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The Kudla–Millson form via the
Mathai–Quillen formalism
Romain Branchereau
Abstract. A crucial ingredient in the theory of theta liftings of Kudla and Millson is the construction
of a q-form φK M on an orthogonal symmetric space, using Howe’s differential operators. This form
can be seen as a Thom form of a real oriented vector bundle. We show that the Kudla-Millson form
can be recovered from a canonical construction of Mathai and Quillen. A similar result was obtaind
by Garcia for signature (2, q) in case the symmetric space is hermitian and we extend it to arbitrary
signature.

1 Introduction

Let (V , Q) be a quadratic space over Q of signature (p, q), and let G be its orthogonal
group. Let D be the space of oriented negative q-planes in V(R) and D+ one of its
connected components. It is a Riemannian manifold of dimension pq and an open
subset of the Grassmannian. The Lie group G(R)+ is the connected component of the
identity and acts transitively on D+. Hence, we can identify D+ with G(R)+/K, where
K is a compact subgroup of G(R)+ and is isomorphic to SO(p) × SO(q). Moreover,
let L be a lattice in V(Q), and let Γ be a torsion-free subgroup of G(R)+ preserving L.

For every vector v in V(R) such that Q(v , v) > 0, there is a totally geodesic
submanifold D+v of codimension q consisting of all the negative q-planes that are
orthogonal to v. Let Γv denote the stabilizer of v in Γ. We can view Γv/D+ as a rank q
vector bundle over Γv/D+v , so that the natural embedding Γv/D+v in Γv/D+ is the zero
section. In [6], Kudla and Millson constructed a closed G(R)+-invariant differential
form

φKM ∈ [Ωq(D+) ⊗ S (V(R))]G(R)+ ,(1.1)

where G(R)+ acts on the Schwartz space S (V(R)) from the left by (g f )(v) ∶=
f (g−1v) and on Ωq(D+) ⊗ S (V(R)) from the right by g ⋅ (ω ⊗ f ) ∶= g∗ω ⊗ (g−1 f ).
In particular, φKM(v) is a Γv-invariant form on D+. The main property of the Kudla–
Millson form is its Thom form property: if ω in Ωpq−q

c (Γv/D+) is a compactly
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The Kudla–Millson form via the Mathai–Quillen formalism 1639

supported form, then

∫
Γv/D+

φKM(v) ∧ ω = 2−
q
2 e−πQ(v ,v)∫

Γv/D+v
ω.(1.2)

Another way to state it is to say that in cohomology, we have

[φKM(v)] = 2−
q
2 e−πQ(v ,v) PD(Γv/D+v ) ∈ Hq (Γv/D+) ,(1.3)

where PD(Γv/D+v ) denotes the Poincaré dual class to Γv/D+v .

1.1 Kudla–Millson theta lift

In order to motivate the interest in the Kudla–Millson form, let us briefly recall how
it is used to construct a theta correspondence between certain cohomology classes
and modular forms. For simplicity,1 assume that p + q is even, and let ω be the
Weil representation of the dual pair SL2(R) × G(R) in S (V(R)). We extend it to
a representation in Ωq(D+) ⊗ S (V(R)) by acting in the second factor of the tensor
product. Building on the work of [11], Kudla and Millson [7, 9] used their differential
form to construct the theta series

ΘKM(τ) ∶= y−
p+q

4 ∑
v∈L

(ω(gτ , 1)φKM)(v) ∈ Ωq(D+),(1.4)

where τ = x + iy is in H and gτ is the matrix (
√y x√y−1

0 √y−1 ) in SL2(R) that sends i

to τ by Möbius transformation. This form is Γ-invariant, closed and holomorphic in
cohomology in the sense that ∂

∂τ ΘKM(τ) is an exact form. Kudla and Millson showed
that if we integrate this closed form on a compact q-cycle C in Zq(Γ/D+), then

∫
C

ΘKM(τ) = c0(C) +
∞
∑
n=1

⟨C , C2n⟩e2iπnτ(1.5)

is a modular form of weight p+q
2 , where

Cn ∶= ∑
v∈Γ/L

Q(v ,v)=n

Cv(1.6)

and the special cycles Cv are the images of the composition

Γv/D+v ↪ Γv/D+ �→ Γ/D+ .(1.7)

Thus, the Kudla–Millson theta series realizes a lift between the (co)-homology of Γ/D+
and the space of weight p+q

2 modular forms.

1.2 The result

Let E be a G(R)+-equivariant vector bundle of rank q over D+, and let E0 be the
image of the zero section. By the equivariance, we also have a vector bundle Γv/E

1In that way, we do not need to use the metaplectic group and we get modular forms of integral
weight.
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1640 R. Branchereau

over Γv/D+. The Thom class of the vector bundle is a characteristic class Th(Γv/E) in
Hq(Γv/E , Γv/(E − E0)) defined by the Thom isomorphism (see Section 3.6). A Thom
form is a form representing the Thom class. It can be shown that the Thom class is also
the Poincaré dual class to Γv/E0. Let sv ∶ Γv/D+ �→ Γv/E be a section whose zero locus
is Γv/D+v , then

s∗v Th(Γv/E) ∈ Hq (Γv/D+, Γv/(D+ −D+v )) .(1.8)

Viewing it as a class in Hq(Γv/D+) it is the Poincaré dual class of Γv/D+v . Since the
Poincaré dual class is unique, property (1.3) implies that

[φKM(v)] = 2−
q
2 e−πQ(v ,v)s∗v Th(Γv/E) ∈ Hq (Γv/D+) ,(1.9)

on the level of cohomology.
For arbitrary real oriented metric vector bundles, Mathai and Quillen used the

Chern–Weil theory to construct in [10] a canonical Thom form on E. We denote by
UMQ the canonical Thom form in Ωq(E) of Mathai and Quillen. Since UMQ is Γ-
invariant, it is also a Thom form for the bundle Γv/E for every vector v. The main
result is the following.

Theorem (Theorem 4.5) For a natural choice of a bundle E and of a section sv , we have
φKM(v) = 2−

q
2 e−πQ(v ,v)s∗v UMQ in Ωq(Γv/D+).

The bundle E is the tautological bundle of the Grassmannian D+ (see Section 3.6),
and the section sv is defined in Section 4.1.

For signature (2, q), the spaces are Hermitian and the result was obtained by a
similar method in [3] using the work of Bismut–Gillet–Soulé.

1.3 Generalizations

More generally, for a positive nondegenerate r-subspace U ⊂ V spanned by vectors
v1 , . . . , vr , Kudla and Millson also construct an rq form φKM(v1 , . . . , vr). This form
can also be recovered by the Mathai–Quillen formalism (see (3) of Section 5). Fur-
thermore, in [7, 9], they not only construct forms for the symmetric space associated
with SO(p, q), but also for the Hermitian space associated with U(p, q). In this case,
one should be able to recover their forms using the formalism of superconnections
as in [10, Theorem 8.5]. We expect the computations to be closer to the computations
done in [3].

2 The Kudla–Millson form

2.1 The symmetric space D

Let (V , Q) be a rational quadratic space, and let (p, q) be the signature of V(R). Let
e1 , . . . , ep+q be an orthogonal basis of V(R) such that

Q(eα , eα) = 1 for 1 ≤ α ≤ p,
Q(eμ , eμ) = −1 for p + 1 ≤ μ ≤ p + q.(2.1)
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The Kudla–Millson form via the Mathai–Quillen formalism 1641

Note that we will always use letters α and β for indices between 1 and p, and letters μ
and ν for indices between p + 1 and p + q. A plane z in V(R) is a negative plane if Q∣ z
is negative definite. Let

D ∶= {z ⊂ V(R) ∣ z is an oriented negative plane of dimension q}(2.2)

be the set of negative-oriented q-planes in V(R). For each negative plane, there are
two possible orientations, yielding two connected components D+ and D− of D. Let
z0 in D+ be the negative plane spanned by the vectors ep+1 , . . . , ep+q together with a
fixed orientation. The group G(R)+ acts transitively on D+ by sending z0 to gz0. Let
K be the stabilizer of z0, which is isomorphic to SO(p) × SO(q). Thus, we have an
identification

G(R)+/K �→ D+

gK �→ gz0 .(2.3)

For z in D+, we denote by gz any element of G(R)+ sending z0 to z.
For a positive vector v in V(R), we define

Dv ∶= {z ∈ D ∣ z ⊂ v⊥} .(2.4)

It is a totally geodesic submanifold of D of codimension q. Let D+v be the intersection
of Dv with D+.

