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Opinion Pooling 1

1 Introduction
Epidemiologists Anya, Bon, and Carys have studied the current spread of polio
in developed nations, taking into account the recent decline in vaccination rates.
Despite their shared interest in predicting the status of polio in the near term,
the three come up with different opinions. Anya is 20% sure polio will be
eradicated by 2030, Bon is 60% sure, and Carys is 70% sure.
Disagreement like this is a common feature of a social world. For various rea-

sons, however, we sometimes need to resolve such disagreement into a single
set of opinions. Perhaps we need to present a summary of the epidemiologists’
views to a policymaker to inform their decision-making. Perhaps we wish to
assess the track record of their predictions across time and we do so by looking
at how accurate their collective opinions have been. Perhaps we wish to update
our own opinions upon learning of the disagreement within the group, which
amounts to combining our opinions with theirs in some way. Perhaps we wish
to aggregate the individual views in order to make a decision on behalf of the
group they form or to assess whether the group, taken as an agent in its own
right, is liable for a particular consequence of its collective action, as we might
do if the group is the board of a company or the executive committee of a trade
union, for instance.
But how should we take conflicting opinions and resolve them? How should

we pool opinions? As we’ll see, there’s no one pooling strategy that works for
every occasion, and so we must choose among a great variety of them before
we can enjoy any epistemic or practical benefits. But determining which to
choose in a given situation is no easy feat. Our objective in this Element is to
provide the reader with an opinionated survey of some central strategies that
have garnered attention in the philosophical literature, aiming to show how to
evaluate them for a specific purpose.
Throughout, we take for granted that the opinions of individuals vary in

strength and are numerically represented (think of Anya, Bon, and Carys from
earlier).We’ll often call such opinions “credences” and, for the most part, adopt
the idealized assumption that credences are probabilistically coherent, a funda-
mental tenet of Bayesian epistemology (see, e.g., Bovens & Hartmann, 2004).
While there is debate over whether belief is fundamentally a categorical or
graded epistemic attitude (or both), it’s reasonable to think that in a world full
of uncertainties, individuals tend to have less than full belief in many propo-
sitions.1 And since this generalizes to all individuals, it’s reasonable to take

1 For classical accounts of credence or partial belief, see Ramsey (1926 [1931]); de Finetti
(1974). It is also worth noting at this point that the opinions we seek to pool are credences
in propositions; they are not estimates of quantities more generally. For instance, we will not
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2 Decision Theory and Philosophy

the opinions of group members to be graded on many matters. Furthermore,
assuming that the opinions of group members vary in strength on uncertain
matters allows for richer pooling strategies that groups may choose to adopt
when seeking a compromise.
As it concerns the evaluation of pooling strategies, we give significant atten-

tion to the so-called axiomatic approach in this Element that is quite common
in computer science, economics, philosophy, and statistics.2 Pooling axioms
are desirable criteria we might want a pooling strategy to meet. Since at least
the 1960s, researchers have investigated which pooling functions satisfy which
axioms.3 But these systematic analyses also highlight the sacrifices that must
be made when you select an aggregation rule, since one can very rarely have it
all. The details of the formal constraints and their relation to pooling strategies
will occupy many of the pages to come.
But before concerning ourselves with some of the intricacies of pooling func-

tions and their properties, we begin by taking an unconventional detour through
social epistemology and the philosophy of action. As things stand, there is a gulf
between the formal study of opinion pooling and the conceptual analysis of
related issues concerning peer disagreement, justified group belief, and group
responsibility, for example. We take the latter conceptual issues to help us eval-
uate pooling strategies. In other words, the formal axiomatic method is not the
only way of evaluating pooling mechanisms. For this reason, we review some
important accounts addressing the philosophical issues, highlighting ways that
they can motivate particular pooling strategies and pooling in general. In par-
ticular, we ask which pooling strategies best serve our epistemic and practical
goals: for instance, we ask what pooling strategies are optimal if our goal is to
produce collective credences that are as accurate as possible; and we ask what
strategies work best if we wish to use the pooled credences to guide collective
actions on behalf of the group.
With any luck, the questions raised intimately relating the conceptual and

formal traditions will further be pursued by others in the broader study of group
agency.4 Of course, we inevitably fall short of providing a thorough analysis

ask how to aggregate your estimate and my estimate of the distance from Bristol to Rotter-
dam directly, though we would be able to do so indirectly by first pooling our credences about
the different possible distances and then taking an expectation of the distance relative to those
pooled credences.

2 Some valuable surveys of the axiomatic approach can be found in Genest & Zidek (1986) and
Dietrich & List (2015).

3 See, e.g., Madansky (1964); Aczél & Wagner (1980); McConway (1981); Lehrer & Wagner
(1983); Genest (1984).

4 Weisberg and Pettigrew (2023) have recently taken up a similar approach.
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Opinion Pooling 3

in the limited space afforded, but the disconnect between the two traditions we
think should no longer be set aside.
Regarding the structure of the Element, Section 2 provides a brief overview

of conceptual views on peer disagreement, justified group belief, and group
responsibility. In relating the issues to pooling, some questions include: what
sort of attitudes should be formed when certain individuals are unreliable indi-
cators of the truth? Rational belief is often said to require justified belief, but
how is justifiedness transferred to group belief? Just as individuals can be fit
for responsibility, so too can groups. But where does the responsibility lie, and
responsibility for what?
In Section 3, we move on to the formal representations of credence and the

opinion pooling functions we’ll concern ourselves with for the remainder of
the Element, along with a set of pooling axioms we might find desirable when
seeking a pooling strategy for a particular purpose. The set of axioms is more of
an extensive wish list than a coherent set of desiderata. That said, they provide
us with precise representations of things that we might intuitively expect pool-
ing mechanisms to possess, which may be reinforced by some brief motivation
accompanying each.
In Section 4, we introduce some feasible candidates for pooling opinions.We

start things off with the most intuitive strategy, namely linear pooling. In short,
linear pooling amounts to combining individual opinions through weighted
averaging. Situating the pooling rule within the axiomatic tradition, we review
the desirable properties from Section 3 that linear pooling functions possess and
the axioms they fail to satisfy. We then turn to a class of multiplicative pool-
ing strategies, including geometric pooling, that tend to be praised for some
properties they have that linear pooling lacks. But, as one might imagine, the
multiplicative strategies also fall short of having everything we hope for.
After reviewing the linear and multiplicative rules and their properties, we

move on to a lesser known approach to pooling opinions, but one that has
enjoyed renewed attention in recent years. It generalizes standard credence-
based approaches by representing uncertainty not by a single probability
function but by a set of probability functions, thus allowing pooled opin-
ions to be imprecise. There is a growing literature on imprecise probabilities
(IP) in both epistemology and decision theory, including a fascinating volume
in this Element series by Paul Weirich (2021). Our focus is on a family of
IP pooling models, where pooled opinions are imprecise probabilities, gen-
erated from the precise credences of individuals. Under a certain IP model,
for instance, if one individual thinks a proposition is 20% likely and another
thinks it’s 40% likely, their collective opinion might be represented by the
closed interval [0.2,0.4]. We likewise proceed to evaluate IP pooling under
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4 Decision Theory and Philosophy

the axiomatic scheme and showcase some of its unique advantages over linear
and multiplicative strategies.
In Section 5, we set aside the impossibilities that arise under the axiomatic

approach and think more generally about the end goals of pooling in terms of
epistemic rationality. In doing so, we build on previous work from the truth-
centered, accuracy first program in an effort to identify truth-seeking pooling
strategies.5 We then connect an earlier discussion on justified group belief
to some criteria that seemingly promote epistemic rationality via evidentially
supported group credences.
After considering epistemic rationality, we turn to practical rationality in

