , Mn, then AM = 0M. Hence AM = (xi, . . . , xn)M for all maximal 
ideals M of R so tha t A = (xi, . . . , xn). Choose vt £ C\j9£iMj — Mi and set 
v = z/iXi + . . . + vnxn. Then A = (v) locally, and hence globally. 

The next theorem is a generalization of both our Theorem 1 and Theorem 1 
of [3]. 

T H E O R E M 2. Let A be a multiplication ideal in a ring R such that {O'.A) is 
contained in only finitely many maximal ideals of R. Then A is a principal ideal. 

Proof. Theorem 2 follows from Lemma 1 and the fact tha t multiplication 
ideals are locally principal. 

COROLLARY 2.1. Let R be a semi-quasi-local ring and A an ideal in R. The 
following statements are equivalent: 

{I) A is a multiplication ideal, 
(2) A is a locally principal ideal, and 
(3) A is a principal ideal. 

COROLLARY 2.2. A semi-quasi-local {almost) multiplication ring is a principal 
ideal ring. 
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Let R be a ring. An ideal A of R is called a weak-cancellation ideal iî ABQAC 
implies t ha t B Ç C + ( 0 : ^4). T h u s every principal ideal is a weak-cancella­
tion ideal. A cancellation ideal is an ideal A of R such tha t the condition 
AB = AC implies tha t B = C. Hence A is a cancellation ideal if and only if A 
is a weak-cancellation ideal with (0 : A) = 0. 

The following theorem characterizes finitely generated multiplication ideals. 
Janowitz in [11, page 655] remarked without proof t ha t the implication 
(1) => (2) is valid. 

T H E O R E M 3. For an ideal A in a commutative ring R, the following statements 
are equivalent: 

(1) A is both a multiplication ideal and a weak-cancellation ideal, 
(2) A is a finitely generated multiplication ideal, and 
(3) A is finitely generated and locally principal. 

Proof. (1) =$ (2): Suppose tha t A = ^ (xa). Then (xa) Q A implies t ha t 
(xa) = ALa so tha t AR = A = J^ (xa) = £ ALa = A (]£ La). Since A is a 
weak-cancellation ideal, R = ( J ] L a ) + (0 : A). Because R has an identi ty, 
R = L\ + . . . + Ln + (0 : A) for some finite subset {Lu . . . , Ln\ of \La\. 
Hence A = A(Ll + . . . + Ln + (0 : A)) = (*i) + . . . + (x„), so t ha t A is 
finitely generated. T h e implication (2) => (3) follows from Theorem 1 and the 
remark following it. The implication (3) =» (1) is given by M c C a r t h y [13]. 
Briefly, if (3) holds, then (1) holds locally and hence globally since A is 
finitely generated. 

3. A l m o s t m u l t i p l i c a t i o n r ings a n d m u l t i p l i c a t i o n r ings . Alott [15] 
has shown tha t a ring in which every prime ideal is a multiplication ideal is 
actually a multiplication ring. We offer a slight extension of this result. 

T H E O R E M 4. For a commutative ring R with identity, the following statements 
are equivalent: 

(1) R is a multiplication ring, 
(2) R is an almost multiplication ring all of whose maximal ideals are multi­

plication ideals, 
(3) every prime ideal of R is a multiplication ideal, and 
(4) every prime ideal that is either maximal or lies directly below a maximal 

ideal is a multiplication ideal. 

Proof. The implication (1) => (2) is immediate. (2) => (3): Because R is an 
almost multiplication ring, dim R ^ 1. Since, by hypothesis, the maximal 
ideals of R are multiplication ideals, we only need show tha t every non maximal 
minimal prime ideal is a multiplication ideal. So let P ^ M be such a prime 
where M is a maximal ideal containing P and let A C P. Now PM = 0M and 
PN = RN for all maximal ideals N of R not containing P. T h u s AP = A 
because the equali ty is true locally. The implication (3) => (4) is clear. We 
show tha t (4) => (3). I t is sufficient to show tha t dim R ^ 1. Suppose tha t M 
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is a maximal ideal with rank M ^ 1. Since M is a multiplication ideal, MM is a 
nonminimal principal prime ideal in RM. Thus Q = C~)™=iMM