Let z in D+ be a negative plane. With respect to the orthogonal splitting of V(R)
as z⊥ ⊕ z, the quadratic form splits as

Q(v , v) = Q∣ z⊥(v , v) + Q∣ z(v , v).(2.5)

We define the Siegel majorant at z to be the positive-definite quadratic form

Q+z (v , v) ∶= Q∣ z⊥(v , v) − Q∣ z(v , v).(2.6)

2.2 The Lie algebras g and k

Let

g ∶= {( A x
t x B )∣ A ∈ so(z⊥0), B ∈ so(z0), x ∈ Hom(z0 , z⊥0)} ,(2.7)

k ∶= {( A 0
0 B )∣ A ∈ so(z⊥0), B ∈ so(z0)}(2.8)

be the Lie algebras of G(R)+ and K , where so(z0) is equal to so(q). The latter is the
space of skew-symmetric q by q matrices. Similarly, we have so(z⊥0) equals so(p).
Hence, we have a decomposition of k as so(z⊥0) ⊕ so(z0) that is orthogonal with
respect to the Killing form. Let ε be the Lie algebra involution of g mapping X to
−X. The +1-eigenspace of ε is k and the −1-eigenspace is

p ∶= {( 0 x
t x 0 )∣ x ∈ Hom(z0 , z⊥0)} .(2.9)
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1642 R. Branchereau

We have a decomposition of g as k⊕ p and it is orthogonal with respect to the Killing
form. We can identify p with g/k. Since ε is a Lie algebra automorphism, we have that

[p, p] ⊂ k, [k, p] ⊂ p.(2.10)

We identify the tangent space of D+ at eK with p and the tangent bundle TD+ with
G(R)+ ×K p, where K acts on p by the Ad-representation. We have an isomorphism

T ∶ ∧2V(R) �→ g

e i ∧ e j �→ T(e i ∧ e j)ek ∶= Q(e i , ek)e j − Q(e j , ek)e i .(2.11)

A basis of g is given by the set of matrices

{ X i j ∶= T(e i ∧ e j) ∈ g∣ 1 < i < j < p + q} ,(2.12)

and we denote by ω i j , its dual basis in the dual space g∗. Let E i j be the elementary
matrix sending e i to e j and the other ek ’s to 0. Then p is spanned by the matrices

Xα μ = Eα μ + Eμα ,(2.13)

and k is spanned by the matrices

Xαβ = Eαβ − Eβα ,
Xνμ = −Eνμ + Eμν .(2.14)

2.3 Poincaré duals

Let M be an arbitrary m-dimensional real orientable manifold without boundary. The
integration map yields a nondegenerate pairing [2, Theorem 5.11]

Hq(M) ⊗R Hm−q
c (M) �→ R

[ω] ⊗ [η] �→ ∫
M

ω ∧ η,(2.15)

where Hc(M) denotes the cohomology of compactly supported forms on
M. This yields an isomorphism between Hq(M) and the dual Hm−q

c (M)∗ =
Hom(Hm−q

c (M),R). If C is an immersed submanifold of codimension q in M, then
C defines a linear functional on Hm−q

c (M) by

ω �→ ∫
C

ω.(2.16)

Since we have an isomorphism between Hm−q
c (M)∗ and Hq(M), there is a unique

cohomology class PD(C) in Hq(M) representing this functional, i.e.,

∫
M

ω ∧ PD(C) = ∫
C

ω(2.17)

for every class [ω] in Hm−q
c (M). We call PD(C) the Poincaré dual class to C, and any

differential form representing the cohomology class PD(C) a Poincaré dual form to C.
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The Kudla–Millson form via the Mathai–Quillen formalism 1643

2.4 The Kudla–Millson form

The tangent plane at the identity TeKD
+ can be identified with p and the cotangent

bundle (TD+)∗ with G(R)+ ×K p∗, where K acts on p∗ by the dual of the Ad-
representation. The basis e1 , . . . , ep+q identifies V(R) with Rp+q . With respect to this
basis, the Siegel majorant at z0 is given by

Q+z0
(v , v) ∶=

p+q

∑
i=1

x2
i .(2.18)

Recall that G(R)+ acts on S (Rp+q) from the left by (g ⋅ f )(v) = f (g−1v) and on
Ωq(D+) ⊗ S (Rp+q) from the right by g ⋅ (ω ⊗ f ) ∶= g∗ω ⊗ (g−1 f ). We have an
isomorphism

[Ωq(D+) ⊗ S (Rp+q)]G(R)+ �→ [⋀q
p
∗ ⊗ S (Rp+q)]K

φ �→ φe(2.19)

by evaluating φ at the basepoint eK in G(R)+/K, corresponding to the point z0 in D+.
We define the Howe operator

D∶ ⋀●
p
∗ ⊗ S (Rp+q) �→ ⋀●+q

p
∗ ⊗ S (Rp+q)(2.20)

by

D ∶= 1
2q

p+q

∏
μ=p+1

p

∑
α=1

Aα μ ⊗ (xα − 1
2π

∂
∂xα

) ,(2.21)

where Aα μ denotes left multiplication by ωα μ . The Kudla–Millson form is defined by
applying D to the Gaussian:

φKM(v)e ∶= D exp (−πQ+z0
(v , v)) ∈ ⋀q

p
∗ ⊗ S (Rp+q).(2.22)

Kudla and Millson showed that this form is K-invariant. Hence, by the isomorphism
(2.19), we get a form

φKM ∈ [Ωq(D+) ⊗ S (Rp+q)]G(R)+.(2.23)

In particular, since g∗φKM(v) = φKM(g−1v) for any g ∈ G(R)+, the form is Γv -
invariant and defines a form on Γv/D+. It is also closed and Kudla–Millson prove
in [8, Proposition 5.2] that it satisfies the Thom form property: for every compactly
supported form ω in Ωpq−q

c (Γv/D+), we have

∫
Γv/D+

ω ∧ φKM(v) = 2−
q
2 e−πQ(v ,v)∫

Γv/D+v
ω.(2.24)

3 The Mathai–Quillen formalism

We begin by recalling a few facts about principal bundles, connections, and associated
vector bundles. For more details, we refer to [1, 5]. The Mathai–Quillen form is defined
in Section 3.7 following [1] (see also [4]).
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1644 R. Branchereau

3.1 K-principal bundles and principal connections

Let K be SO(p) × SO(q) as before, and let P be a smooth principal K-bundle. Let

R∶ K × P �→ P
(k, p) �→ Rk(p)(3.1)

be the smooth right action of K on P and

π∶ P �→ P/K(3.2)

the projection map. For a fixed p in P, consider the map

Rp ∶ K �→ P
k �→ Rk(p).(3.3)

Let VpP be the image of the derivative at the identity

de Rp ∶ k �→ TpP,(3.4)

which is injective. It coincides with the kernel of the differential dpπ. A vector in VpP
is called a vertical vector. Using this map, we can view a vector X in k as a vertical vector
field on P. The space P can a priori be arbitrary, but in our case, we will consider either:
(1) P is G(R)+ and Rk the natural right action sending g to gk. Then P/K can be

identified with D+.
(2) P is G(R)+ × z0 and the action Rk maps (g , w) to (gk, k−1w). In this case, P/K

can be identified with G(R)+ ×K z0. It is the vector bundle associated with the
principal bundle G(R)+ as defined below.