Section 6. We attend to a couple of pragmatic arguments supporting certain
axioms, which speak against some pooling strategies and in favor of others.
Throughout, we relate the practical rationality arguments to an earlier discus-
sion on group responsibility and suggest that the pragmatic arguments point
to some collective responsibility when groups decide on how to pool group
members’ credences.
Section 7 wraps up the Element with a brief summary of recent work focused

on relaxing some idealized assumptions. For instance, how can credences be
pooled when group members individually consider intersecting, yet differ-
ent, sets of propositions, and how should groups pool when their individual
members aren’t probabilistic? We review some methods proposed recently
on how to pool credences under such circumstances and finally conclude in
Section 8.
Let us reiterate that the present Element is not intended to be a fully compre-

hensive guide to all the philosophical motivations and pooling strategies one
could imagine. But this short Element should provide readers with a sufficient
understanding of some philosophical motivations and formal pooling models
without presupposing expert-level knowledge in philosophy and mathematics.

2 Philosophical Motivations
Social epistemology has raised various epistemic problems in recent years. We
begin with one that seems obviously connected to opinion pooling, namely,
peer disagreement. Disagreement among a group of individuals serves as the
primary motivation for opinion pooling in general, and the unique conditions
defining peer disagreement introduce new conceptual challenges concerning
the optimal way to handle conflicting credences.

5 See, e.g., Joyce (1998), Pettigrew (2016), and the forthcoming Element by Jason Konek and
Ben Levinstein in this series for introductions to the accuracy first program.
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Opinion Pooling 5

After canvassing the problem of epistemic peer disagreement, we turn our
attention to group rationality and consider some of its aims. Traditional epis-
temologists tend to hold that rational belief must at least be justified belief. In
Section 2.2, we focus on the justification property and how it applies to group
belief. We take the general normative claim that rational group belief should
be, in part, justified group belief as a motivating reason for endorsing certain
pooling axioms and pooling strategies satisfying them. While some pooling
axioms can be thought of as aiming at promoting the justifiedness of group cre-
dence by satisfactorily incorporating evidence, the conceptual work we review
might strengthen their epistemic desirability but also point to some nuances
that potentially pose challenges for pooling more generally in obtaining proper
epistemic justification.
As a final topic of this section, we consider group responsibility in

Section 2.3 and show how it too bears on the evaluation of pooling strategies.
Interestingly, this is a relatively unexplored dimension of opinion pooling. This
is a bit surprising since group opinions have practical importance in many mat-
ters, such as policy decisions, where groups, and possibly individual members,
are answerable for the opinions they voice.We review a couple of broad notions
of group responsibility that have been defended in the philosophical literature
and connect them later to some specific pragmatic issues related to pooling. The
upshot is that the pragmatically oriented axioms we’ll introduce in Section 3
are more than just mathematical niceties since choosing a pooling strategy can
often carry with it certain responsibilities, and these axioms point to a couple
of those responsibilities.

2.1 Epistemic Peer Disagreement
In his 2007 paper, “The Epistemology of Disagreement: The Good News,”
David Christensen presents a case of peer disagreement that has become a
staple of the philosophical literature on the topic.

Suppose that five of us go out to dinner. It’s time to pay the check, so the
question we’re interested in is how much we each owe. We can all see the
bill total clearly, we all agree to give a 20 percent tip, and we further agree to
split the whole cost evenly, not worrying over who asked for imported water,
or skipped dessert, or drank more of the wine. I do the math in my head and
become highly confident that our shares are $43 each. Meanwhile, my friend
does the math in her head and becomes highly confident that our shares are
$45 each. How should I react, upon learning of her belief? (Christensen,
2007, 193)

Before exploring some answers to Christensen’s question, some prelimi-
naries are in order. The philosophical debate assumes symmetry between
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6 Decision Theory and Philosophy

individuals, so that all parties involved hold symmetric positions with respect
to the body of evidence shared among them. That is, none of the individu-
als have extra private information the others lack that would be advantageous
to their epistemic position. It’s further assumed that all individuals hold sym-
metric positions with respect to their cognitive and epistemic abilities. That
is, the individuals involved in a disagreement are assumed to have the same
level of cognitive ability and none of the individuals are worse off than any
other in terms of truth-seeking capacities, possibly determined by previous
track records. Satisfying these assumptions entails that the individuals party
to a disagreement are epistemic peers.
Epistemic peerhood makes the problem of disagreement especially difficult

since all parties would be hard-pressed to deliver a compelling reason why they
should dismiss the opinions of the others. Indeed, Christensen argues that you
simply cannot dismiss the opinion of another based on the fact that they dis-
agree with you due to what he calls the independence condition: “. . . I should
assess explanations for the disagreement in a way that’s independent of my rea-
soning on the matter under dispute . . .” (Christensen, 2007, 199). Christensen
concludes that upon meeting the independence criterion, and the fact that a
peer is just as good at assessing the matter at hand as you are, you (and your
peer) are rationally compelled to take the opposing opinion of your peer as
evidence against your own opinion. The evidence, in turn, ought to make you
less confident in your initial assessment. In the restaurant case, for instance,
the opposing conclusions should make you less confident in your answer (and
the same goes for your friend), where you should now give equal credence to
the hypotheses (193). Revising your epistemic state in such a way amounts to
conciliating, where you move your opinion toward your peer’s (and they move
their opinion toward yours). In case of epistemic peerhood, you and your friend
are committed to “splitting the difference” (203).
Although conciliationism, in general, does not necessarily imply that peers

in a disagreement treat all the assessments equally at all times, Adam Elga
(2007) has argued that an equal weighting of peer assessments is indeed the
only rational response, which he dubbed the equal weight view. In his words,

Suppose that before evaluating a claim, you think that you and your friend are
equally likely to evaluate it correctly. When you find out that your friend dis-
agrees with your verdict, how likely should you think it that you are correct?
The equal weight view says: 50%. (Elga, 2007, 488)

