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Abstract

The human retina is supplied by two vascular systems: the highly vascular choroidal,
situated behind the retina; and the retinal, which is dependent on the restriction that the
light path must be minimally disrupted. Between these two circulations, the avascular
retinal layers depend on diffusion of metabolites through the tissue. Oxygen supply
to these layers may be threatened by diseases affecting microvasculature, for example
diabetes and hypertension, which may ultimately cause loss of sight.

An accurate model of retinal blood flow will therefore facilitate the study of retinal
oxygen supply and, hence, the complications caused by systemic vascular disease.
Here, two simple models of the blood flow and exchange of hydrogen with the
retina are presented and compared qualitatively with data obtained from experimental
measurements. The models capture some interesting features of the exchange and
highlight effects that will need to be considered in a more sophisticated model and in
the interpretation of experimental results.

2010 Mathematics subject classification: 92C50.
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1. Introduction

The exchange of metabolites between the blood and retina is very important in the
health of the eye and also in vision. Part of understanding this process is to determine
accurately the blood flow in the eye and near the retina in particular. There are many
problems inherent in determining this, not the least of which is a means of extracting
reliable data.

The eye consists of several layers that work together to provide optical input to the
brain. The outer layer is called the sclera (the white of the eye). Just inside this is the
choroid, which is a layer of dense vasculature that provides a conduit for oxygen and
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other chemicals [10]. The choroidal circulation is a very dense mesh of large-diameter
capillaries, lying directly behind the retina. Between this and the retina, there is the
tough highly elastic Bruch’s membrane. Approximately 80% of the total blood flow
occurs in the choroid. The avascular retinal region is adjacent to this, and then there
is the vascular region (which is roughly half the total retinal width). This comprises
much smaller capillaries, separated by tissue, such that the blood flow is an order
of magnitude lower than in the choroid. The retina is light sensitive and forms the
innermost layer on the back of the eye. Retinal ganglion cells near the surface send
information to the brain via the optic nerve. The choroidal and retinal layers are very
thin, making up no more than several hundred microns. Blood is supplied to the eye
via the ophthalmic artery, situated nearly centrally at the back of the eye, and departs
via the central retinal vein, which runs parallel to the artery.

One experimental procedure used to determine the blood flow is the hydrogen
clearance technique, in which a bolus of hydrogen-saturated saline solution is
introduced to the blood supply and then measured across the retina [1, 11]. This
method was found to give highly reproducible concentration traces. Hydrogen is a
conservative tracer and the subsequent decay of the hydrogen concentration may be
used to estimate the blood flow.

The principles of hydrogen washout to estimate tissue blood flow were described by
Kety [7]. The technique is based upon the detection and rate of clearance of hydrogen
from the tissue under investigation. Under ideal conditions, the clearance rate is
directly proportional to the local blood flow per unit weight of tissue. However, the
theoretical requirements cannot be met in the eye. The “ideal” condition requires that
the measurements should be made in a uniformly perfused three-dimensional tissue.
This situation cannot be guaranteed in the eye, due to the necessarily short duration
of the hydrogen-saturated saline injection. Also, the inhomogeneous circulations on
either side of the avascular retinal tissue depart from the ideal. Hence, a mathematical
model of the hydrogen clearance through the retina should help to confirm or refute
blood flow estimates and also estimate other parameters, for example diffusivity.

Apart from making the “hydrogen clearance curves” difficult to interpret
unambiguously, the inhomogeneities in the anatomy of the posterior segment of the
eye introduce complexity into the modelling of the problem. For this reason, we make
a start by considering two simple models of the retinal blood supply and examine
their behaviour in the light of experimental results. The study is by no means
comprehensive, but does provide some interesting results that need to be considered in
any future interpretation of data.

