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NOVEL STABILITY CONDITIONS FOR SOME
GENERALIZATION OF NICHOLSON’S BLOWFLIES
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Abstract

We consider a generalization of the well-known nonlinear Nicholson blowflies model
with stochastic perturbations. Stability in probability of the positive equilibrium of the
considered equation is studied. Two types of stability conditions: delay-dependent and
delay-independent conditions are obtained, using the method of Lyapunov functionals
and the method of linear matrix inequalities. The obtained results are illustrated
by numerical simulations by means of some examples. The results are new, and
complement the existing ones.

2020 Mathematics subject classification: primary 37H30; secondary 37N25, 34K20.
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1. Introduction

The Nicholson blowflies model,

ẋ(t) = −ax(t) + kx(t − h)e−λx(t−h), (1.1)

is primarily developed to describe the periodic oscillation in Nicholson’s classic
experiments [12], where k denotes the maximum daily egg production rate per capita.
The size at which the blowfly population reproduces at its maximum rate is denoted
by 1/λ, and the per capita daily adult death rate and the generation time are denoted
by a and h, respectively. This model and its different variations have received a lot
of attention and are very popular in research, especially in the qualitative theory of
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differential equations, due to their applicability. For more details, we refer the reader
to [2, 3, 5, 7–10, 15–17] and references therein.

In this work, we consider a very general framework for a model which includes
discrete and distributed delays as particular cases. Also, since the randomness is quite
evident in the real world, we consider the model with stochastic perturbations. These
incorporations make the model very realistic and genuine.

Consider the integro-differential equation

ẋ(t) = −ax(t) − bx(t − τ) +
∫ ∞

0
x(t − s)e−λ(s)x(t−s) dK(s), t ≥ 0,

x(s) = φ(s), s ≤ 0,
(1.2)

where λ(s) > 0, 1/λ(s) is the size at which the blowfly population reproduces at its
maximum rate at the time moment s, the kernel K(s) is a nondecreasing function of
bounded variation on [0,∞), that is, K =

∫ ∞
0 dK(s) < ∞, and the integral is understood

in the Stieltjes sense [14]. In particular, this means that both distributed and discrete
delays can be used depending on the concrete choice of the kernel K(s). For instance, in
the case when b = 0, λ(s) = λ and dK(s) = kδ(s − h)ds, where k > 0 and δ(s) is Dirac’s
function [16], we obtain the classical Nicholson’s blowflies model (1.1).

It is clear that equation (1.2) has the zero equilibrium, and its positive equilibrium
x∗ is a solution of the equation

∫ ∞
0

e−λ(s)x∗dK(s) = a + b < K. (1.3)

REMARK 1.1. Let

dK(s) =
m∑

i=1

kiδ(s − hi) ds, λ(hi) = λi.

In this case, K =
∑m

i=1 ki and the equation (1.3) takes the form

m∑
i=1

kie−λix∗ = a + b <
m∑

i=1

ki.

If, in particular, m = 1, λ1 = λ > 0, then K = k1 and

x∗ =
1
λ

ln
K

a + b
> 0. (1.4)

If m = 2, then the equilibrium x∗ is defined by the equation

k1e−λ1x∗ + k2e−λ2x∗ = a + b < k1 + k2, (1.5)

which, generally speaking, can be solved numerically but sometimes analytically too.
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EXAMPLE 1.2. Let m = 2, k1 = λ1 = a + b = 1, k2 = λ2 = 2. Then x∗ = ln 2.

Suppose that equation (1.2) is exposed to stochastic perturbations, which are of
the type of white noise and are directly proportional to the deviation of the system
state x(t) from the equilibrium x∗ and influence ẋ(t) immediately. So, equation (1.2) is
transformed into the Ito stochastic differential equation [6],

dx(t) = (−ax(t) − bx(t − τ) +
∫ ∞

0
x(t − s)e−λ(s)x(t−s) dK(s)) dt + σ(x(t) − x∗) dw(t),

(1.6)

whereσ is a constant and w(t) is the standard Wiener process on a complete probability
space {Ω,F, P}. For more details on this topic, we refer the reader to [6, 16].

Note that the equilibrium x∗ of equation (1.2) is also a solution of equation (1.6).