That is, assuming that the interlocutors are epistemic peers, the equal weight
view implies that the probability of each of them being closest to the truth upon
learning of their disagreement should be equal. According to Elga, it is absurd
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Opinion Pooling 7

to think that a disagreement supplies you with evidence that you are a better
judge (486). In the absence of such evidence, you are rationally committed to
thinking you and your peer are equally likely to be correct given the nature
of epistemic peerhood. So, each must lend equal weight to all the assessments
given.
Of course, not everyone agrees with the conciliationist attitude. In his early

work on disagreement, Thomas Kelly (2005) defended a stick to your guns
strategy that is often called the steadfast view. We should note that there are
many accounts that fall under the steadfast heading, and unfortunately, we can’t
cover them all, but we’ll present two possible candidates here.6 Among the
most radical, the no independent weight view says “In at least some cases of peer
disagreement, it can be perfectly reasonable to give no weight at all to the opin-
ion of the other party” (Kelly, 2011, 186). While it’s unclear whether anyone
explicitly endorses the latter view, some views might entail it. Ralph Wedg-
wood (2007), for example, has argued in favor of privileging the first-person
perspective such that one embraces an egocentric bias, or having a fundamen-
tal trust in one’s own cognitive states (Matheson & Frances, 2018). Strongly
embracing an egocentric bias might entail that one completely endorses their
own opinion and consequently gives no weight to any peer’s opposing opinion.
On an alternative steadfast view, one might retain their initial opinion for the

right reasons. The right reasons view appeals to all the evidencemade available
to each peer upon learning of a disagreement that includes first order evidence
(the evidence available prior to learning of the disagreement that pertains to the
disputed proposition(s)) and higher order evidence (evidence obtained upon
learning of a disagreement that pertains to one’s reasoning on the matter). The
higher order evidence one possesses is that they have a particular belief on the
basis of the first order evidence and that their peer has a particular belief on the
basis of that same first order evidence. By weighing the higher order evidence
equally, peers are not commanded to conciliate or suspend judgement. Rather,
weighed equally, the two facts cancel out, leaving each peer with exactly the
same evidence before learning of their disagreement. Consequently, the peers
retain their initial beliefs, and they do so for the right reasons (see Kelly, 2005).
However, Kelly (2011) has since conceded that the balance between first

order and higher order evidence is not always as straightforward as earlier and
defends in more recent work the total evidence view. The question, though, is
how should peers respond to a disagreement if the higher order evidence is not
always swamped by the first order evidence? According to Kelly, there is no
simple answer to the question. Should the learned higher order evidence speak

6 See, e.g., van Inwagen (1996); Kelly (2005); Huemer (2011); Titelbaum (2015).
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8 Decision Theory and Philosophy

strongly in favor of one having made a mistake in their reasoning, they ought
to temper their confidence more than if the higher order evidence speaks less
strongly in favor of onemaking amistake. So, the answer is: it really depends on
one’s total body of evidence, first order and higher order evidence (Kelly, 2011,
200–202). Proponents of the total evidence view thus reject conciliationism as
the universally correct way of responding to a peer disagreement since on some
occasions, one should hold steadfast in their answer, while on others, they ought
to lose a whole lot of confidence. The equal weight view is mistaken then that
there’s one and only one way that you should revise your opinion in response
to a peer disagreement. The total evidence view can thus be seen as a middle
ground between steadfastness and conciliationism.
Similarly, Jennifer Lackey’s (2010) justificationist view might be thought of

along the same lines. On her view, what matters most, as the name suggests, is
the justification of one’s belief. What sets the justificationist view apart from
conciliationism is a denial of the independence condition, which Lackey shows
to be counterintuitive through the following example.

Harry and I, who have been colleagues for the past six years, were drink-
ing coffee at Starbucks and trying to determine how many people from our
department will be attending the upcoming APA. I, reasoning aloud, say,
“Well, Mark and Mary are going on Wednesday, and Sam and Stacey are
going on Thursday, and since 2+2=4, there will be four other members of
our department at that conference.” In response, Harry asserts, ‘But 2+2 does
not equal 4”. (Lackey, 2010, 283)

As Lackey correctly suggests, you should not be rationally required to revise
your opinion in the previous case. The overwhelming evidence you have sup-
porting your belief and the personal information you possess about yourself
provides evidence that Harry is mistaken. The disagreement, therefore, yields
evidence, but not for your mathematical belief. Rather, the disagreement pro-
vides evidence for your belief about Harry, which conveys that, in fact, he’s
not your peer (283). This case also seems to speak in favor of the correctness
of the no independent weight view on occasions.

2.1.1 Uniqueness or Permissivism?

We’ve seen that intuitions apparently clash over which of the responses to peer
disagreement is the correct one. This tension is often attributed, in part, to
another debate on whether evidence forges a uniquely rational response or not.
In particular, many have debated the truth of the so-called uniqueness thesis.

Uniqueness Thesis. For any body of evidence, E, and proposition, X, E
justifies at most one competitor epistemic attitude toward X.
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Opinion Pooling 9

Richard Feldman (2006) originally proposed and defended the principle in
relation to categorical belief – that is, one outright believes a proposition or
disbelieves it. Feldman argued that in the context of peer disagreement, the
principle entails a skeptical stance, where all parties involved are committed to
suspending judgment. But many have argued that categorical belief is too lim-
ited to express the epistemic attitudes individuals might hold on some matter,
and that skepticism is not always warranted. We can see that with the con-
ciliationist views, given the talk of confidence and (subjective) probability in
characterizing beliefs that are taken as graded epistemic attitudes rather than
categorical. That’s why there’s often talk of ‘credences’ in the epistemology
literature, a term that we’ll tend to use throughout.
That said, the Uniqueness Thesis, on a more broadly construed interpreta-

tion of belief, seems to suggest that there is a uniquely rational graded belief,
degree of confidence, subjective probability, or credence that epistemic peers
should adopt. The equal weight view, for example, appears to be committed to
the thesis since giving equal weight or splitting the difference yields a unique
response for all peers. The uniqueness of the attitudes implied by the equal
weight view can be further supported by Sinan Dogramaci and Sophie Horo-
witz’s (2016) defense of the Uniqueness Thesis on the grounds that it aids in
promoting rationality. In their words,

Given uniqueness, promoting rationality involves promoting conformity.
Conformity allows us to function as epistemic surrogates, which in turn
efficiently ensures the reliability of testimony and enables the division of
epistemic labor. Our view thus explains why promoting rationality is an
effective and efficient means of meeting our epistemic goal, getting to the
truth. (Dogramaci & Horowitz, 2016, 139)

It seems that, on their view, the Uniqueness Thesis plays an essential role in
promoting rationality by promoting conformity, which ultimately aids individ-
uals in getting closer to the truth. For this reason, we should be inclined to
accept the Uniqueness Thesis and consequently the equal weight view.
While promoting rationality might serve as a plausible defense of the

Uniqueness Thesis, permissivists remain unimpressed. Those who adopt a per-
missivist stance toward peer disagreement tend to endorse something like the
following.

There is at least one body of total evidence E and proposition P such
that multiple credences in P are maximally rational. More precisely, there
exist proposition P and probability functions Pr and Pr′ such that Pr(P | E)
, Pr′(P | E) but both Pr(P | E) and Pr′(P | E) are maximally rational cre-
dences to have in P on body of total evidence E. (Levinstein, 2017, 343)
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10 Decision Theory and Philosophy

The total evidence and justificationist views seem to conform to permissivism
since peers, on certain occasions, are not committed to adopting a unique atti-
tude in light of a disagreement.7 Instead, two epistemic peers with differing
epistemic attitudes can both be rational. The idea that individuals need not share
the same opinions, despite having the same evidence, is, of course, not a novel
one. In fact, L. J. Savage (1954) made that very remark many decades ago,
“. . . two reasonable individuals faced with the same evidence may have differ-
ent degrees of confidence in the truth of the same proposition” (3). Savage took
this permissivist commitment to be a hallmark of the personalist or subjective
view of probability.