n is a prime ideal 
in P M and every prime ideal of RM other than MM is contained in Q (this 
observation is due to J. Matijevic). Thus Q Pt R lies directly below M. By 
hypothesis Q C\ R is a multiplication ideal in P and hence Q = (Q C\ R)M is a 
principal prime ideal in RM. Since Q £ MM are principal prime ideals, 
Ç = MMQ and thus Q = 0M by Nakayama's Lemma. Thus rank M = 1 and 
P M is a DVR. The implication (3) => (1) is proved in [15]. 

A ring R is said to have few zero-divisors if Z(R), the set of zero-divisors of R, 
is a finite union of prime ideals. Mott [15] has shown that an almost multiplica­
tion ring with fewr zero-divisors is a finite direct product of almost Dedekind 
domains and special principal ideal rings. (An almost multiplication ring 
without zero-divisors is called an almost Dedekind domain.) We give another 
characterization of such almost multiplication rings. We need the following 
lemma concerning the zero-divisors in an almost multiplication ring. 

LEMMA 2. Let R be an almost multiplication ring. An ideal not contained in any 
minimal prime ideal of R has zero annihilator. Thus Z{R) is the union of the 
minimal prime ideals of R. 

Proof. Suppose that A is an ideal of R that is not contained in any minimal 
prime ideal of R. Suppose that As = 0 for some s £ R. Since A is not contained 
in any minimal prime ideal of R, s is contained in every minimal prime ideal 
of R, and hence s is nilpotent. Let M be a maximal ideal of R. We show that 
s/1 = 0/1 in RM. In any case s/1 is nilpotent in RM. Thus if rank M = 1, then 
s/1 = 0/1 since RM is a DVR. Suppose that rank M = 0. Then AM = RM and 
AM(s/l) = (0/1) implies that s/1 = 0/1 in RM. The second statement follows 
from the first because any minimal prime ideal consists of zero-divisors. 

THEOREM 5. For an almost multiplication ring R, the following statements 
are equivalent: 

(1) R has few zero-divisors, 
(2) R has only finitely many minimal prime ideals, 
(3) R is a finite direct product of special principal ideal rings and almost 

Dedekind domains, and 
(4) the minimal prime ideals of R are finitely generated. 

Proof. The equivalence of (1) and (2) follows from Lemma 2 and the fact 
that any maximal ideal in an almost multiplication ring contains a unique 
minimal prime ideal. (2) =» (3): Suppose that Pi , . . . , Pn are the minimal 
prime ideals of R. Since each PiPi is nilpotent in RPi, there exists an integer 5 
such that (Pi . . . Pn)

s is locally zero and hence equal to the zero ideal of R. 
Hence (0) is a product of powers of the P / s and Pi, . . . , Pn are comaximal. 
Thus R splits into the direct product R ^ R/P^ X . . . X R/Pn*. If Pi is a 
maximal ideal, then R/P% is a special principal ideal ring. If P* is not a 
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maximal ideal, t h e n P * = Pt
s (for the equali ty holds locally) and R/P i = R/Pt 

is an almost Dedekind domain. (The equivalence of (2) and (3) is also proved 
in [15].) As (3) => (4) is obvious, it remains to prove (4) =» (2). Suppose tha t 
R is an almost multiplication ring in which the minimal prime ideals are 
finitely generated. I t suffices to show tha t the total quot ient ring T of R is 
zero-dimensional. For then the prime ideals of T will all be extensions of the 
minimal prime ideals of R and hence will be finitely generated. T h u s by 
Cohen's Theorem T will be Noether ian and hence will have only finitely many 
prime ideals. Let M be a rank one prime ideal in R ; we show tha t M contains a 
non-zero-divisor. Let P be the unique minimal prime contained in M. By 
hypothesis, P is finitely generated. Also, P = P2. Hence P = (p) where p is 
idempotent . Now (1 — p)M ^ 0, so there exists an m G M — (p) such t ha t 
(1 - p)m j£ 0. Let x = (1 - p)m + p so tha t x G M - (p). If x G Z(R), 
then by Lemma 2, x belongs to a minimal prime Q of R dist inct from P = (p). 
But then p = px G Q, a contradiction. 