A principal K-connection on P is a 1-form θP in Ω1(P, k) such that:
• ιX θP = X for any X in k,
• R∗k θP = Ad(k−1)θP for any k in K,
where ιX is the interior product

ιX ∶Ωk(P) �→ Ωk(P)
ω �→ (ιX ω)(X1 , . . . , Xp−1) ∶= ω(X , X1 , . . . , Xp−1),(3.5)

and we view X as a vector field on P. Geometrically, these conditions imply that
the kernel of θP defines a horizontal subspace of TP that we denote by HP. It is a
complement to the vertical subspace, i.e., we get a splitting of TpP as VpP ⊕ HpP.

Let g be the Lie algebra of G(R)+, and let P be the orthogonal projection from g

on k. After identifying g∗ with the space Ω1(G(R)+)G(R)+ of G(R)+-invariant forms,
we define a natural 1-form

∑
1≤i< j≤p+q

ω i j ⊗ X i j ∈ Ω1(G(R)+) ⊗ g(3.6)

called the Maurer–Cartan form, where X i j is the basis of g defined earlier and ω i j its
dual in g∗. After projection onto k, we get a form

θ ∶= P
⎛
⎝ ∑

1≤i< j≤p+q
ω i j ⊗ X i j

⎞
⎠

∈ Ω1(G(R)+) ⊗ k,(3.7)

https://doi.org/10.4153/S0008414X23000573 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000573


The Kudla–Millson form via the Mathai–Quillen formalism 1645

where we identify Ω1(G(R)+ , k) with Ω1(G(R)+) ⊗ k. A direct computation shows
that it is a principal K-connection on P, when P is G(R)+.

If P is G(R)+ × z0, then the projection

π∶G(R)+ × z0 �→ G(R)+(3.8)

induces a pullback map

π∗∶ Ω1(G(R)+) �→ Ω1(G(R)+ × z0).(3.9)

The form

θ̃ ∶= π∗θ ∈ Ω1(G(R)+ × z0) ⊗ k(3.10)

is a principal connection on G(R)+ × z0.

3.2 The associated vector bundles

Since z0 is preserved by K, we have an orthogonal K-representation

ρ∶ K �→ SO(z0)
k �→ ρ(k)w ∶= k∣ z0 w ,(3.11)

where we will usually simply write kw instead of k∣ z0 w. We can consider the associated
vector bundle P ×K z0 which is the quotient of P × z0 by K, where K acts by sending
(p, w) to (Rk(p), ρ(k)−1w). Hence, an element [p, w] of P ×K z0 is an equivalence
class where the equivalence relation identifies (p, w) with (Rk(p), ρ(k)−1w). This
is a vector bundle over P/K with projection map sending [p, w] to π(p). Let
Ω i(P/K , P ×K z0) be the space of i-forms valued in P ×K z0, when i is zero it is the
space of smooth sections of the associated bundle.

In the two cases of interest to us, we define

E ∶= G(R)+ ×K z0 ,
Ẽ ∶= (G(R)+ × z0) ×K z0 .(3.12)

Note that in both cases, P admits a left action of G(R)+ and that the associated vector
bundles are G(R)+-equivariant. Moreover, it is a Euclidean bundle, equipped with the
inner product

⟨v , w⟩ ∶= −Q∣ z0(v , w)(3.13)

on the fiber. Let Ω i(P, z0) be the space of z0-valued differential i-forms on P. A
differential form α in Ω i(P, z0) is said to be horizontal if ιX α vanishes for all vertical
vector fields X. There is a left action of K on a differential form α in Ω i(P, z0) defined
by

k ⋅ α ∶= ρ(k)(R∗k α),(3.14)

and α is K-invariant if it satisfies k ⋅ α = α for any k in K , i.e., we have R∗k α = ρ(k−1)α.
We write Ω i(P, z0)K for the space of K-invariant z0-valued forms on P. Finally, a form
that is horizontal and K-invariant is called a basic form and the space of such forms is
denoted by Ω i(P, z0)bas.
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1646 R. Branchereau

Let X1 , . . . , XN be tangent vectors of P/K at π(p), and let X̃ i be tangent vectors of
P at p that satisfy dpπ(X̃ i) = X i . There is a map

Ω i(P, z0)bas �→ Ω i(P/K , P ×K z0)
α �→ ωα(3.15)

defined by

ωα ∣ π(p)(X1 ∧ ⋅ ⋅ ⋅ ∧ XN) = α∣ p(X̃1 ∧ ⋅ ⋅ ⋅ ∧ X̃N).(3.16)

Proposition 3.1 The map is well-defined and yields an isomorphism between
Ω i(P/K , P ×K z0) and Ω i(P, z0)bas. In particular, if z0 is one-dimensional, then
Ω i(P/K) is isomorphic to Ω i(P)bas.

Proof In the case where i is zero, the horizontally condition is vacuous and the
isomorphism simply identifies Ω0(P/K , P ×K z0) with Ω0(P, z0)K . We have a map

Ω0(P, z0)K �→ Ω0(P/K , P ×K z0)
f �→ s f (π(p)) ∶= [p, f (p)],(3.17)

which is well defined since

f (Rk(p)) = ρ(k)−1 f (p).(3.18)

Conversely, every smooth section s in Ω0(P/K , P ×K z0) is given by

s(π(p)) = [p, fs(p)](3.19)

for some smooth function fs in Ω0(P, z0)K . The map sending s to fs is inverse to the
previous one. The proof is similar for positive i. ∎

3.3 Covariant derivatives

A covariant derivative on the vector bundle P ×K z0 is a differential operator

∇P ∶ Ω0(P/K , P ×K z0) �→ Ω1(P/K , P ×K z0),(3.20)

such that for every smooth function f in C∞(P/K), we have

∇P( f s) = d f ⊗ s + f ∇P(s).(3.21)

The inner product on P ×K z0 defines a pairing

Ω i(P/K , P ×K z0) × Ω j(P/K , P ×K z0) �→ Ω i+ j(P/K)
(ω1 ⊗ s1 , ω2 ⊗ s2) �→ ⟨ω1 ⊗ s1 , ω2 ⊗ s2⟩ = ω1 ∧ ω2⟨s1 , s2⟩,(3.22)

and we say that the derivative is compatible with the metric if

d⟨s1 , s2⟩ = ⟨∇P s1 , s2⟩ + ⟨s1 , ∇P s2⟩(3.23)

for any two sections s1 and s2 in Ω0(P/K , P ×K z0). There is a covariant derivative that
is induced by a principal connection θP in Ω1(P) ⊗ k as follows. The derivative of the
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The Kudla–Millson form via the Mathai–Quillen formalism 1647

representation gives a map

dρ∶ k �→ so(z0) ⊂ End(z0),(3.24)

which we also denote by ρ by abuse of notation. Note that for the representation (3.11),
this is simply the map

ρ∶ k �→ so(z0)
X �→ X∣ z0 ,(3.25)

since k splits as so(z⊥0) ⊕ so(z0). Composing the principal connection with ρ defines
an element

ρ(θP) ∈ Ω1(P, so(z0)).(3.26)

In particular, if s is a section of P ×K z0, then we can identify it with a K-invariant
smooth map fs in Ω0(P, z0)K . Since ρ(θP) is a so(z0)-valued form and so(z0) is a
subspace of End(z0), we can define

d fs + ρ(θP) ⋅ fs ∈ Ω1(P, z0).(3.27)

Lemma 3.2 The form d fs + ρ(θP) ⋅ fs is basic, hence gives a P ×K z0-valued form
on P/K. Thus, d + ρ(θP) defines a covariant derivative on P ×K z0. Moreover, it is
compatible with the metric.