2.1.2 Peer Disagreement or Not?

Just the same as the competing responses to peer disagreement, we find that
intuitions also tend to differ over the (im)permissive nature of responses to
the same body of evidence, which may be the cause of diverging intuitions
toward responses to peer disagreements. In addition to a clash between intu-
itions about permissivism and impermissivism, intuitions might also diverge
on the basis of one’s conception of “peer.” In other words, the conflict among
social epistemologists might be a mere difference of opinion of whether any
given case constitutes a peer disagreement to begin with. We established ear-
lier that peerhood among individuals relies on symmetry with respect to the
relevant body of evidence and cognitive and epistemic abilities. But such an
account sounds more like a fantasy than reality. Peer disagreements might be
hard to come by then in these terms (King, 2012). The epistemic significance of
disagreement between two or more seemingly intelligent individuals, however,
is not so much a fantasy.
Understood more loosely, “peer” disagreement might prompt different intu-

itions about how to respond because the term “peer” can be construed in
different ways, ranging from a more relaxed view to a highly idealized view
that we’ve so far considered. And from the perspective of each individual that
is party to a dispute, as well as the attributer, each person’s view could dif-
fer on whether there is a peer disagreement, especially if some of the opinions
expressed come as a major surprise to all other parties. Recall Lackey’s exam-
ple from earlier. You come to the conclusion that Harry is not a peer after
all due to the absurd conclusion he draws. So now, the question has shifted
from how to respond to peer disagreements to how to reassess the reliability

7 See also Rosen (2001).
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Opinion Pooling 11

of an interlocutor that will ultimately affect how one responds to the opposing
opinion. But how should this be done?
Luc Bovens and Stephan Hartmann (2004) suggested that a proper reassess-

ment can plausibly be captured within a Bayesian framework. We’ll skip over
the technical details due to the complexity of their notation but invite the reader
to take a closer look in their book. What might be useful for our purposes is
their randomization parameter. In describing this feature, they say, “. . . if wit-
nesses are not reliable, then they are like randomizers. It is as if they do not
even look at the state of the world to determine whether the hypothesis is true
but rather flip a coin or cast a die to determine whether they will provide a
report to the effect that the hypothesis is true. . .On the other hand, if the wit-
nesses are reliable, then they say of what is, that it is and of what is not, that
it is not . . .” (57). Accordingly, as the randomization parameter increases, the
chance that the witness is unreliable becomes greater. That seems to be the
case with Harry. Upon learning his report, you conclude that Harry is more
likely to be unreliable (a randomizer) on the matter and therefore less likely
to be your peer, leading you to judge his assessment in a more discriminating
manner. Bovens and Hartmann’s Bayesian evaluative approach can thus help
explain how one might reason that the peer linkage is broken in a disagreement,
thereby furnishing support for the justificationist view and permissivism more
generally.

2.1.3 Peer Disagreement as a Motivation for Pooling

Whatever the right response to peer disagreement is, and whether that response
is unique or not, can’t be settled here. Our aim is merely to bring to light an
important debate in social epistemology and illuminate how it bears on opin-
ion pooling. From our brief summary of the epistemic problem, different views
about the correct answer to peer disagreement entail different constraints on
pooling strategies. The equal weight view, for example, might imply that there’s
one and only one uniquely warranted pooling model among a family of mod-
els.8 That is the one that gives fixed and equal weight to all the peer credences.
The arguments supporting the equal weight view provide reasons for adopting
such a unique pooling mechanism when revising credences individually and
forming group-level credences.

8 We note that there are different types of pooling methods, for example, linear and multipli-
cative pooling, and each type is comprised of a family of models. Whether proponents of the
equal weight view would agree that different pooling methods are acceptable so long as they
impose an equal weight constraint is uncertain. Or, whether they would even concede that
the equal weight view is the right answer for forming group credences hangs in the balance.
Unfortunately, we don’t have the answers, but we make note of these uncertainties.
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12 Decision Theory and Philosophy

On the other hand, arguments for the total evidence view suggest that the
unique equal weight response at the group-level is mistaken since the total evi-
dence (accessible to all) might speak more favorably of some credences than
others and thus demand more weight for those and less for others. Since the
distribution of weight may be uneven and differ from time to time, the equally
weighted pool is merely a special case, but not the correct way to handle every
peer disagreement. The arguments supporting the total evidence view provide
reasons for adopting a more general pooling strategy that does not already have
its weights fixed necessarily by assumption. This similarly goes for the justifi-
cationist view, as some credences are sometimes better justified than others.
The simple math case illuminates the point, where it turns out that Harry is not
your epistemic peer and thus does not deserve equal weight.
We remain uncommitted to there being any one correct pooling strategy for

every occasion. But, we point out here that the conceptual work on epistemic
peer disagreement can be valuable in motivating some pooling strategies while
speaking against others and driving pooling in general.

2.2 Group Rationality and Justified Group Belief
Notice that the problem of peer disagreement focuses on what individuals
should come to believe. While we’re interested in how individuals ought to
respond to peer disagreements, we’re equally interested in how individuals
should form credences as a group. These are two different projects, but we
contend that pooling strategies can help with both. We should note, however,
that group credences generated by means of opinion pooling are often regarded
as epistemic compromises, merely resulting from the groupmembers’ opinions,
but not necessarily consensus opinions.9 That is, individuals come to agree on
some set of opinions for group reasoning and decision-making purposes, but
the members are not necessarily committed to holding those same opinions
individually (see Wagner, 2010; Moss, 2011).
Although epistemic compromises do not entail complete epistemic unity

among a group’s members, we take them to sufficiently represent the attitudes
of group agents, and this sentiment appears to be shared by others as we’ll
come to see shortly. But what good are these group attitudes if they don’t
guarantee complete epistemic solidarity among a group’s members? Following

9 Consensus may be more demanding by requiring a deliberation phase that is iterated over
a potentially infinite sequence. See, e.g., DeGroot (1974); Lehrer (1976); Wagner (1978);
Hegselmann & Krause (2002).

We also note that group belief need not only arise from epistemic compromise or consensus
but alternatively, revolution, conversion, voting, bargaining, and so on (Levi, 1985).
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Opinion Pooling 13

Dogramaci and Horowitz (2016), we might say that conformity via compro-
mise promotes (group) rationality, which gets groups closer to meeting their
epistemic goal(s). This sentiment similarly resonates throughMatthewKopec’s
(2019) goal-oriented view.