We end this section by characterizing the multiplication rings and almost 
multiplication rings which are polynomial rings. A ring R is called an arith­
metical ring if L(R), its latt ice of ideals, is distr ibutive. 

T H E O R E M 6. For a commutative ring R the following statements are equivalent: 
(1) R is von Neumann regular, 
(2) R[X] is an almost multiplication ring, and 
(3) R[X] is an arithmetical ring. 

Proof. (1) => (2). Suppose tha t R is von Neumann regular and let M be a 
maximal ideal in R[X]. Then P = M C\ R is a maximal ideal in R and hence 
RP is a field. T h u s R[X]M ~ (RP[X])M is a localization of a PID and hence a 
DVR. (2) => (3). Clearly any almost multiplication ring has a dis tr ibut ive 
lattice of ideals since locally its latt ice of ideals is total ly ordered. (3) => (1). 
Suppose t ha t R[X] has a dis tr ibut ive latt ice of ideals. Then for a G R, 
(a) = (a) H {(X - a) + (X) J = (a) H (X - a) + (a) H (X), so a = 

f(X){X - a) + g(X)X, where f(X), g(X) G R[X] and / ( X ) ( X - a) g (a) , 
g t Y ) X 6 (a). Letf(X) = &aX* + . . . + 6n, then 6 0 * n + 1 + (&i - ab0)X

n + 
. . . + (bn - abn^)X - bna = /(X)CX- - a) G (a) . T h u s (bn - abn^)X G (a) 
so &re G ai?. Let t ing bn = ra, a = —bna = a( — r)a. T h u s R is von Neumann 
regular. 

The implication (3) => (1) is found in Camillo [5], bu t our proof is 
simpler. T h e equivalence of (1) and (3) also occurs as an exercise in [7, page 
321]. I t follows from Theorem 3.2 [18] tha t R[X] is Bézout whenever R is 
von Neumann regular. 

COROLLARY 6.1. For a ring R, the following conditions are equivalent: 
(1) R is a finite direct product of fields, 
(2) R[X] is a multiplication ring. 
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Proof. The implication (1) => (2) is obvious. Conversely suppose tha t R[X] 
is a multiplication ring. Theorem 6 implies tha t R is von Neumann regular. 
Let M be a maximal ideal in R. I t suffices to show tha t M is finitely generated, 
for Cohen's Theorem then implies tha t R is Noetherian. The ideal M' = MR[X] 
+ (X) is a rank one prime ideal in R[X]. Thus M' is locally a cancellation ideal, 
and hence a cancellation ideal. By Theorem 3, M' is finitely generated. (In 
part icular any rank one prime ideal in a multiplication ring is finitely gener­
ated.) Hence M is finitely generated. 

Let R be a non-Noetherian von Neumann regular ring. Then R[X] is an 
almost multiplication ring which is not a multiplication ring. We note t ha t 
R[X] is locally a DVR. In fact, R[X] is semihereditary [14]. Also note tha t for 
every minimal prime ideal P in R[X], R[X]/P = R[X]/(P H R)R[X] ^ 
(R/Pr\R)[X] is a PID. 

4. T h e r ing R ( X ) . LetR be a ring and let {Xa ja€A be a set of indeterminates 
over i£. For / G P[{X a }] we let C(f) be the ideal of R generated by the co­
efficients of R. Let S = {/ G i?[{X a}] |C(/) = 12}. Then 5 = R[{Xa}] -
U {M7?[{Xa}]|Af is a maximal ideal in 72} is a multiplicatively closed set 
consisting entirely of regular elements. The ring R[{Xa}]s is denoted by 
R({Xa\). For properties of R({Xa}), the reader is referred to [7]. While all the 
results of this section are true for R({Xa\), where \Xa] is an arbi t rary set of 
indeterminates, for simplicity of notation we only s ta te our results for R(X). 
The following proposition is well-known. 