2. Centralization and linearization

To centralize equation (1.6) around the equilibrium x∗, put x(t) = y(t) + x∗. Substi-
tuting this into (1.6) gives

dy(t) = (−ay(t) − by(t − τ) + I(yt)) dt + σy(t) dw(t), (2.1)

where yt is the trajectory of y(s), s ≤ t, and

I(yt) =
∫ ∞

0
(y(t − s) + x∗)e−λ(s)(y(t−s)+x∗) dK(s) − (a + b)x∗.

Note that, via (1.3), I(0) = 0 and stability of the equilibrium x∗ of equation (1.6) is
equivalent to stability of the zero solution of equation (2.1). Using the representation

e−λy = 1 − λy + o(y), where o(y) means that lim
y→0

o(y)
y
= 0,

and (1.3), we transform I(yt) as follows.

I(yt) =
∫ ∞

0
(y(t − s) + x∗)e−λ(s)y(t−s)e−λ(s)x∗dK(s) − (a + b)x∗

=

∫ ∞
0

y(t − s)e−λ(s)x∗dK(s) + x∗
∫ ∞

0
(1 − λ(s)y(t − s))e−λ(s)x∗dK(s)

+ o(y) − x∗
∫ ∞

0
e−λ(s)x∗dK(s)

=

∫ ∞
0

y(t − s)F(s, x∗) dK(s) + o(y), (2.2)

where

F(s, x∗) = (1 − λ(s)x∗)e−λ(s)x∗ . (2.3)

https://doi.org/10.1017/S1446181123000147 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181123000147


[4] Nicholson’s blowflies model with stochastic perturbations 397

Substituting (2.2) into (2.1) and neglecting o(y), we obtain the linear equation

dz(t) =
(
− az(t) − bz(t − τ) +

∫ ∞
0

z(t − s)F(s, x∗) dK(s)
)
+ σz(t) dw(t), (2.4)

which is the linear part of equation (2.1).

REMARK 2.1. Note that, for equation (1.1) b = 0, via (2.3) and (1.4),

F(x∗) = (1 − λx∗)e−λx∗ =
(
1 − ln

k
a

)a
k

,

and equation (2.4) takes the form

dz(t) =
(
− az(t) − a

(
ln

k
a
− 1
)
z(t − h)

)
dt + σz(t) dw(t). (2.5)

3. Stability

DEFINITION 3.1. The zero solution of equation (2.1) is called stable in probability
if, for any ε1 > 0 and ε2 ∈ (0, 1), there exists δ > 0 such that the solution y(t, φ) of
equation (2.1) satisfies the condition P{supt≥0 |y(t, φ)| > ε1} < ε2 for any initial function
φ such that P{sups∈[−τ,0] |φ(s)| < δ} = 1.

DEFINITION 3.2. Let E be the expectation. The zero solution of equation (2.4) is
called:

• mean square stable if, for each ε > 0, there exists a δ > 0 such that E|z(t, φ)|2 < ε,
t ≥ 0, provided that sups∈[−τ,0] E|φ(s)|2 < δ; and

• asymptotically mean square stable if it is mean square stable and
limt→∞ E|z(t, φ)|2 = 0 for each initial function φ.

REMARK 3.3. It is known [16] that a condition of asymptotic mean square stability of
the zero solution of the linear equation (2.4) at the same time is a condition for stability
in probability of the zero solution of the nonlinear equation (2.1) and, therefore, is
a condition for stability in probability of the equilibrium x∗ of the initial nonlinear
equation (1.6).

The following notation is used below, that is,

αi =

∫ ∞
0

si|F(s, x∗)| dK(s), i = 0, 1. (3.1)

3.1. Delay-independent stability condition

THEOREM 3.4. If

ρ = a − α0 − 1
2σ

2 > |b|, (3.2)

then the equilibrium x∗ of equation (1.6) is stable in probability.
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PROOF. Via Remark 3.3, it is enough to prove that, by condition (3.2), the zero solution
of equation (2.4) is asymptotically mean square stable. Using the general method for
construction of Lyapunov functionals [15, 16], we construct a Lyapunov functional
V(zt) in the form V(zt) = V1(z(t)) + V2(zt), where V1(z(t)) = z2(t) and the additional
functional V2(zt) is chosen below.