Group Rationality. A particular attitude (behavior, social structure, etc.) is
maximally epistemically rational for an agent (or entity) if and only if that
attitude (etc.) is amongst the most effective means toward pursuing some
specified set of epistemic goals. (Kopec, 2019, 536)

We’ll follow Kopec on this goal-oriented view of group rationality, but we’ll
broaden the scope of goals by including practical goals also.
In sticking with the epistemic dimension for now, what sort of epistemic

goals might groups have? Dogramaci and Horowitz pointed out the obvious:
getting to the truth.10 But true belief, whether individually or collectively held,
is not the only aim of rational believers. Ever since the days of Plato to the early
modern philosophers, like Locke and Hume, epistemologists generally have
come to accept that true belief must be supplemented in order to be rational.
One supplement is justification. Thus, groups should aim to have justified true
beliefs. Of course, achieving that is easier said than done. It’s hard enough for an
individual to hit the epistemic target, let alone a group of individuals with differ-
ent beliefs and possibly different evidence bases. That said, recent work on the
justifiedness of group belief has become a focal point in social epistemology.

2.2.1 Inflationary and Deflationary Accounts

Among the lot of views on group-level justification, Jennifer Lackey (2016)
has categorized the most feasible accounts of justified group belief as either
inflationary or deflationary. The inflationary accounts hold that “. . . groups are
treated as entities that can float freely from the epistemic status of their mem-
bers’ beliefs . . .,” whereas deflationary accounts hold that “. . . group belief is
understood as nothing more than the aggregation of the justified beliefs of the
group’s members” (342). Some inflationists tend to view group belief as a fea-
ture arising from some sort of cohesiveness in the group members’ attitudes.
For Raimo Tuomela (1992), that cohesive element is acceptance: in large part, a
group belief in X depends on all operative members jointly accepting X, where
‘operative members’ is understood as members that jointly intentionally act
on behalf of the collective.11 Margaret Gilbert (2013), by contrast, takes the
cohesive element to be joint commitment: in large part, a group belief in X

10 We have more to say about the truth aim that we’ll get to in Section 5.
11 See also Schmitt (1994) and Hakli (2011) for variations of the joint acceptance view.
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14 Decision Theory and Philosophy

depends on all members being jointly committed to believing X as a body.
Although Gilbert has tweaked the precise formulation of this view over past
decades, cohesion by joint commitment remains the essential feature. Accord-
ingly, joint commitment is a commitment held by all parties involved, unlike
personal commitments that are unilateral, and can only be fulfilled or rescinded
by jointly acting together (138). Furthermore, the state of matching wills is
common knowledge for all parties involved (Gilbert, 2006, 9).12

What appears to follow from the joint acceptance and joint commitment
views is that the group-level epistemic attitudes yielded are over and above
the members’ individual beliefs, not just some aggregate. That is, the collec-
tive attitude is the product of thewe, not the I. The independence of group belief
from the individual members’ beliefs can be further illuminated through their
function(s) that is often defined by a charter. The US Congress, for example, is
a chartered group consisting of elected officials. However, the groupmaking up
Congress has no life beyond its office (Schmitt, 1994). The nature of chartered
groups conveys the separation of group belief from the individual members’
beliefs given that the former is a result of some kind of sanction. Without sanc-
tion, however, group beliefs cease to exist, but the individual members’ beliefs
continue to live on.
While inflationism of group belief seems intuitive when concessions are

made and there’s some harmony that exists among group members, not every-
one agrees. Deflationists alternatively adopt a summative stance toward group
belief, where it’s the sum or aggregate of some or all of the individual members’
beliefs (Lackey, 2016, 358). Alvin Goldman (2014), for instance, offers the
following example to support a deflationary, aggregative account of justified
group belief.

G is a group whose members consist of 100 guards (M1-M100) at the British
Museum. Each of the first 20 guards, M1-M20, justifiedly believes that guard
Albert is planning an inside theft of a famous painting (= A). By deduction
from A, each of them infers the (existential) proposition that there is a guard
who is planning such a theft (= T). The remaining 80 guards do not believe
and are not justified in believing A. Each of the second 20 guards, M21-M40,
justifiedly believes that Bernard is planning an inside theft (= B), and deduc-
tively infers T from B. The other 80 members do not believe B. Each of a
third group of 20members, M41-M60, justifiedly believes that guard Cecil is
planning an inside theft (= C) and deductively infers T from C. The 80 others
do not believe C. Thus, 60 members of G (justifiedly) believe T by deduction
from some premise he/she justifiedly believes. (Goldman, 2014, 16)

12 Common knowledge is a central concept in game theory involvingmutual knowledge spanning
higher orders ad infinitum: I know that you know that I know that. . .

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009315203
Downloaded from https://www.cambridge.org/core. IP address: 18.223.206.19, on 31 Jan 2025 at 18:30:22, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009315203
https://www.cambridge.org/core


Opinion Pooling 15

Whether the group of guards in the earlier example is justified in believing T
depends on the dimension we consider. According to Goldman, the group G is
not horizontally justified in believing T, because there are no other group beliefs
resulting from a majority of its members from which T can be deductively
inferred. However, G is vertically justified in believing T based on the propor-
tion of members who justifiedly believe T (a clear majority). This example is
meant to prompt an intuition that justified group belief is deflationary given
that G is justified in believing T only when group belief is understood solely
in terms of the members’ beliefs (the vertical dimension), which Goldman
endorses.
Lackey (2016), however, challenges Goldman’s summativist account by

illustrating that such a majoritarian account is vulnerable to paradox and
what she calls the defeater problem. With respect to paradox, Lackey’s point
is a rehearsal of the well-known logical closure paradoxes, that is, the lot-
tery and preface paradoxes.13 It’s pretty easy to see. Based on a majoritarian
view of justified group belief, the group of guards justifiedly believes each
of the following: not-A, not-B, and not-C. If group belief is closed under
entailment, then the group justifiedly believes (not-A & not-B & not-C), yet
the group also justifiedly believes (A or B or C), resulting in a contradic-
tion. Relatedly, Lewis Kornhauser and Lawrence Sager (1986) introduced
the doctrinal paradox, where proposition-wise majority voting leads to incon-
sistency, which poses a further problem for summativism when inferring
conclusions based on a majority rule. And even if a judgment aggregation
function yields a set of logically consistent, closed, and complete set of
judgments, Christian List and Philip Pettit (2002) have shown that such a
function cannot satisfy a set of reasonable criteria. This is to say, at the very
least, that deflationary accounts of justified group belied face some structural
problems.
But Lackey thinks that in the guards case, the paradox is less damning than in

the individualistic cases of lotteries and prefaces. What she finds more trouble-
some for summativists is the group’s justification for believing T being defeated
since by entailment, the group justifiedly believes that no one is planning the
inside theft, which is an undefeated rebutting (psychological) defeater for the
group believing T (Lackey, 2016, 367).14 For evidentialists and reliabilists

13 See Kyburg (1961) for a description of the lottery paradox and (Makinson, 1965) for a
description of the preface paradox.

14 Lackey defines a psychological defeater as follows: “A psychological defeater is a doubt or
belief that is had by S, and indicates that S’s belief that p is either false (that is, rebutting) or
unreliably formed or sustained (that is, undercutting). Defeaters in this sense function by virtue
of being had by S, regardless of their truth-value or epistemic status” (2016, 366).