PROPOSITION 1. Let R be a commutative ring. Then 
(1) There is a one-to-one correspondence between the (minimal prime) maximal 

ideals of R and the (minimal prime) maximal ideals of R(X) given by 
M<->MR(X). 

(2) If Q is an ideal of R, then QR(X) C\ R = Q. If Q is P-primary, then 
QR(X) is PR(X)-primary. 

The following theorem, while probably well-known, could not be found in the 
l i terature. 

T H E O R E M 7. Let / G R[X] be a polynomial with C(f) locally principal. Then 
C(f)R(X) = fR(X). If g G R[X] satisfies C(g) Q C ( / ) , then gR(X) C fR(X). 

Proof. By localization we may assume tha t R is quasi-local and 
tha t C(f) is a principal ideal in R. Let / = a0 + a\X + . . . + anX

n, so tha t 
C(f) = (a0, . . . , an). Since C(f) is principal, C(f) = (ai0) for some iQ with 
1 ^ i0 ^ n. Let at = rtai() and h — r0 + rxX + . . . + rnX

n. Note t ha t h G S 
because ri0 = 1. Hence C(f)R(X) = (aiQ)R(X) = (ai0)hR(X) = fR(X). 
Suppose tha t C(g) Ç C(f). Let g = c0 + CiX + . . . + cwXm . Then 
(^t) Q C(g) C C( / ) = (a i 0 ) , so tha t ĉ  = e^i^ for i = 1, . . . , m. Hence 
g G (a , 0 ) t f (X) = / i î ( X ) . 
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COROLLARY 7.1. Let A be a finitely generated locally principal ideal in R. 
Then AR(X) is a principal ideal in R{X). 

Proof. Let ,4 = (a0, . . . , an). If/ = a0 + axX + . . . + anX
n, then C(f) = A. 

By Theorem 7, AR(X) = C(f)R(X) = fR(X). 

Our next theorem gives another construction for multiplication rings and 
almost multiplication rings. A ring in which every finitely generated ideal is 
principal is called a Bézout ring. We note that (1) of Theorem 8 is proved in 
the domain case by Arnold [2]. Another generalization of Arnold's results is 
found in [10]. 

THEOREM 8. Let R be a commutative ring. 
(1) R is an arithmetical ring if and only if R(X) is an arithmetical ring, and 

in that case R(X) is actually a Bézout ring. 
(2) If R is an arithmetical ring, then the map 6 : L(R) —> L(R(X)) given by 

6(A) = AR(X) is a lattice isomorphism which preserves multiplication. 
Conversely, if 6 is surjective, then R is arithmetical. 

(3) R is an almost multiplication ring if and only if R(X) is an almost multi­
plication ring. 

(4) R is a multiplication ring if and only if R(X) is a multiplication ring. 

Proof. (1). Suppose that R is an arithmetical ring. We show that R(X) is a 
Bézout ring. LetO ^ fi,f2 G R[X] and define/ = / i + Xnf2, where n = (degree 
o f / 0 + 1. Then C(J) = C(/i) + C(/2), and hence fiR(X) + f2R(X) = 
C(fi)R(X) + C(f2)R(X) = C(f)R(X) is principal. Thus any finitely generated 
ideal in R(X) is principal. Conversely, suppose that R(X) is arithmetical. Let 
A, B and C be three ideals in R. Then {A H (B + C)}R(X) = AR(X) C\ 
{BR{X) + CR(X)} = AR{X) C\ BR(X) + AR(X) r\ CR(X) = (A H B + 
A H C)R (X). Contracting back into R yields Ar\(B + C)=AC\B + Ar\C. 