Proof See [1, p. 24]. For the compatibility with the metric, it follows from the fact
that the connection ρ(θP) is valued in so(z0) that

⟨ρ(θP) fs1 , fs2⟩ + ⟨ fs1 , ρ(θP) fs2⟩ = 0.(3.28)

Hence, if we denote by ∇P is the covariant derivative defined by d + ρ(θP), then

⟨∇P s1 , s2⟩ + ⟨s1 , ∇P s2⟩ = ⟨d fs1 , fs2⟩ + ⟨ fs1 , d fs2⟩ = d⟨ fs1 , fs2⟩ = d⟨s1 , s2⟩.(3.29)

∎
Let us denote by ∇P the covariant derivative d + ρ(θP). It can be extended to a map

∇P ∶ Ω i(P/K , P ×K z0) �→ Ω i+1(P/K , P ×K z0)(3.30)

by setting

∇P(ω ⊗ s) ∶= dω ⊗ s + (−1)i ω ∧∇P(s),(3.31)

where

ω ⊗ s ∈ Ω i(P/K) ⊗ Ω0(P/K , P ×K z0) ≃ Ω i(P/K , P ×K z0).(3.32)

We define the curvature RP in Ω2(P, k) by

RP(X , Y) ∶= [θP(X), θP(Y)] − θP([X , Y])(3.33)

for two vector fields X and Y on P. It is basic by [1, Proposition 1.13] and composing
with ρ gives an element

ρ(RP) ∈ Ω2(P, so(z0))bas ,(3.34)
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so that we can view it as an element in Ω2(P/K , P ×K so(z0)), where K acts on so(z0)
by the Ad-representation. For a section s in Ω0(P/K , P ×K z0), we have [1, Proposition
1.15]

∇2
P s = ρ(Rp)s ∈ Ω2(P/K , P ×K z0).(3.35)

From now on, we denote by ∇ and ∇̃ the covariant derivatives on E and Ẽ associated
with θ and θ̃ defined in (3.7) and (3.10). Let R and R̃ be their respective curvatures.

3.4 Pullback of bundles

The pullback of E by the projection map gives a canonical bundle

π∗E ∶= {(e , e′) ∈ E × E ∣ π(e) = π(e′)}(3.36)

over E. We have the following diagram:

(3.37)
π∗E E

E D+ .

π

π

The projection induces a pullback of the sections

π∗∶ Ω i(D, E) �→ Ω i(E , Ẽ).(3.38)

We can also pullback the covariant derivative ∇ to a covariant derivative

π∗∇∶ Ω0(E , π∗E) �→ Ω1(E , π∗E)(3.39)

on π∗E. It is characterized by the property

(π∗∇)(π∗s) = π∗(∇s).(3.40)

Proposition 3.3 The bundles Ẽ and π∗E are isomorphic, and this isomorphism iden-
tifies ∇̃ and π∗∇.

Proof By definition, ([g1 , w1], [g2 , w2]) are elements of π∗E if and only if g−1
1 g2 is

in K. We have a G(R)+-equivariant morphism

π∗E �→ Ẽ
([g1 , w1], [g2 , w2]) �→ [(g1 , g−1

1 g2w2), w1].(3.41)

This map is well defined and has as inverse

Ẽ �→ π∗E
[(g , w1), w2] �→ ([g , w2], [g , w1]).(3.42)

The second statement follows from the fact that θ̃ is π∗θ. ∎
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3.5 A few operations on the vector bundles

We extend the K-representation z0 to ⋀ j z0 by

k(w1 ∧ ⋅ ⋅ ⋅ ∧ w j) = (kw1) ∧ ⋅ ⋅ ⋅ ∧ (kw j).(3.43)

We consider the bundles P ×K ∧ jz0 and P ×K ∧z0 over P/K, where ⋀ z0 is defined as
⊕i ⋀i z0. Denote the space of differential forms valued in P ×K ∧ jz0 by

Ω i , j
P ∶= Ω i

P(P/K , P ×K ∧ jz0) = Ω i
P(P/K) ⊗ Ω0(P/K , P ×K ∧ jz0).(3.44)

The total space of differential forms

Ω(P/K , P ×K ∧z0) = ⊕
i , j

Ω i , j
P(3.45)

is an (associative) bigraded C∞(P/K)-algebra, where the product is defined by

∧∶ Ω i , j
P × Ωk , l

P �→ Ω i+k , j+l
P

(ω ⊗ s, η ⊗ t) �→ (ω ⊗ s) ∧ (η ⊗ t) ∶= (−1) jk(ω ∧ η) ⊗ (s ∧ t).(3.46)

This algebra structure allows us to define an exponential map by

exp∶ Ω(P/K , P ×K ∧z0) �→ Ω(P/K , P ×K ∧z0)

ω �→ exp(ω) ∶= ∑
k≥0

ωk

k!
,(3.47)

where ωk is the k-fold wedge product ω ∧ ⋅ ⋅ ⋅ ∧ ω.

Remark 3.1 Suppose that ω and η commute. Then the binomial formula

(ω + η)k =
k
∑
l=0

(k
l
)ω l ηk−l(3.48)

holds and one can show that exp(ω + η) = exp(ω) + exp(η) in the same way as for the
real exponential map. In particular, the diagonal subalgebra ⊕ Ω i , i

P is a commutative,
since for two forms ω and η in ΩP , we have

ω ∧ η = (−1)deg(ω)+deg(η)η ∧ ω(3.49)

and similarly for two sections s and t in Ω0(P/K , P ×K z0).

The inner product ⟨−, −⟩ on z0 can be extended to an inner product on ⋀ z0 by

⟨ v1 ∧ ⋅ ⋅ ⋅ ∧ vk , w1 ∧ ⋅ ⋅ ⋅ ∧ w l ⟩ ∶= { 0, if k ≠ l ,
det⟨v i , w j⟩i , j , if k = l .(3.50)

If e1 , . . . , eq is an orthonormal basis of z0, then the set

{e i1 ∧ ⋅ ⋅ ⋅ ∧ e ik ∣ 1 ≤ k ≤ q, i1 < i2 < ⋅ ⋅ ⋅ < ik}(3.51)
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is an orthonormal basis of ⋀ z0. We define the Berezin integral ∫
B to be the orthogonal

projection onto the top dimensional component, that is the map

∫
B
∶⋀ z0 �→ R

w �→ ⟨w , e1 ∧ ⋅ ⋅ ⋅ ∧ eq⟩.(3.52)

The Berezin integral can then be extended to

∫
B
∶ Ω(P/K , P ×K ∧z0) �→ Ω(P/K)

ω ⊗ s �→ ω ∫
B

s,(3.53)

where ∫
B s in C∞(P/K) is the composition of the section with the Berezinian in every

fiber. Let s1 , . . . , sq be a local orthonormal frame of P ×K z0. Then s1 ∧ ⋅ ⋅ ⋅ ∧ sq is in
Ω0(P/K , ∧qP ×K z0) and defines a global section. Hence, for α in Ω(P/K , P ×K ∧z0),
we have

∫
B

α = ⟨α, s1 ∧ ⋅ ⋅ ⋅ ∧ sq⟩.(3.54)

Finally, for every section s in Ω0,1, we can define the contraction

i(s)∶ Ω i , j
P �→ Ω i , j−1

P

ω ⊗ s1 ∧ ⋅ ⋅ ⋅ ∧ s j �→
j

∑
k=1

(−1)i+k−1⟨s, sk⟩ω ⊗ s1 ∧ ⋅ ⋅ ⋅ ∧ ŝk ∧ ⋅ ⋅ ⋅ ∧ s j ,(3.55)

and extended by linearity, where the symbol ⋅̂ means that we remove it from the
product. Note that when j is zero, then i(s) is defined to be zero. The contraction
i(s) defines a derivation on ⊕Ω̃ i , j that satisfies

i(s)(α ∧ α′) = (i(s)α) ∧ α′ + (−1)i+ jα ∧ (i(s)α′)(3.56)

for α in Ω̃ i , j and α′ in Ω̃k , l .
3.6 Thom forms

We denote by E the bundle G(R)+ ×K z0. On the fibers of the bundle, we have the
inner product given by ⟨w , w′⟩ ∶= −Q(w , w′). Let v be arbitrary vector in L and Γv its
stabilizer. Since the bundle is G(R)+-equivariant, we have a bundle