There has been extensive modelling of blood flow in the retina and surrounding
ocular region, and also of the interactions of oxygen and metabolites with the
surrounding tissue. A detailed review of some of these models was given by Arciero
et al. [2]. The focus of many of these models is the actual flow of blood in the micro-
arteries and the changes due to the intra-ocular pressure. This allows analysis of the
direct conditions that cause diseases such as glaucoma and macular degeneration, and
are pivotal in the symptoms of diabetes. The models range from models that simulate

https://doi.org/10.1017/S1446181117000426 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000426


[3] Hydrogen clearance from the retina 283

the flow using an electric circuit analogue [6] to direct computational simulation of
flow in the blood vessels [9]. Friedland [3] proposed a model of oxygen transport in
the retina and Goldman [5] gave a summary of models of oxygen transport within the
microvasculature.

In general, these models are trying to generate a detailed mapping of flow and
infusion within a retinal landscape. In this paper, we are taking a slightly broader view,
panning back to consider the general interchange between the choroidal circulation
and the avascular retina. By considering this higher level focus, we can obtain a
big picture view of interchange between a conservative tracer in the blood and in the
retinal tissue without the confusion of the complicated geometry. This focus allows
us to consider the simple interaction between the blood flow and surrounding tissue,
and shows some very interesting effects that are obscured by the details of the more
sophisticated models. It also provides some guidelines for determining general blood
flow using the hydrogen clearance technique, or for monitoring the passage of the
bolus of hydrogen (or perhaps an injected drug) through the retinal system.

For the purposes of the model, it is assumed that the blood flow in the vessels
is laminar, with a negligible pulsatile component [4]. Thus, the rapid diffusion of
hydrogen through the retina must be modelled, relating the retinal circulation to the
more dominant source of hydrogen in the choroid. The models presented below
only consider the choroidal blood supply, as the retinal blood supply is an order of
magnitude smaller.

2. Two-layer model

The choroid and avascular retina are modelled as two well-mixed layers. The
blood flow in the choroid is assumed to be moving at constant and uniform speed
U0. This assumption is based on the highly vascular nature of the choroid, so that on
average the flow will be uniform through this region (rather than simulating a series
of micro-arteries individually). There is an exchange of hydrogen between the layers
that is proportional to the difference in their concentration values at a rate λ. The
concentrations in the two layers are given by C(x, t) in the moving layer (choroid) and
R(x, t) in the stationary layer (avascular retina). The model equations are

∂C
∂t

+ U0
∂C
∂x

= −λ(C − R),

∂R
∂t

= λ(C − R)

and the initial conditions are C(x, 0) = C0(x) and R(x, 0) = 0. The idea here is that
there is some locally nonzero concentration of hydrogen in the choroid which is then
advected along the choroid, while at the same time there is an exchange between the
layers.

The equations are first nondimensionalized using x ∼ l, where l is the length
scale associated with the initial distribution C0(x) and t ∼ l/U0. Both C and R are
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nondimensionalized using a typical value from C0. The equations become

∂C
∂t

+
∂C
∂x

= −α(C − R), (2.1)

∂R
∂t

= α(C − R), (2.2)

where all variables are now nondimensional, and α = lλ/U0 is a dimensionless
exchange parameter.

We first consider the periodic case where the initial conditions are C(x, 0) = C0(x)
and R(x, 0) = 0 for x ∈ [0, L], and the solution is assumed to have period L. The model
above can then be solved by writing the dependent variables as a complex Fourier
series

C(x, t) =

∞∑
k=−∞

Ck(t) exp(2πikx/L), R(x, t) =

∞∑
k=−∞

Rk(t) exp(2πikx/L).

Substitution and equating of coefficients yield a system of linear ordinary differential
equations (ODEs) for Ck and Rk given by

dCk

dt
= −(α + 2πik/L)Ck + αRk,

dRk

dt
= αCk − αRk

for k ∈ Z. Solving this system and applying the R(x, 0) = 0 condition yields the general
solutions

C(x, t) =

∞∑
k=−∞

Ak[(α + λ1k)eλ1kt − (α + λ2k)eλ2kt] exp(2kπix/L), (2.3)

R(x, t) = α

∞∑
k=−∞

Ak[eλ1kt − eλ2kt] exp(2kπix/L), (2.4)

where

λ1k = −(α + iπk/L) −
√
α2 − π2k2/L2 and λ2k = −(α + iπk/L) +

√
α2 − π2k2/L2.