Let L be the generator [6, 16] of equation (2.4). Then,

LV1(z(t)) = 2z(t)
(
− az(t) − bz(t − τ) +

∫ ∞
0

z(t − s)F(s, x∗) dK(s)
)
+ σ2z2(t)

= (−2a + σ2)z2(t) − 2bz(t)z(t − τ) + J(zt), (3.3)

where F(s, x∗) is as defined in (2.3) and

J(zt) = 2
∫ ∞

0
z(t)z(t − s)F(s, x∗) dK(s)

≤
∫ ∞

0
(z2(t) + z2(t − s))|F(s, x∗)| dK(s)

= α0z2(t) +
∫ ∞

0
z2(t − s)|F(s, x∗)| dK(s). (3.4)

Now, consider the additional functional V2(zt) in the form

V2(zt) = ρ
∫ t

t−τ
z2(s) ds +

∫ ∞
0

∫ t

t−s
z2(θ) dθ|F(s, x∗)| dK(s).

Then,

LV2(zt) = ρ(z2(t) − z2(t − τ)) + α0z2(t) −
∫ ∞

0
z2(t − s)|F(s, x∗)| dK(s). (3.5)

From (3.3), (3.4), (3.5) and (3.2) for the Lyapunov functional

V(zt) = V1(z(t)) + V2(zt)

we obtain

LV(zt) ≤ (−2a + σ2)z2(t) − 2bz(t)z(t − τ) + 2α0z2(t) + ρ(z2(t) − z2(t − τ))
= (−2a + 2α0 + ρ + σ

2)z2(t) − 2bz(t)z(t − τ) − ρz2(t − τ)
= η′Dη,

where

D =
[
−ρ −b
−b −ρ

]
, η =

[
z(t)

z(t − τ)

]
.

Via condition (3.2), the matrix D is negative definite, that is, LV(zt) ≤ −cz2(t) for some
c > 0. From the Lyapunov-type theorem [16], it follows that the zero solution of the
equation (2.4) is asymptotically mean square stable. This completes the proof. �
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REMARK 3.5. If dK(s) = 0, then, from (3.2), the known [16] sufficient condition of
asymptotic mean square stability follows for the zero solution of the linear delay
differential equation

a > |b| + 1
2σ

2. (3.6)

For equation (2.5), the stability condition (3.6) takes the form

a > a
∣∣∣∣∣ ln k

a
− 1
∣∣∣∣∣ + 1

2
σ2,

from which it also follows that

a exp
(
σ2

2a

)
< k < a exp

(
2 − σ

2

2a

)
, σ2 < 2a.

REMARK 3.6. The necessary and sufficient condition for asymptotic mean square
stability of the zero solution of the equation (2.5) is [15, 16]

p G < 1, (3.7)

where

p =
1
2
σ2, G =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 +
a
q

(
ln

k
a
− 1
)

sin(qh)

a[1 +
(

ln
k
a
− 1
)

cos(qh)]
, k > ae2, q = a

√
ln

k
a

(
ln

k
a
− 2
)
,

1 + ah
2a

, k = ae2,

1 +
a
q

(
ln

k
a
− 1
)

sinh(qh)

a[1 +
(

ln
k
a
− 1
)

cosh(qh)]
, a < k < ae2, q = a

√
ln

k
a

(
2 − ln

k
a

)
.

(3.8)

In particular, if p > 0, h = 0, then the stability condition (3.7), (3.8) takes the form
a ln(k/a) > p; if p = 0, h > 0, then the region of stability is bounded by the lines a = 0,
a = k and

1 +
(

ln
k
a
− 1
)

cos(qh) = 0 for k > ae2.

Note that

sinh(x) = 1
2 (ex − e−x) and cosh(x) = 1

2 (ex + e−x)

are hyperbolic sine and hyperbolic cosine functions, respectively.
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3.2. Delay-dependent stability condition Note that the linear equation (2.4) can
be presented in the form of a stochastic differential equation of a neutral type [16],

dZ(t) = −γz(t) dt + σz(t) dw(t), (3.9)

where

Z(t) = z(t) − bI1(t) + I2(t), γ = a + b − β, β =

∫ ∞
0

F(s, x∗) dK(s),

I1(t) =
∫ t

t−τ
z(s) ds, I2(t) =

∫ ∞
0

∫ t

t−s
z(θ) dθF(s, x∗) dK(s).