Γv/E �→ Γv/D+ ,(3.57)

and let D(Γv/E) be the closed disk bundle. If we have a closed (q + i)-form on
Γv/E whose support is contained in D(Γv/E), then it has compact support in the
fiber and represents a class in Hq+i(Γv/E , Γv/E − D(Γv/E)). The cohomology group
H●(Γv/E , Γv/E − D(Γv/E)) is equal to the cohomology group H●(Γv/E , Γv/(E − E0))
that we used in the introduction, where E0 is the zero section. Fiber integration
induces an isomorphism on the level of cohomology

Th∶ Hq+i(Γv/E , Γv/E − D(Γv/E)) �→ H i(Γv/D+)

[ω] �→ ∫
fiber

ω(3.58)
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known as the Thom isomorphism [2, Theorem 6.17]. When i is zero, then H i(Γv/D+)
is R and we call the preimage of 1

Th(Γv/E) ∶= Th−1(1) ∈ Hq(Γv/E , Γv/E − D(Γv/E))(3.59)

the Thom class. Any differential form representating this class is called a Thom form,
in particular, every closed q-form onΓv/E that has compact support in every fiber and
whose integral along every fiber is 1 is a Thom form. One can also view the Thom class
as the Poincaré dual class of the zero section E0 in E, in the same sense as for (2.24).

Let ω in Ω j(E) be a form on the bundle, and let ωz be its restriction to a fiber
Ez = π−1(z) for some z in D+. After identifying z0 with Rq , we see ωz as an element
of C∞(Rq) ⊗ ∧ j(Rq)∗. We say that ω is rapidly decreasing in the fiber, if ωz lies in
S (Rq) ⊗ ∧ j(Rq)∗ for every z in D+. We write Ω j

rd(E) for the space of such forms.
Let Ω●rd(Γv/E) be the complex of rapidly decreasing forms in the fiber. It is

isomorphic to the complex Ω●rd(E)Γv of rapidly decreasing Γv -invariant forms on E.
Let Hrd(Γv/E) the cohomology of this complex. The map

h∶ Γv/E �→ Γv/E

w �→ w√
1 − ∥w∥2

(3.60)

is a diffeomorphism from the open disk bundle D(Γv/E)○ onto Γv/E. It induces an
isomorphism by pullback

h∗∶ Hrd(Γv/E) �→ H(Γv/E , Γv/E − D(Γv/E)),(3.61)

which commutes with the fiber integration. Hence, we have the following version of
the Thom isomorphism:

Hq+i
rd (Γv/E) �→ H i(Γv/D+).(3.62)

The construction of Mathai and Quillen produces a Thom form

UMQ ∈ Ωq
rd(E),(3.63)

which is G(R)+-invariant (hence, Γv -invariant) and closed. We will recall their
construction in the next section.

3.7 The Mathai–Quillen construction

As earlier, let Ẽ be the bundle (G(R)+ × z0) ×K z0. Let ∧ j Ẽ be the bundle (G(R)+ ×
z0) ×K ∧ jz0 and

Ω i , j ∶= Ω i(D+ , ∧ jE),

Ω̃ i , j ∶= Ω i(E , ∧ j Ẽ).(3.64)

First, consider the tautological section s of Ẽ defined by

s[g , w] ∶= [(g , w), w] ∈ Ẽ .(3.65)

This gives a canonical element s of Ω̃0,1. Composing with the norm induced from the
inner product, we get an element ∥s∥2 in Ω̃0,0.

https://doi.org/10.4153/S0008414X23000573 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000573


1652 R. Branchereau

The representation ρ on z0 induces a representation on ∧i z0 that we also denote by
ρ. The derivative at the identity gives a map

ρ∶ k �→ so(∧i z0).(3.66)

The connection form ρ(θ̃) in Ω1(G(R)+ × z0 , ∧ jz0) defines a covariant derivative

∇̃∶ Ω̃0, j �→ Ω̃1, j(3.67)

on ∧ j Ẽ. We can extend it to a map

∇̃∶ Ω̃ i , j �→ Ω̃ i+1, j(3.68)

by setting

∇̃(ω ⊗ s) ∶= dω ⊗ s + (−1)i ω ∧ ∇̃(s),(3.69)

as in (3.30). The connection on Ω̃ i , j is compatible with the metric. Finally, the
covariant derivative ∇̃ defines a derivation on ⊕Ω̃ i , j that satisfies

∇̃(α ∧ α′) = (∇̃α) ∧ α′ + (−1)i+ jα ∧ (∇̃α′)(3.70)

for any α in Ω̃ i , j and α′ in Ω̃k , l .
Taking the derivative of the tautological section gives an element

∇̃s = ds + ρ(θ̃)s ∈ Ω̃1,1 .(3.71)

Let so(Ẽ) denote the bundle (G(R)+ × z0) ×K so(z0) and consider the curvature
ρ(R̃) in Ω2(Ẽ , so(Ẽ)). We have an isomorphism

T−1∣ z0 ∶ so(z0) �→ ∧2z0

A �→ ∑
i< j

⟨Ae i , e j⟩e i ∧ e j .(3.72)

The inverse sends v ∧ w to the endomorphism u ↦ ⟨v , u⟩w − ⟨w , u⟩v, and is the
isomorphism from (2.11) restricted to z0. Note that we have

T(v ∧ w)u = ι(u)v ∧ w .(3.73)

Using this isomorphism, we can also identify so(Ẽ) and ∧2 Ẽ so that we can view the
curvature as an element

ρ(R̃) ∈ Ω̃2,2 .(3.74)

Lemma 3.4 The form ω ∶= 2π∥s∥2 + 2
√

π∇̃s − ρ(R̃) lying in Ω̃0,0 ⊕ Ω̃1,1 ⊕ Ω̃2,2 is
annihilated by ∇̃ + 2

√
πi(s). Moreover

d ∫
B

α = ∫
B
∇̃α,(3.75)

for every form α in Ω̃ i , j . Hence, ∫
B ex p(−ω) is a closed form.
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Proof We have

(∇̃ + 2
√

πi(s)) (2π∥s∥2 + 2
√

π∇̃s − ρ(R̃))
(3.76)

= 2π∇̃∥s∥2 + 4π
3
2 i(s)∥s∥2 + 2

√
π∇̃2s + 4πi(x)∇̃s − ∇̃ρ(R̃) − 2

√
πi(s)ρ(R̃).

It vanishes, because we have the following:
⋅ i(s)∥s∥2 = 0 since ∥s∥ is in Ω̃0,0,
⋅ ∇̃ρ(R̃) = 0 by Bianchi’s identity,
⋅ ∇̃∥s∥2 = 2⟨∇̃s, s⟩ = −2i(s)∇̃s,
⋅ ∇̃2s = ρ(R̃)s = i(s)ρ(R̃).
For the last point, we used (3.73), where we view ρ(R̃) as an element of Ω2(E , so(Ẽ)),
respectively of Ω2(E , ∧2 Ẽ).