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009315203
Downloaded from https://www.cambridge.org/core. IP address: 18.223.206.19, on 31 Jan 2025 at 18:30:22, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009315203
https://www.cambridge.org/core


16 Decision Theory and Philosophy

both, it seems that they would likely accept the following: any group belief
formation process should not yield group-level attitudes that are defeated by
the evidence possessed by the group. But as Lackey has illustrated, deflation-
ary accounts are susceptible to violating this tenet. The defeater problem, if
taken seriously, philosophically challenges deflationism in general, which, in
turn, challenges practically all (probabilistic) opinion pooling strategies since
opinion pooling falls under the deflationary category.

2.2.2 Are Pooled Credences Unjustified?

Does this mean that pooling strategies are incapable of yielding justified
group credences? Not necessarily. Lackey’s own view finds a middle ground
between inflationism and deflationism. She calls it the group epistemic agent
account:

(GEAA). A group G justifiedly believes that p if and only if

(1) A significant percentage of the operative members of G (a) justifiedly
believe that p, and (b) are such that adding together the bases of their justified
beliefs that p yields a belief set that is coherent.

(2) Full disclosure of the evidence relevant to the proposition that p, accom-
panied by rational deliberation about that evidence among the members of G
in accordance with their individual and group epistemic normative require-
ments, would not result in further evidence that when added to the bases
of G’s members’ beliefs that p, yields a total belief set that fails to make
sufficiently probable that p. (Lackey, 2016, 381)

GEAA is an account of justification for categorical group beliefs, but per-
haps we can formulate a plausible credal version. GEAA (1a) concerns the
justification of the individual attitudes, while (1b) concerns the bases of those
attitudes. In the credal case, (1a) just says that a significant percentage of
the operative members have justified credences, while (1b) says the con-
junction of their evidence is consistent. What about GEAA (2)? Here’s a
version stated for epistemic attitudes more generally: upon members disclos-
ing their evidence in rational deliberation, the group-level attitudes resulting
from the members’ attitudes individually conditioned on the shared evi-
dence, E, should not be inconsistent with the group-level attitudes (formed
from the member’s unconditional attitudes) conditioned on E. If plausible,
then GEAA (2) spells good news for justified group credence via pooling.
Indeed, we’ll introduce a criterion in Section 3 to that effect, namely, Exter-
nal Bayesianity, and show in Section 4 which pooling strategies meet the
demand.
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Opinion Pooling 17

2.2.3 Justifiedness as an Evaluative Criterion

Just like the problem of peer disagreement, we can’t settle the debate on
justified group belief in this Element. However, what the reader should take
away from the discussion is that justifiedness is a fundamental feature of
rational group belief/credence. Some criteria we’ll introduce in due course
aim at conferring justifiedness to pooled credences in line with GEAA as
interpreted. The pooling strategies satisfying such criteria consequently are
consistent with promoting Group Rationality in meeting at least one epistemic
goal. Of course, the inflationary/deflationary and categorical/credal distinctions
and assimilating views leave open philosophical questions on the broader mat-
ter of justified group belief. But we hope that casting light on the issue in this
Element at least gets the ball rolling.

2.3 Group Rationality and Responsibility
Taken as agents in their own right, groups should not only aim to fulfill their
epistemic goals, as Group Rationality requires, but their practical goals also.
For why else should individuals be willing to compromise or reach a consen-
sus if the group opinions of the group agent are not put to use in practice? If
this is right, then Group Rationality should be broadened to cover the practical
interests of groups also, which we’ll assume from here on.15

Furthermore, Group Rationality leaves open ‘attitude’, which might gener-
ally mean intentional attitude. Intentional attitudes, for example, beliefs and
desires, then ought to be the most instrumentally effective in meeting a group’s
epistemic goals. But again, epistemic goals aren’t the only things groups care
about and thus, intentional attitudes are collectively rational by being most
instrumentally effective in also meeting a group’s practical goals. If correct,
collective attitudes set up for group action as the pillars of means-end prac-
tical reasoning.16 In turn, the actions performed by groups, like the actions
performed by individuals, yield consequences that they can be held accounta-
ble for. Intentional group attitudes leading to group action make groups fit for
responsibility.

15 Whether groups constitute agents in their own right is a controversial issue. Christian List
and Philip Pettit (2011) defend the affirmative, suggesting that groups can constitute agents
that float freely from their members. We’re neutral on the matter, especially since pooling is
not motivated only from a group agency standpoint. Recall from the introduction that we said
pooling can serve different functions, like summarizing individual opinions. But of course, one
function can be in forming credences on behalf of group agents. This section on responsibility
focuses on that perspective.

16 We assume a consequentialist-like picture in the background rather than Kantian or Aristote-
lian.
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18 Decision Theory and Philosophy

2.3.1 Responsibility for What?

But what does it mean for a group to act? Margaret Gilbert’s account on joint
commitment mentioned earlier provides a nice starting point in answering this
question. On Gilbert’s (2006) view, to collectively act means the following:

Group Action. Persons X and Y are collectively doing A if and only if they
collectively intend to do A,17 and each is effectively acting, in light of the
associated joint commitment, so as to bring about fulfillment of this intention.
(Gilbert, 2006, 12)

Joint commitment centrally establishes a unifying bond between group mem-
bers with respect to collective action, as a joint commitment provides all
members with reason as a body to perform some act. The bond by joint com-
mitment consequently makes members answerable to one another in case of
defaulting on the commitment, and owing conformity to all other parties (11).
These consequences of joint commitment seemingly engender some form of
responsibility on behalf of a group’s members, particularly in fulfilling their
joint commitment.
The general idea of there being some cohesive commitment spanning the

individual members of groups seems to be a necessary element in determining
a group’s fitness for responsibility. Raimo Tuomela and Pekka Mäkelä (2016)
have similarly argued along this line, suggesting that groups can be character-
ized by an ethos that unites the members through a commitment to conforming
to it. No member can act against the group’s ethos, and the ethos can only be
abolished through collective decision-making (301). So, like Gilbert’s view,
rescinding the commitment can’t be done by any one individual but rather
jointly by the collective.
As a group’s ethos is often broadly encompassing, a multitude of virtues can

be held under it. For our purposes, we might suggest that a commitment to pro-
moting Group Rationality (extended to practical goals) is one such virtue of
an ideal group ethos. The commitment makes group members responsible for
honoring it and accountable for defaulting on their responsibility. Groups are
then collectively responsible for the intentional attitudes they hold and actions
they perform. We should note, however, that the responsibility considered here
is not necessarily moral responsibility. Rather, it’s a bit broader as a commit-
ment to conforming to norms that need not be moral per se. Most central in
this context are rationality norms that promote the interests of a group and its
members. A failure to promote such interests individually and as a group is

17 Collective intention is meant here as a joint commitment to intend as a body to perform some
action. And the matching state of wills is common knowledge among all parties.
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what members and the group are answerable for. Having said that, let’s specify
further where the responsibility lies.