(3.10)

Really, from (3.10) and (3.9),

dZ(t) = dz(t) +
(
− bz(t) + bz(t − τ) + βz(t) −

∫ ∞
0

z(t − s)F(s, x∗) dK(s)
)

dt,

= (−az(t) − bz(t) + βz(t)) dt + σz(t) dw(t),

which coincides with (2.4).

THEOREM 3.7. Let 2γ > σ2 and α1 be as defined in (3.1). If

|b|τ + α1 < 1 (3.11)

and there exist positive numbers p1 and p2 such that the linear matrix inequality (LMI)

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−(2γ − p1τ

2 − p2α
2
1 − σ

2) bγ −γ

bγ −p1 0

−γ 0 −p2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ < 0 (3.12)

holds, then the positive equilibrium x∗ of equation (1.6) is stable in probability.

PROOF. Via Remark 3.3, it is enough to prove that, by conditions (3.11) and (3.12),
the zero solution of equation (2.4) is asymptotically mean square stable. Let L
be the generator [6, 16] of equation (3.9). Via (3.9) and (3.10), for the functional
V1(zt) = Z2(t),

LV1(zt) = −2γZ(t)z(t) + σ2z2(t)

= −2γ(z(t) − bI1(t) + I2(t))z(t) + σ2z2(t)

= −(2γ − σ2)z2(t) + 2bγz(t)I1(t) − 2γz(t)I2(t).

Using the general method for construction of Lyapunov functionals [15, 16], we now
consider an additional functional V2 in the form

V2(zt) = p1τ

∫ t

t−τ
(s − t + τ)z2(s) ds + p2α1

∫ ∞
0

∫ t

t−s
(θ − t + s)z2(θ) dθ|F(s, x∗)| dK(s).
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Then,

LV2(zt) = p1τ
(
τz2(t) −

∫ t

t−τ
z2(s) ds

)
+ p2α1

∫ ∞
0

(
sz2(t) −

∫ t

t−s
z2(θ) dθ

)
|F(s, x∗)| dK(s)

= (p1τ
2 + p2α

2
1)z2(t) − p1τ

∫ t

t−τ
z2(s) ds − p2α1

∫ ∞
0

∫ t

t−s
z2(θ) dθ|F(s, x∗)| dK(s).

Using Lemma A.1 (see Appendix A),

I2
1(t) ≤ τ

∫ t

t−τ
z2(s) ds

and

I2
2(t) ≤

( ∫ ∞
0

∫ t

t−s
|z(θ)| dθ|F(s, x∗)| dK(s)

)2

≤ α1

∫ ∞
0

∫ t

t−s
z2(θ) dθ|F(s, x∗)| dK(s).

So,

LV2(zt) ≤ (p1τ
2 + p2α

2
1)z2(t) − p1I2

1(t) − p2I2
2(t).

As a result, for the functional V(zt) = V1(zt) + V2(zt), we obtain

LV(zt) ≤ −(2γ − p1τ
2 − p2α

2
1 − σ

2)z2(t) + 2bγz(t)I1(zt) − 2γz(t)I2(t)

− p1I2
1(t) − p2I2

2(t)
= η′(t)Qη(t),

where η(t) = (z(t), I1(t), I2(t))′ and matrix Q is as defined in (3.12). From the LMI
Q < 0, it follows that LV(zt) ≤ −cz2(t) for some c > 0. From this and (3.11), it follows
that the zero solution of the neutral-type equation is asymptotically mean square stable
[16]. The proof is now complete. �

REMARK 3.8. For equation (1.1), we have b = 0 and dK(s) = kδ(s − h)ds, where δ(s)
is Dirac’s function [16]. Then condition (3.11) takes the form α1 = ah| ln(k/a) − 1| < 1
and can be presented as

a exp(1 − (ah)−1) < k < a exp(1 + (ah)−1).