The constants Ak are determined by the initial condition C(x, 0) = C0(x).
By taking the limit as L→∞ in (2.3) and (2.4) in the usual way, the Fourier series

solution can be converted to a Fourier transform solution

C(x, t) =

∫ ∞

−∞

A(ω)[(α + λ1(ω))eλ1(ω)t − (α + λ2(ω))eλ2(ω)t]e2πiωx dω

and

R(x, t) = α

∫ ∞

−∞

A(ω)[eλ1(ω)t − eλ2(ω)t]e2πiωx dω,
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Figure 1. Profiles of C(x, t) (blue online) and −R(x, t) (red online) at times t = 0, 2, 4, 6, 8 for α = 0.02.
The profiles for −R appear below the x-axis to improve clarity.

where

λ1(ω) = −α − iπω +
√
α2 − π2ω2, λ2(ω) = −α − iπω −

√
α2 − π2ω2

and A(ω) is given by

A(ω) =
1

2
√
α2 − π2ω2

∫ ∞

−∞

C0(x)e−2πiωx dx.

It only remains to specify the initial distribution of hydrogen in the choroid. A
natural choice is the Gaussian profile C0 = e−x2

/
√
π (so that

∫ ∞
−∞

C0(x) dx = 1), in which
case the solutions are

C(x, t) =

∫ ∞

−∞

e−π
2ω2

2
√
α2 − π2ω2

[(α + λ1(ω))eλ1(ω)t − (α + λ2(ω))eλ2(ω)t]e2πiωx dω

and

R(x, t) = α

∫ ∞

−∞

e−π
2ω2

2
√
α2 − π2ω2

[eλ1(ω)t − eλ2(ω)t]e2πiωx dω.

Figure 1 shows a series of profiles of C and R at various times for α = 0.02.
For this low value of α there is little exchange between the two layers. The initial
profile is advected with barely any change in shape at speed 1, with its magnitude
slowly decreasing as hydrogen slowly diffuses from the choroid to the retina. In
fact, for the times shown in Figure 1, the solution for C(x, t) is well approximated
by C(x, t) = C0(x − t)e−αt, which can be obtained from (2.1) by assuming R ≡ 0.
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Figure 2. Profiles of C(x, t) (blue online) and −R(x, t) (red online) at times t = 0, 2, 4, 6, 8 for α = 0.5. The
profiles for −R appear below the x-axis to improve clarity.

After the bolus of hydrogen has moved further than its initial width, hydrogen begins
to diffuse back from the retina into the choroid. This leads to the original symmetry
of the hydrogen distribution in the choroid breaking down. In Figure 1 this is barely
visible as a slight thickening of the left-hand tail for later times.

Figure 2 shows a similar set of profiles but for α = 0.5. For this value of α, there is a
much stronger exchange of hydrogen between the choroid and retina. The magnitude
of the original distribution of hydrogen rapidly decreases, and the original symmetry
of the hydrogen distribution is soon lost as hydrogen that has diffused into the retina at
earlier times diffuses back into the choroid as the bolus moves through. This process
of early diffusion of hydrogen into the retina, and then diffusion back into the choroid,
leads to the peak concentration in the retina lagging the peak in the choroid. Also, after
some time, there is an approximately equal amount of hydrogen in both the choroid
and the retina. Defining

C̄(t) =

∫ ∞

−∞

C(x, t) dx and R̄(t) =

∫ ∞

−∞

R(x, t) dx,

and using (2.1) and (2.2) (with C̄(0) = 1 and R̄(0) = 0), it can be shown that

C̄(t) = 1
2 (1 + e−2αt) and R̄(t) = 1

2 (1 − e−2αt). (2.5)

It follows from (2.5) that as t → ∞, the total amount of hydrogen is evenly split
between the choroid and retina. By t = 8, the profiles in Figure 2 have very close
to equal quantities in both the choroid and the retina. For later times, the profiles
evolve by stretching out horizontally and lowering their peak value.
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Figure 3. The x-location of maximum C(x, t), xm, as a function of t for various values of α. Note that for
α = 0.3 there is a discontinuity at t ≈ 9.5.