Let s1 ∧ ⋅ ⋅ ⋅ ∧ sq in Ω0(E , ∧q Ẽ) be a global section, where s1 , . . . , sq is a local
orthonormal frame for Ẽ. Then, for any α in Ω̃ i , j , we have

∫
B

α = ⟨α, s1 ∧ ⋅ ⋅ ⋅ ∧ sq⟩.(3.77)

This vanishes if j is different from q, hence we can assume α is in Ω̃ i ,q . If we write α as
βs1 ∧ ⋅ ⋅ ⋅ ∧ sq for some β in Ω i(E), then

∫
B

α = β.(3.78)

On the other hand, since the connection on Ω̃ i ,q is compatible with the metric, we
have

0 = d⟨s1 ∧ ⋅ ⋅ ⋅ ∧ sq , s1 ∧ ⋅ ⋅ ⋅ ∧ sq⟩ = 2⟨∇̃(s1 ∧ ⋅ ⋅ ⋅ ∧ sq), s1 ∧ ⋅ ⋅ ⋅ ∧ sq⟩.(3.79)

Then we have

∫
B
∇̃α = ⟨∇̃α, s1 ∧ ⋅ ⋅ ⋅ ∧ sq⟩

= ⟨dβ ⊗ s1 ∧ ⋅ ⋅ ⋅ ∧ sq + (−1)i β ∧ ∇̃(s1 ∧ ⋅ ⋅ ⋅ ∧ sq), s1 ∧ ⋅ ⋅ ⋅ ∧ sq⟩
= dβ

= d ∫
B

α.(3.80)

Since ∇̃ + 2
√

πi(s) is a derivation that annihilates ω, we have

(∇̃ + 2
√

πi(s)) ωk = 0(3.81)

for positive k. Hence, it follows that

d ∫
B

exp(−ω) = ∫
B
∇̃ exp(−ω)

= ∫
B
(∇̃ + 2

√
πi(s)) exp(−ω)

= 0.(3.82) ∎
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In [10], Mathai and Quillen define the following form:

UMQ ∶= (−1)
q(q+1)

2 (2π)−
q
2 ∫

B
exp (−2π∥s∥2 − 2

√
π∇̃s + ρ(R̃)) ∈ Ωq

rd(E).(3.83)

We call it the Mathai–Quillen form.

Proposition 3.5 The Mathai–Quillen form is a Thom form.

Proof From the previous lemma, it follows that the form is closed. It remains to show
that its integral along the fibers is 1. The restriction of the form UMQ along the fiber
π−1(eK) is given by

UMQ = (−1)
q(q+1)

2 (2π)−
q
2 e−2π∥s∥2

∫
B

exp(−2
√

πds)

= (−1)
q(q+1)

2 2
q
2 e−2π∥s∥2

(−1)q ∫
B
(dx1 ⊗ e1) ∧ ⋅ ⋅ ⋅ ∧ (dxq ⊗ eq)

= 2
q
2 e−2π∥s∥2

dx1 ∧ ⋅ ⋅ ⋅ ∧ dxq ,(3.84)

and its integral over the fiber π−1(eK) is equal to 1. ∎

4 Computation of the Mathai–Quillen form

4.1 The section sv

Let pr denote the orthogonal projection of V(R) on the plane z0. Consider the section

sv ∶D+ �→ E
z �→ [gz , pr(g−1

z v)],(4.1)

where gz is any element of G(R)+ sending z0 to z. Let us denote by Lg the left action
of an element g in G(R)+ on D+. We also denote by Lg the action on E given by
Lg[gz , v] = [g gz , v]. The bundle is G(R)+-equivariant with respect to these actions.

Proposition 4.1 The section sv is well-defined and Γv -equivariant. Moreover, its zero
locus is precisely D+v .

Proof The section is well-defined, since replacing gz by gz k gives

sv(z) = [gz k, pr(k−1 g−1
z v)] = [gz k, k−1pr(g−1

z v)] = [g , pr(g−1
z v)] = sv(z).(4.2)

Suppose that z is in the zero locus of sv , that is to say pr(g−1
z v) vanishes. Then g−1

z v is
in z⊥0 . It is equivalent to the fact that z = gzz0 is a subspace of v⊥, which means that z
is in D+v . Hence, the zero locus of sv is exactly D+v . For the equivariance, note that we
have

sv ○ Lg(z) = [g gz , pr(g−1
z g−1v)] = Lg ○ sg−1v(z).(4.3)

Hence, if γ is an element of Γv , we have

sv ○ Lγ = Lγ ○ sv .(4.4)

∎
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We define the pullback φ0(v) ∶= s∗v UMQ of the Mathai–Quillen form by sv . It
defines a form

φ0 ∈ C∞(Rp+q) ⊗ Ωq(D)+ .(4.5)

It is only rapidly decreasing on Rq , and in order to make it rapidly decreasing
everywhere we set

φ(v) ∶= e−πQ(v ,v)φ0(v).(4.6)

It defines a form φ ∈ S (Rp+q) ⊗ Ωq(D)+.

Proposition 4.2 (1) For fixed v in V(R), the form φ0(v) in Ωq(D+) is given by

φ0(v) = (−1)
q(q+1)

2 (2π)−
q
2 exp (2πQ∣ z0(v , v))∫

B
exp (−2

√
π∇sv + ρ(R)) .

(4.7)

(2) It satisfies L∗g φ0(v) = φ0(g−1v), hence

φ0 ∈ [Ωq(D+) ⊗ C∞(Rp+q)]G(R)+ .(4.8)

(3) It is a Poincaré dual of Γv/D+v in Γv/D+.

Proof (1) Recall that ∇̃ = π∗∇ and R̃ = π∗R. We pullback by sv

E ≃ s∗v Ẽ Ẽ

D+ E .

π

sv

Since π ○ sv is the identity, we have

s∗v ∇̃ = s∗v π∗∇ = ∇.(4.9)

Hence, the pullback connection s∗v ∇̃ satisfies

s∗v (∇̃s) = (s∗v ∇̃)(s∗v s) = ∇sv ,(4.10)

since s∗v s = sv . We also have s∗v R̃ = R and

s∗v ∥s∥2 = ∥sv∥2 = ⟨sv , sv⟩ = −Q∣ z0(v , v).(4.11)

The expression for φ0 then follows from the fact that exp and s∗v commute.
(2) The bundle E is G(R)+ equivariant. By construction, the Mathai–Quillen form is

G(R)+-invariant, so L∗g UMQ = UMQ . On the other hand, we also have

sv ○ Lg(z) = Lg ○ sg−1v(z),(4.12)

and thus,

L∗g φ0(v) = L∗g s∗v UMQ = φ0(g−1v).(4.13)

(3) Since sv is Γv-equivariant, we view it as a section

sv ∶ Γv/D+ �→ Γv/E ,(4.14)
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whose zero locus is precisely Γv/D+v . Let S0 (resp. Sv) be the image in Γv/E of
the section sv (resp. the zero section). By [2, Proposition 6.24(b)], the Thom form
UMQ is a Poincaré dual of the zero section S0 of E. For a form ω in Ωm−q

c (Γv/D+),
we have

∫
Γv/D+

φ0(v) ∧ ω = ∫
Γv/D+

s∗v (UMQ ∧ π∗ω)

= ∫
Sv

UMQ ∧ π∗ω

= ∫
Sv∩S0

π∗ω

= ∫
Γv/D+v

ω.(4.15)

The last step follows from the fact that π−1(Sv ∩ S0) equals Γv/D+v .
∎

As in (2.19), we have an isomorphism

[Ωq(D+) ⊗ C∞(Rp+q)]G(R)+ �→ [⋀q
p
∗ ⊗ C∞(Rp+q)]K(4.16)

by evaluating at the basepoint eK of G(R)+/K that corresponds to z0 in D+. We will
now compute φ0∣ eK .