2.3.2 Responsibility for Who?

Tuomela and Mäkelä suggest that the responsibility trickles down to the
individual members:

As the group’s actions are constituted by its members’ actions, the group will
be responsible also for itsmembers’ participatory actions (and lack of them in
other cases). This kind of group responsibility involves that the members of a
we-mode group are responsible for their own participatory actions as well as
typically to an extent responsible also for the other members’ participatory
actions . . . (Tuomela & Mäkelä, 2016, 309)

Group responsibility on their view is reductive. That is, group responsibility
reduces to the individual responsibility of each member, and individual respon-
sibility is twofold, applying to each member’s own behavior as well as the
participatory behavior of others. This view might be stronger than Gilbert’s,
as a group’s members are not just answerable for their own behavior but to
an extent, the behavior of other members also, giving rise to some sort of a
“guilty by association” attribution. While admittedly stringent, the view is sen-
sible in some instances such as when a group of criminals commits an illegal
act. The group as a whole may be held accountable in case all members were
willing participants and aware of the others’ involvement because they could
have intervened to obstruct the activity.
What might further compel one to adopt a reductive stance is the complic-

ity of group members, as they are bounded by the commitment to the ethos.
Thus, members cannot escape or separate themselves from the group’s inten-
tional attitudes and resulting group actions because of the general commitment
to the ethos, which is unbreakable by any one dissenter. Group members are
therefore complicit not only in the actions taken but also in the formation of
the group’s intentional attitudes, as they are all jointly committed to the ethos,
for example, promoting Group Rationality, and consequently jointly commit-
ted to the intentional attitudes adopted. Actual organizations seem to provide
evidence for this claim: ACLU, Catholic Church, Sierra Club, and so on.
But what does it mean to be complicit? As Christopher Kutz (2000) has

suggested, intentional participation, independent of any actual difference one
makes, is enough for one to be complicit. Kutz’s view seems to support the
earlier claim that group members are complicit when committed to the ethos
and jointly committed to adopting certain intentional attitudes. This is because
fulfilling a commitment to the ethos and any following joint commitments

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009315203
Downloaded from https://www.cambridge.org/core. IP address: 18.223.206.19, on 31 Jan 2025 at 18:30:22, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009315203
https://www.cambridge.org/core


20 Decision Theory and Philosophy

involves intentional participation. And since the difference any one member
makes is independent, the active intention to make good on the joint duties
suffices to make one complicit. Notice that Kutz’s view takes a more agent-
relational approach to defining complicity, separating it from mere causal
responsibility that is limited in scope.18

2.3.3 Responsible Pooling

How does the discussion here bear on opinion pooling? From a group agency
perspective, if all groupmembers jointly accept or are committed to some group
attitude formation procedure, then all members bear some level of responsibil-
ity for the group opinions formed and any acts performed under those opinions.
Should bad outcomes obtain that are consequential of the type of group atti-
tudes formed, the members are complicit according to the given view, as they
are intentional participants. If correct, groups need to take care in selecting a
pooling strategy, especially if Group Rationality is taken as part of a group’s
ethos.
In the next section, we’ll introduce a handful of pooling axioms that are

epistemically and practically motivated, which stand in support of promoting
Group Rationality. However, we’ll come to learn in Section 4 that satisfying
all of the axioms is no easy task. There are also tensions between promoting
epistemic goals and promoting practical goals. These issues will become more
apparent in Sections 5 and 6. For now, we only want to suggest that group
responsibility cannot be ignored in evaluating pooling strategies, as the choice
of pooling strategy in a given situation determines certain intentional attitudes
of the group that they are answerable for holding and acting under.
What we find interesting is that there is little to no discussion of group

responsibility in the literature. On our view, this is surprising since group
opinions have enormous social influence; for example, the opinions of a polit-
ical party, and so pooling strategies should not be evaluated independent of
a normative domain to which they belong.19 Thus, group responsibility is a
nontrivial issue for opinion pooling and should be welcomed in the evaluation
of pooling strategies. Again, we’re very limited in what we can say here, but
we hope to prompt future work on the relation.

18 See Bazargan-Forward (2017) for a more recent agent-relational account that separates com-
plicity from causal accounts. List and Pettit (2011) similarly reject causal responsibility,
which allows for complex entities such as corporations, treated as group agents, to be fit for
responsibility.

19 More recently, a strong case has been made for an intimate relationship between the epi-
stemic status and relevant moral implications of holding particular beliefs known as moral
encroachment (see, e.g., Moss, 2018; Basu, 2019; Jorgensen Bolinger, 2020).
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3 Desirable Features of Pooling Strategies
In Section 2, we raised some philosophical problems that are informative when
we come to evaluate pooling strategies, particularly when we ask which pro-
mote epistemic and practical aims. We’ll revisit those points from time to time.
But let’s now get acquainted with the formal representations of credences and
pooling strategies we’ll assume throughout, followed by the properties we often
want our pooling strategies to have.

3.1 The Formal Framework
Let’s begin with the individuals. To represent an individual’s opinions on a
certain matter, we must represent the propositions about which they have an
opinion as well as their opinions about them. Conforming to the standard
parlance of philosophical decision theory and epistemology, we represent a
proposition as a set of possible worlds. Until Section 7, we assume there is a
finite set of possible worlds, W = {w1, . . . ,wn}, grained as finely as needed to
represent the individual’s opinions, but no finer, and that the individual assigns
credences to each element of the full algebra A of subsets of W . Given X and
Y in A , we write X ∨ Y for the union of X and Y, X ∧ Y for their intersection,
and ¬X for the complement of X.
Next, we represent the individuals’ opinions about these propositions by a

function P : A → [0,1], which takes each proposition X in A and returns
P(X ), the individual’s unconditional credence in X. Until Section 7, we assume
P satisfies theKolmogorov axioms for probabilities: that is,P(W )= 1,P(∅)= 0,
and P(X ∨ Y ) = P(X ) + P(Y ) whenever X and Y are disjoint.
We also write P(X | Y ) for the individual’s conditional credence in X given

Y, and define it using the so-called Ratio Formula: if P(Y ) > 0,

P(X | Y ) = P(X ∧ Y )
P(Y )

Otherwise, it is undefined.
At various points, we will refer to Bayes’ Rule, which is the standard method

for updating a probability function upon receipt of some new evidence that
comes in the form of a proposition learned with certainty. It says that your
new unconditional credence in a proposition should be your old conditional
credence in it given the evidence you’ve learned. That is, for an individual
with probability function P, upon learning E, their new credence in X should
be P(X | E).
Turning our attention now to groups. Suppose we have a group of individuals

i = 1, . . . ,n. Until Section 7, we assume each individual i has opinions that are
represented by a probability function Pi on the same agenda A . We write ∆A
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for the set of all probability functions on A , and ∆nA for the set of sequences
(P1, . . . ,Pn) of n probability functions on A . We call such a sequence an opin-
ion profile. A pooling strategy is a function F : ∆nA → ∆A . In other words, F is
a function that takes an opinion profile, which is a sequence of probability func-
tions, one for each member of the group, to a single probability function, which
represents the collective credences of the group. (When there is no ambiguity,
we drop the subscript and write ∆ and ∆n instead of ∆A and ∆nA .)
In Section 4.4, we consider a more general representation of collective

credences that uses imprecise probabilities.
With the basic framework now in place, we present a wish list of desirable

criteria we would like a pooling strategy F to meet before taking the plunge
into the abyss of infinitely many pooling strategies. So, let us begin with some
staples from the philosophical and statistical literatures that have been given as
part of the so-called axiomatic approach.