Less obvious from Figure 2 is that for later times the peak concentration in the
choroid is travelling at a slower speed than that set by the advection velocity in the
choroid. In particular, the peak concentration at t = 8 is located at x ≈ 5.5, whereas
under pure advection it would be at x = 8. Close tracking of the peak concentration
location shows that for t > 8 the profiles in Figure 2 travel at speed 0.5.

Figure 3 shows the location xm(t) of the peak concentration in the choroid for
various values of α. For each value of α, there is a period for t > 0 where the peak is
travelling at a speed close to the advection velocity 1. At some time later (that depends
on α), there is a shift to a lower speed, which is one-half of the advection speed in
the choroid. For small values of α this transition happens later and more abruptly. In
fact, from Figure 3 there is a discontinuity at the transition point for α = 0.3 (which
occurs at t ≈ 9.5). This discontinuity is caused by the shift from the location of the
peak being set by the advected peak of the initial distribution to the peak generated
by diffusion back into the choroid from the retina. The latter peak travels at half the
advection speed in the choroid. Figure 4 shows a series of profiles for α = 0.3 during
the period that the transition occurs. The peak associated with the original distribution
is visible at t = 6, 8 and 10, but has all but disappeared by t = 12. The jump from one
peak to the other occurs between t = 8 and 10 as indicated by Figure 3.

In the experimental situation, hydrogen concentration measurements consist of time
series at specific locations. The experimental time series are characterized by an initial
rapid rise to a maximum value and a slow tailing-off. Figure 5 shows a number of
time series at different x-locations for α = 0.5 taken from the model results. All the
time series show qualitatively the same behaviour as the experimental results. There
is a relatively rapid rise to the maximum value followed by a more gradual decay. The
mechanism that generates the relatively slow decay in these cases follows from the
discussion above. Once the profiles have moved into the slower propagation phase
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Figure 4. Profiles of C(x, t) (blue online) and −R(x, t) (red online) at times t = 6, 8, 10, 12 for α = 0.3
showing the emergence of a new peak value behind the peak associated with the original distribution.
The profiles for −R appear below the x-axis to improve clarity.
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Figure 5. Time series of choroidal hydrogen concentration C(x, t) at locations x = 2, 4, 6, 8 for α = 0.5
taken from the model results. The “+” indicates the peak value for each series.

(which happens at t ≈ 7 for α = 0.5), the profile in the choroid maintains more or less
the same shape, but elongates and flattens as time progresses. The leading edge of the
distribution travels at speed 1, but the peak value (which is decreasing in magnitude
with time) travels at half of that speed. Of particular note is that the arrival time of
the peak concentration at a particular location cannot generally be used to calculate
the speed of the choroidal blood flow. From Figure 5 the peaks at x = 2 and x = 4
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correspond fairly closely to the expected times, but the peaks at x = 6 and x = 8 are
significantly delayed. This is because at these later times the peak concentration no
longer corresponds to the advection of the peak in the initial concentration profile.

3. 2-D advection/diffusion model

The model described in the previous section is a relatively crude representation of
the choroid/retina system. In this section, a fully two-dimensional (2-D) model is
formulated that includes transport via diffusion across, as well as along, the choroidal
and retinal layers.

The choroid/retina system is modelled as a rectangular region x ∈ (0, L), z ∈ (−D, 0)
within which the evolving hydrogen concentration is governed by the advection–
diffusion equation

∂C
∂t

+ U(z)
∂C
∂x

=
1

Pe

(
∂2C
∂x2 +

∂2C
∂z2

)
, (3.1)

where C(x, z, t) is the hydrogen concentration in the choroid/retina system, Pe = U0l/κ
is the Péclet number and κ is the diffusivity of hydrogen in the eye tissue. The
(dimensionless) velocity profile U(z) takes the form

U(z) =

1 −T < z < 0,
0 −D < z < −T,

where T < D is the thickness of the choroid in dimensionless terms. Thus, in this
model, the choroid occupies the layer −T < z < 0 and the retina occupies −D < z < −T .