4.2 The Mathai–Quillen form at the identity

From now on, we identify Rp+q with V(R) by the orthonormal basis of (2.1), and let
z0 be the negative spanned by the vectors ep+1 , . . . , ep+q . Hence, we identify z0 with
Rq and the quadratic form is

Q∣ z0(v , v) = −
p+q

∑
μ=p+1

x2
μ ,(4.17)

where xp+1 , . . . , xp+q are the coordinates of the vector v.
Let fv in Ω0(G(R)+, z0)K be the map associated with the section sv , as in Propo-

sition 3.1. It is defined by

fv(g) = pr(g−1v).(4.18)

Then d fv + ρ(θ) fv is the horizontal lift of ∇sv , as discussed in Section 3.1. Let X be a
vector in g, and let Xp and Xk be its components with respect to the splitting of g as
p⊕ k. We have

(d fv + ρ(θ) fv)e(X) = de fv(Xp).(4.19)

In particular, we can evaluate on the basis Xα μ and get:

de fv(Xα μ) = d
dt

∣
t=0

fv(exp tXα μ)

= −pr(Xα μv)
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= −pr(xμ eα + xα eμ)
= −xα eμ .(4.20)

So as an element of p∗ ⊗ z0, we can write

de fv = −
p+q

∑
μ=p+1

(
p

∑
α=1

xα ωα μ) ⊗ eμ = −
p

∑
α=1

xα ηα ,(4.21)

with

ηα ∶=
p+q

∑
μ=p+1

ωα μ ⊗ eμ ∈ Ω1,1 .(4.22)

Proposition 4.3 Let ρ(Re) in ∧2p∗ ⊗ so(z0) be the curvature at the identity. Then
after identifying so(z0) with ∧2z0, we have

ρ(Re) = − 1
2

p

∑
α=1

η2
α ∈ ∧2

p
∗ ⊗ ∧2z0 ,(4.23)

where η2
α = ηα ∧ ηα .

Proof Using the relation E i jEkl = δ i l Ek j , one can show that

[Xα μ , Xβν] = δμν Xαβ + δαβ Xμν(4.24)

for two vectors Xαν and Xβμ in p. Hence, we have

Re(Xαν ∧ Xβμ) = [θ(Xαν), θ(Xβμ)] − θ([Xαν , Xβμ])
= −θ([Xαν , Xβμ])
= −p (δαβ Xνμ + δνμ Xαβ)
= −δαβ Xνμ .(4.25)

On the other hand, since η i(X jr) = δ i j er , we also have
p

∑
i=1

η2
i (Xαν ∧ Xβμ) =

p

∑
i=1

η i(Xαν) ∧ η i(Xβμ) − η i(Xβμ) ∧ η i(Xαν)

= 2δαβ eν ∧ eμ .(4.26)

The lemma follows since ρ(Xνμ) = T(eν ∧ eμ) in so(z0), because

Q(ρ(Xνμ)eν , eμ)eν ∧ eμ = −Q(eμ , eμ)eν ∧ eμ = eν ∧ eμ .(4.27) ∎
Using the fact that the exponential satisfies exp(ω + η) = exp(ω) exp(η) on the

subalgebra ⊕ Ω i , i —see Remark 3.1—we can write

φ0∣ e(v) = (−1)
q(q+1)

2 (2π)−
q
2 exp (2πQ∣ z0(v , v))∫

B p

∏
α=1

exp(2
√

πxα ηα − 1
2

η2
α) .

(4.28)

We define the nth Hermite polynomial by

Hn(x) ∶= (2x − d
dx

) ⋅ 1 ∈ R[x].(4.29)
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The first three Hermite polynomials are H0(x) = 1, H1(x) = 2x, and H2(x) = 4x2 − 2.

Lemma 4.4 Let η be a form in ⊕ Ω i , i . Then

exp(2xη − η2) = ∑
n≥0

1
n!

Hn(x)ηn ,(4.30)

where Hn is the nth Hermite polynomial.

Proof Since η and η2 are in ⊕ Ω i , i , they commute and we can use the binomial
formula:

exp(2xη − η2) = ∑
k≥0

1
k!

(2xη − η2)k

= ∑
k≥0

1
k!

k
∑
l=0

(k
l
)(2xη)k−l (−η2)l

= ∑
k≥0

1
k!

k
∑
l=0

(k
l
)(2x)k−l(−1)l η l+k

= ∑
n≥0

Pn(x)ηn ,(4.31)

where

Pn(x) ∶= ∑
0≤l≤k≤n

k+l=n

(−1)l

l !(k − l)!
(2x)k−l .(4.32)

The conditions on k and l imply that n is less than or equal to 2k. First, suppose that n
is even. Then we have that k is between n

2 and n, so that the sum above can be written

n
∑
k= n

2

(−1)n−k

(n − k)!(2k − n)!
(2x)2k−n =

n
2

∑
m=0

(−1) n
2 −m

( n
2 − m)!(2m)!

(2x)2m = 1
n!

Hn(x),(4.33)

where in the second step, we let m be k − n
2 . If n is odd, then k is between n+1

2 and n,
so that the sum can be written

n
∑

k= n+1
2

(−1)n−k

(n − k)!(2k − n)!
(2x)2k−n =

n−1
2

∑
m=0

(−1) n−1
2 −m

( n−1
2 − m)!(2m + 1)!

(2x)2m+1 = 1
n!

Hn(x).

(4.34)

∎

Applying the lemma to (4.28), we get

∫
B p

∏
α=1

exp(2
√

πxα ηα − 1
2

η2
α)

= ∫
B p

∏
α=1

exp
⎛
⎝

2
√

2πxα
ηα√

2
− ( ηα√

2
)

2⎞
⎠

= ∫
B p

∏
α=1

∑
n≥0

2−n/2

n!
Hn (

√
2πxα) ηn

α
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= ∑
n1 , . . . ,np

2−
n1+ ⋅ ⋅ ⋅ +n p

2

n1! . . . np!
Hn1 (

√
2πx1) . . . Hnp (

√
2πxp)∫

B
ηn1

1 ∧ ⋅ ⋅ ⋅ ∧ ηnp
p .(4.35)

If n1 + ⋅ ⋅ ⋅ + np is different from q, then the Berezinian of ηn1
1 ∧ ⋅ ⋅ ⋅ ∧ ηnp

p vanishes and
we get

∑
n1 , . . . ,np

2−
n1+ ⋅ ⋅ ⋅ +n p

2

n1! . . . np!
Hn1 (

√
2πx1) . . . Hnp (

√
2πxp)∫

B
ηn1

1 ∧ ⋅ ⋅ ⋅ ∧ ηnp
p

=2−
q
2 ∑

n1+⋅⋅⋅+np=q

Hn1 (
√

2πx1) . . . Hnp (
√

2πxp)
n1! . . . np! ∫

B
ηn1

1 ∧ ⋅ ⋅ ⋅ ∧ ηnp
p .(4.36)

Note that

ηnα
α =

⎛
⎝

p+q

∑
μ=p+1

ωα μ ⊗ eμ
⎞
⎠

nα

= ∑
μ1 , . . . ,μnα

(ωα μ1 ⊗ eμ1) ∧ ⋅ ⋅ ⋅ ∧ (ωα μnα
⊗ eμnα

)

= nα ! ∑
μ1<⋅⋅⋅<μnα

(ωα μ1 ⊗ eμ1) ∧ ⋅ ⋅ ⋅ ∧ (ωα μnα
⊗ eμnα

),(4.37)

where the sums are over all μ i ’s between p + 1 and p + q. If n1 + ⋅ ⋅ ⋅ + np is equal to q,
we have

∫
B

ηn1
1 ∧ ⋅ ⋅ ⋅ ∧ ηnp

p

= ∫
B p

∏
α=1

⎛
⎝

p+q

∑
μ=p+1

ωα μ ⊗ eμ
⎞
⎠

nα

= ∫
B p

∏
α=1

nα ! ∑
μ1<⋅⋅⋅<μnα

(ωα μ1 ⊗ eμ1) ∧ ⋅ ⋅ ⋅ ∧ (ωα μnα
⊗ eμnα

)

= n1! . . . np!∑∫
B
(ωα(p+1) ⊗ e1) ∧ ⋅ ⋅ ⋅ ∧ (ωα(p+q) ⊗ eq)

= (−1)
q(q+1)

2 n1! . . . np!∑ ωα1(p+1) ∧ ⋅ ⋅ ⋅ ∧ ωαq(p+q),(4.38)

where the sums in the last two lines go over all tuples α = (α1 , . . . , αq) with α between
1 and p, and the value α appears exactly nα-times in α. Hence

φ0∣ e(v) = 2−qπ−
q
2 ∑ ωα1(p+1) ∧ ⋅ ⋅ ⋅ ∧ ωαq(p+q) ⊗ Hn1 (

√
2πx1)(4.39)

. . . Hnp (
√

2πxp) exp (2πQ∣ z0(v , v)) .