(2). The map 6 is one-to-one by Proposition 1. It is easily seen that 0 pre­
serves order, arbitrary sums, finite intersections, and products. Moreover 6 is 
onto because fR(X) = C(f)R(X) for eve ry / G R[X] (Theorem 7). Hence d 
preserves arbitrary intersections and thus 6 is a complete lattice isomorphism. 
Conversely suppose that the map 6 : L(R) —> L(R(X)) is surjective. Then for 
each maximal ideal M of R, the map 6 : L{RM{X)) —> L(RM(X)) is a 
surjection. Hence we may assume that R is quasi-local. Let a, b £ R; we show 
that (a, b) is principal and hence that R is Bézout. Now (a + bX)R (X) = BR (X) 
for some ideal B in R. Since R is quasi-local, one sees that B must actually be 
principal, say B = (c), so that (a + bX)R(X) = cR(X). Hence a + bX = 
c(f/g) where/, g G R[X] with C(g) = R. Let g = a0 + axX + . . . + anX

n and 
assume that iQ is the greatest integer such that ai0 is a unit. (Since R is quasi-
local and C{g) = R, some coefficient of g must be a unit). We may assume 
that aiQ = 1. L e t / = b0 + bxX + . . . + bmXm. Hence 

aa0 + (aai + ba0)X + . . . + (aan + ban^)Xn + banX
n+l = g{a + bX) 

= cf = cbo + cb1 + . . . + cbmXm. 
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Hence aaiQ+i + bai0 = cbi0+i and aai0 + bai0-i = cbiQ. (If iQ = n, then we take 
aiQ+i = 0) . Subst i tut ing aiQ = 1 yields b = —aai0+i + c&i0+i and a = — bai0-i 
+ cbi0. 

Subst i tut ing the value for i in the second equation gives (1 — ai0+iai0-.i)a 6 (c) 
and hence a £ (c) since 1 — a< 0 + ia i 0_i is a unit. Hence also b Ç (c). Set a = a'c 
and & = &'c so tha t a + bX = c(a' + VX). Hence (cR(X))(a' + VX)R{X) 
= (a + bX)R(X) = cR(X). By Nakayama ' s Lemma, (a' + VX)R{X) = R(X). 
Hence (a'f 6') = C{a' + &rX) = R. Thus (a, 6) = c(a', bf) = (c). 

T o prove (3) we make the following observation. For M a maximal ideal in R, 
the rings R(X)MR(X), RM(X), R[X]MB[X], and RM\X]MMRM[X] are all natural ly 
isomorphic. (Thus when dealing with the ring R(X) we can often reduce to the 
case where R is quasi-local.) Hence the rings R(X)MR(X) and RM are simul­
taneously principal ideal rings and therefore the rings R and R(X) are simul­
taneously almost multiplication rings. To complete the proof of Theorem 8, we 
observe tha t (4) follows immediately from (2). 

COROLLARY 8.1. Given any arithmetical ring R, there exists a Bêzout ring R! 
such that R and R' have isomorphic lattices of ideals. 

Corollary 8.1 generalizes the result in [1] tha t given a Priifer domain D there 
exists a Bézout domain D' such tha t D and D' have isomorphic lattices of 
ideals. A different method of proof was used, however. Combining implications 
(1) through (4) we see tha t given an (almost) multiplication ring R there 
exists an (almost) multiplication ring R' such tha t R' is a Bézout ring and R 
and Rf have isomorphic lattices of ideals. Of special interest is the case where D 
is a Dedekind domain. Then D(X) is a PID and infact an Euclidean domain as 
follows from theorem 5.3 [6]. 

The R{X) construction may be extended to /^-modules. Let A be an R-
module. Wi th the notat ion preceding Proposition 1, we define A{X) = A[X]s 
and note tha t A (X) ^ i ^ R(X) is an R(X)-n\odu\e. Theorem 8 generalized 
to modules yields 

T H E O R E M 9. Let R be a commutative ring and A an R-module. 
(1) A is arithmetical if and only if A (X) is arithmetical and in this case A (X) 

is actually Bézout. 
(2) / / A is arithmetical, then the map 6 : LR{A) —> LR(X) (A (X)) given by 

6(N) = R(X)N is a lattice isomorphism which preserves the scalar product. 
Conversely, if 6 is surjective, then A is arithmetical. 
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