The model is closed by adding boundary conditions to (3.1). Periodicity is assumed
in the x-direction, and zero-flux boundary conditions are applied at z = 0 and z = −D.
The initial condition consists of a sine-profile bolus of hydrogen in the choroid

C(x, z, 0) =

− sin(2πx) sin(2πz/T ) 0 < x < 1,−T < z < 0,
0 otherwise.

The above model is solved numerically in the following way. All spatial derivatives
are replaced by a finite-volume representation. For the advective terms, quadratic
upwinding is used [8]. For the diffusion terms, a standard centred difference is used.
This leads to a large set of ODEs which are solved using ode45 in matlab. In the
simulations here L = 10, D = 2 and T = 1. The discretization has I = 100 points in the
horizontal and J = 50 in the vertical.

Several simulations for different values of Pe have been carried out, and only a
subset is presented here. In this 2-D model, Pe qualitatively acts like the inverse of the
interaction parameter α in the two-layer model above.

Figure 6 shows contours of the distribution of C for three different times in
the choroid/retina system, including the initial distribution, for Pe = 16. For this
value of Pe, the advection in the choroid dominates the evolution of C in the
choroid/retina system. This case is analogous to the low-α case for the well-mixed
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Figure 6. Contours of hydrogen concentration for t = 0, 5 and 10 for Pe = 16. The dashed line indicates
the boundary between the choroid and retina.
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Figure 7. Contours of hydrogen concentration for t = 0, 5 and 10 for Pe = 2. The dashed line indicates
the boundary between the choroid and retina.

model considered earlier. Diffusion dominates for small times (t < 1) with the initially
sharp gradients rapidly being smoothed out. After this the bolus moves through the
choroid with relatively little change in form. By t = 10 the centre of mass of the bolus
has travelled nearly the entire length of the domain indicating that advection is the
dominant transport mechanism. There has been some diffusion of hydrogen into the
retina but the bulk remains in the choroid. By the end of the simulation at t = 10 most
of the hydrogen remains in the choroid.

Figure 7 shows similar contour plots to Figure 6 but with Pe = 2. For this value
of Pe, diffusion plays a much more dominant role in the transport of hydrogen,
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Figure 8. Time series of hydrogen concentration in the middle of the choroid at x = 2, 4, 6 and 8 for
Pe = 16.

particularly with greater exchange between the choroidal and retinal layers. By t = 5,
the distribution of hydrogen in the two layers has a clear symmetry with approximately
equal amounts in each layer that is apparently maintained at least up to t = 10. This is
very similar to the high-interaction case for the two-layer model above, although there
is some cross-layer structure that could not be captured by the earlier model. Note
also that at t = 10, the highest concentration of hydrogen in the flowing layer occurs at
x ≈ 6. Under pure advection, this highest concentration would be expected to occur at
x ≈ 10. This reduced apparent advection speed is also observed in the high-interaction
case of the earlier two-layer model.

Figure 8 shows a number of time series of the hydrogen concentration within the
flowing layer at various x-locations. Each of these time series reproduces qualitatively
experimental observations with an initial rise in hydrogen concentration followed by a
relatively slow decay back to zero.

4. Concluding remarks

This paper has developed two simple models for the transport of hydrogen
in the retina. The models are motivated by experiments on hydrogen clearance
within a rat’s retina, which in turn are used for estimating blood flow in the eye.
Despite their simplicity, the models are able to qualitatively reproduce experimental
observations; specifically, the rapid rise and relatively gentle fall in the time series
of hydrogen concentration at fixed locations. The models provide an explanation
for this observation in terms of the diffusion of hydrogen from the retina back into
the choroid, once the injected bolus of hydrogen is carried through the choroid. An
interesting feature of this exchange process is that it leads to an apparently reduced
advection velocity. The speed of the location of peak hydrogen concentration in the
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flowing choroid does not generally correspond to that predicted by the speed of the
underlying flow.

There are many features of blood flow in the eye that have been omitted from the
present models that are avenues for further work. These include adding additional
layers (for example, vascular retina, sclera etc), accounting for geometrical features
(curvature and changing thickness) and more accurate modelling of flow and transport
within and between the physiological components of the eye.
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