After multiplying by exp (−πQ(v , v)), we get

φ∣ e(v) = 2−qπ−
q
2 ∑ ωα1(p+1) ∧ ⋅ ⋅ ⋅ ∧ ωαq(p+q) ⊗ Hn1 (

√
2πx1)(4.40)

. . . Hnp (
√

2πxp) exp (−πQ+z0
(v , v)) .
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The form is now rapidly decreasing in v, since the Siegel majorant is positive definite.
We have

φ∣ e ∈ [⋀q
p
∗ ⊗ S (Rp+q)]K .(4.41)

Theorem 4.5 We have 2−
q
2 φ(v) = φKM(v).

Proof It is a straightforward computation to show that

(2π)−nα/2Hnα (
√

2πxα) exp(−πx2
α) = (xα − 1

2π
∂

∂xα
)

nα

exp(−πx2
α).(4.42)

Hence, applying this, we find that the Kudla–Millson form, defined by the Howe
operators in (2.22), is

φKM ∣ e(v) = 2−q(2π)−
q
2 ∑ ωα1(p+1) ∧ ⋅ ⋅ ⋅ ∧ ωαq(p+q) ⊗ Hn1 (

√
2πx1)(4.43)

. . . Hnp (
√

2πxp) exp (−πQ∣ z0(v , v))
= 2−

q
2 e−πQ(v ,v)φ0∣ e(v). ∎

5 Examples and remarks

(1) Let us compute the Kudla–Millson as above in the simplest setting of signature
(1, 1). Let V(R) be the quadratic space R2 with the quadratic form Q(v , w) =
x′y + x y′, where x and x′ (resp. y and y′) are the components of v (respectively of
w). Let e1 = 1√

2(1, 1) and e2 = 1√
2(1, −1). The one-dimensional negative plane z0

is Re2. If r denotes the variable on z0, then the quadratic form is Q∣ z0(r) = −r2.
The projection map is given by

pr∶V(R) �→ z0

v = (x , x′) �→ x − x′√
2

.(5.1)

The orthogonal group of V(R) is

G(R)+ = {(t 0
0 t−1) , t > 0} ,(5.2)

and D+ can be identified with R>0. The associated bundle E is R>0 ×R and the
connection ∇ is simply d since the bundle is trivial. Hence, the Mathai–Quillen
form is

UMQ =
√

2e−2πr2
dr ∈ Ω1(E),(5.3)

as in the proof of Proposition 3.5. The section sv ∶R>0 → E is given by

sv(t) = (t, t−1x − tx′√
2

) ,(5.4)
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where x and x′ are the components of v. We obtain

s∗v UMQ = e−π( x
t −tx′)2

(x
t
+ tx′) dt

t
.(5.5)

Hence, after multiplication by 2− 1
2 e−πQ(v ,v), we get

φKM(x , x′) = 2−
1
2 e−π[( x

t )
2+(tx′)2] (x

t
+ tx′) dt

t
.(5.6)

(2) The second example illustrates the functorial properties of the Mathai–Quillen
form. Suppose that we have an orthogonal splitting of V(R) as ⊕r

i Vi(R). Let
(p i , q i) be the signature of Vi(R). We have

D1 × ⋅ ⋅ ⋅ ×Dr ≃ {z ∈ D ∣ z =
r

⊕
i=1

z ∩ Vi(R)} .(5.7)

Suppose, we fix z0 = z1
0 ⊕ ⋅ ⋅ ⋅ ⊕ zr

0 inD+1 × ⋅ ⋅ ⋅ ×D+r ⊂ D, where z i
0 is a negative

q i -plane in Vi(R). Let G i(R) be the subgroup preserving Vi(R), let K i be the
stabilizer of z i

0, and Di be the symmetric space associated with Vi(R).
Over D+1 × ⋅ ⋅ ⋅ ×D+r the bundle E splits as an orthogonal sum E1 ⊕ ⋅ ⋅ ⋅ ⊕ Er ,

where E i is the bundle G i(R)+ ×K i z i
0. Moreover, the restriction of the Mathai–

Quillen form to this subbundle is

UMQ ∣ E1× ⋅ ⋅ ⋅ ×Er = U 1
MQ ∧ ⋅ ⋅ ⋅ ∧ U r

MQ ,(5.8)

where U i
MQ is the Mathai–Quillen form on E i . The section sv also splits as a

direct sum ⊕sv i , where v i is the projection of v onto v i . In summary, the following
diagram commutes

(5.9)
E1 ⊕ ⋅ ⋅ ⋅ ⊕ Er E

D+1 × ⋅ ⋅ ⋅ ×D+r D+

⊕svi sv ,

and we can conclude that

φKM(v)∣D+1 × ⋅ ⋅ ⋅ ×D+r = φ1
KM(v1) ∧ ⋅ ⋅ ⋅ ∧ φr

KM(vr),(5.10)

where φ i
KM is the Kudla–Millson form on D+i .

(2) Let U ⊂ V be a nondegenerate r-subspace spanned by vectors v1 , . . . , vr . Let
(p′ , q′) be the signature of U. Let DU be the subspace

DU ∶= {z ∈ D ∣ z = z ∩ U ⊕ z ∩ U⊥} .(5.11)

When U is positive, i.e., when q′ = 0, then DU is in fact

DU ∶= {z ∈ D ∣ z ⊂ U⊥} .(5.12)

In particular, when U is spanned by a single positive vector v, then DU = Dv ,
where Dv is as in (2.4). Kudla and Millson construct an rq-form φKM(v1 , . . . , vr)
that is a Poincaré dual to ΓU/DU in ΓU/D, where ΓU is the stabilizer of U in Γ. One
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of its properties [8][Lemma. 4.1] is that

φKM(v1 , . . . , vr) = φKM(v1) ∧ ⋅ ⋅ ⋅ ∧ φKM(vr).(5.13)

Let us explain how this form can also be recovered by the Mathai–Quillen for-
malism. Consider the bundle Er = E ⊕ ⋅ ⋅ ⋅ ⊕ E of rank rq over D. One can check
that all the “ingredients” of the Mathai–Quillen form UMQ(Er) are compatible
with respect to the splitting as a direct sum, so that we have

UMQ(Er) = UMQ(E) ∧ ⋅ ⋅ ⋅ ∧ UMQ(E).(5.14)

On the other hand, the zero locus of the section sv1 , . . . ,vr ∶= sv1 ⊕ ⋅ ⋅ ⋅ ⊕ svr of Er

is precisely DU . Hence, the pullback

φ0(v1 , . . . , vr) ∶= s∗v1 , . . . ,vr
UMQ(Er)(5.15)

is a Poincaré dual of DU . Moreover, by (5.14), we have

φ0(v1 , . . . , vr) = φ0(v1) ∧ ⋅ ⋅ ⋅ ∧ φ0(vr).(5.16)

Finally, after setting

φ(v1 , . . . , vr) ∶= e−π∑r
i=1 Q(v i ,v i)φ0(v1 , . . . , vr),(5.17)

we get

2−
rq
2 φ(v1 , . . . , vr) = 2−

rq
2 e−π∑r

i=1 Q(v i ,v i)φ0(v1) ∧ ⋅ ⋅ ⋅ ∧ φ0(vr)
= 2−

rq
2 φ(v1) ∧ ⋅ ⋅ ⋅ ∧ φ(vr)

= φKM(v1) ∧ ⋅ ⋅ ⋅ ∧ φKM(vr)
= φKM(v1 , . . . , vr).(5.18)

The last two equalities use Theorem 4.5 and (5.13).
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