EXAMPLE 3.9. Via Remark 1.1, for m = 2, equation (1.6) takes the form

dx(t) = (−ax(t) − bx(t − τ) + k1x(t − h1)e−λ1x(t−h1) + k2x(t − h2)e−λ2x(t−h2)) dt
+ σ(x(t) − x∗) dw(t). (3.13)

Let m = 2, a = b = 0.5, k1 = λ1 = 1, k2 = λ2 = 2, τ = 0.8, h1 = 0.4, h2 = 0.6 and
σ = 1. Note that, for the given values of the parameters, condition (3.2) does not
hold. We now check conditions (3.11) and (3.12). Via Example 1.2, the equilibrium
x∗ = ln 2 = 0.6931. From (3.1), it follows that

α1 =
1
2 {(1 − ln 2)h1 + (2 ln 2 − 1)h2} = 0.1773.
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FIGURE 1. Stable equilibrium. 100 trajectories of the solution to equation (3.13): a = 0.5, b = 0.5,
x(s) = 1.18 cos(s), s ∈ [−τ, 0].

So, condition (3.11) holds, that is,

|b|τ + α1 = 0.4 + 0.1773 = 0.5773 < 1.

In addition, via (3.10),

β = 1
2 (1 − ln 2) + 1 − 2 ln 2 = 1.5 − 2.5 ln 2 = −0.2329, γ = 1.2329.

By virtue of MATLAB for the LMI (3.12), we found p1 = 0.7256 and p2 = 4.7962, for
which the matrix

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−0.8506 0.6164 −1.2329

0.6164 −0.7256 0

−1.2329 0 −4.7963

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

is negative definite, that is,

S1 = −6.3725 < 0, S2 = 6.2775 > 0, S1S2 = −40.0037 < S3 = −0.0350 < 0

(see Lemma A.3, Appendix A). So, the equilibrium x∗ = ln 2 of the equation (3.13) is
stable in probability.

Using the Euler–Maruyama scheme [11, 13, 16] for a difference analogue of
equation (3.13), the following simulations were obtained.

In Figure 1, 100 trajectories of the solution to equation (3.13) are shown for
the values of the parameters given above and the initial function x(s) = 1.18 cos(s),
s ∈ [−τ, 0]. One can see that all trajectories converge to the stable equilibrium
x∗ = ln 2.
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FIGURE 2. Unstable equilibrium. 100 trajectories of the solution to equation (3.13): a = 0.5, b = 0.3,
x(s) = x∗ cos(s), s ∈ [−τ, 0].

Now, put b = 0.3. From (1.5), it follows that x∗ = 0.43; via MATLAB, it is shown
that, in this case, the LMI (3.12) is impossible.

In Figure 2, 100 trajectories of the solution to equation (3.13) are shown for b = 0.3
and the same values of all other parameters. The equilibrium x∗ is unstable; therefore,
trajectories do not converge to x∗ and fill the whole space.

4. Conclusion

Stability is one of the important concepts in the study of mathematical models.
We consider a very general kind of stochastic model that is motivated by Nicholson’s
model. We obtain stability conditions, using the general method for construction of
Lyapunov functionals and the LMI method. The obtained stability conditions can be
easily verified, and are less restrictive. Via numerical simulation of the solutions to
the considered equation, some graphs are obtained to demonstrate stable and unstable
equilibria. The research method used here can be extended to many more general and
complicated models in different applications.

Appendix A

LEMMA A.1 [4]. Let R ∈ Rn×n be a positive definite matrix, y =
∫

D x(s)μ (ds), where
y, x(s) ∈ Rn, and μ(ds) is some measure on D such that μ(D) < ∞. Then,

y′Ry ≤ μ(D)
∫

D
x′(s)Rx(s)μ (ds).
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DEFINITION A.2 [1, 16]. The trace of the kth order of an n × n-matrix A = ‖aij‖ is
defined as

Sk =
∑

1≤i1<···<ik≤n

∣∣∣∣∣∣∣∣
ai1i1 · · · ai1ik
· · · · · · · · ·
aiki1 · · · aikik

∣∣∣∣∣∣∣∣ , k = 1, . . . , n.

Here, in particular,

S1 = Tr(A), Sn = det(A), Sn−1 =

n∑
i=1

Aii,

where Aii is the algebraic complement of the diagonal element aii of the matrix A.

LEMMA A.3 [1, 16]. A 3 × 3-matrix A is the Hurwitz matrix [14] if and only if S1 < 0,
S1S2 < S3 < 0.
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