3.2 Preserving Unanimous Judgments
The first concerns agreement. There are two versions; the first is strictly
stronger than the second.

(Local) Unanimity Preservation. For all probability functions P1, . . . ,Pn
on A , and for all propositions X in A , if P1(X ) = · · · = Pn(X ), then

F(P1, . . . ,Pn)(X ) = P1(X ) = · · · = Pn(X )

That is, if all individuals agree about some proposition, the pool should agree
with them about that proposition.

(Global) Unanimity Preservation. For all probability functions P1, . . . ,Pn
on A , if, for all propositions X ∈ A , P1(X ) = · · · = Pn(X ), then for all X in
A ,

F(P1, . . . ,Pn)(X ) = P1(X ) = · · · = Pn(X )

That is, if all individuals agree about all propositions, the pool should agree
with them about those propositions.
If group members find themselves agreeing with one another, the unanimity

criteria demand that the agreement is maintained after pooling. As we know,
agreement is often hard to come by; these criteria say that groups should take
advantage of it when they can. That being said, relaxing the constraints may be
necessary if individuals have different private evidence (Dietrich & List, 2015),
since each might have evidence that supports a particular proposition strongly,
but which, when combined, refutes it.
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3.3 Eventwise Independence
The second criterion concerns the independence of a group’s credence in
a proposition from the individual credences of all other propositions in the
agenda:

Eventwise Independence.20 There exists a function G : A × [0,1]n →
[0,1] such that for all probability functions P1, . . . ,Pn on A , and for all
propositions X in A ,

F(P1, . . . ,Pn)(X ) = G(X,P1(X ), . . . ,Pn(X ))

This criterion is also known as the weak setwise function property, which is
equivalent to the marginalization property (McConway, 1981), and neutrality
(Dietrich & List, 2017). The idea is that the group credence for any proposi-
tion X should depend only on the group members’ credences in X; it should not
depend on their individual credences about anything else. It would be unusual,
epistemically, if this weren’t the case. Say, for example, that the collective eval-
uates the propositions that a coin flip results in heads face up and that the global
average surface temperature reaches a new record high in 2023. Whatever way
the collective chooses to pool, the group credence for the coin landing heads
should not depend on the members’ credences concerning the global average
surface temperature.21

3.4 Ruling Out Dictators
The third criterion is based on a principle of welfare economics (Arrow, 1951),
but for our purposes, we’re interested in the epistemic implications:

Non-Dictatorship. There is no individual i such that for all probability
functions P1, . . . ,Pn on A , F(P1, . . . ,Pn) = Pi.

Why care about Non-Dictatorship? Of course, it depends on why you are using
the pooling function. If your purpose is to give a summary of the opinions
among the individuals in the group, Non-Dictatorship lays down the plausible
principle that no good summary depends only on a single individual’s view.
Similarly, if you wish to use the pooled opinions to make a decision on behalf
of the group that all members can get behind and for which they are happy to be
held responsible, and if the members of the group share the same evidence, but
have different posterior credences because they don’t share the same prior, then

20 Dietrich and List (2015) call G the local pooling criteria.
21 We’ll revisit independence again shortly when we meet an additional criterion.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009315203
Downloaded from https://www.cambridge.org/core. IP address: 18.223.206.19, on 31 Jan 2025 at 18:30:22, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009315203
https://www.cambridge.org/core


24 Decision Theory and Philosophy

again Non-Dictatorship lays down a plausible principle. But there are also cases
where we can legitimately violate it. Perhaps you will use the pooled opinion to
choose on behalf of the group, and the group members all have the same prior,
but one member has all the evidence that the others have and maybe even some
more on top of that: perhaps they’re the head of an intelligence organization
who sees all the intelligence reports, while all the other members of the group
are intelligence officers who each see only some. Then in that case there seems
no problem with electing them the dictator.

3.5 Bounding the Group’s Opinions
In the same vein, the fourth criterion might be seen as a constraint motivated
by the same epistemic goal but more explicit in its direction:

Boundedness.22 For all probability functions P1, . . . ,Pn on A , and for all
propositions X in A ,

min(P1(X ), . . . ,Pn(X )) ≤ F(P1, . . . ,Pn)(X ) ≤ max(P1(X ), . . . ,Pn(X ))

By treating group members’ credences as evidence, the group’s total evidence
signals that the evidentially supported group credence lies somewhere in the
range of individual credences. Boundedness ensures that pooling does not
yield group credences outside of the range and thus respects the group’s total
evidence. Besides respecting the evidence, empirical work on collective intel-
ligence has demonstrated that groups often bracket the truth (Soll & Larrick,
2009). Thus, pooling strategies abiding by Boundedness promote Group
Rationality in two ways: respecting the evidence and getting closer to the truth
(more on the latter in Section 5). Furthermore, since Boundedness implies Una-
nimity Preservation, pooling rules satisfying the former consequently satisfy
the latter.
While Boundedness appears to be an intuitive constraint, Easwaran et al.

(2016) have appealed to an intuitive case by Christensen (2009) to argue it
isn’t always desirable. Suppose that a doctor is 97% confident about the right
dosage of a drug to administer to a patient. The doctor learns that their equally
qualified colleague is 96% confident about the same dosage for that patient.
Christensen concludes that in this case, learning that a colleague is also very
confident about the dosage should boost, not lower, the doctor’s confidence in
the dosage being correct. If we take this intuition to hold in the context of pool-
ing the two doctors’ opinions, the pooled opinion would indeed lie outside the
range and to the right of the interval on the real line. And such violations of

22 The constraint is also called the reasonable range (Elkin & Wheeler, 2018).
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Boundedness are even more compelling when the individuals have different
private information (Dietrich, 2010).

3.6 The Interaction of Pooling and Learning
The next criterion concerns pooling and learning.We described earlier an appli-
cation of Bayesian learning in assessing the reliability of others. Given its
prominence in many scientific fields, and its dominance as a rule for learn-
ing in formal epistemology and decision and game theory, Bayes’ rule for
updating on new information can be regarded as a fundamental norm for both
individual and collective rationality in general – recall: it says that, upon learn-
ing a proposition E, your new unconditional credence in X should be your old
conditional credence in X given E. What’s more, there are many arguments
to the effect that it is the sole rational way for an individual or a group to
update their credal opinions: updating in this waymaximizes expected accuracy
(Greaves & Wallace, 2006); it is the only way to avoid being accuracy dom-
inated (Briggs & Pettigrew, 2020; Nielsen, 2021); it is the only way to avoid
being vulnerable to a diachronic Dutch Book (Lewis, 1999). In light of this, any
pooling strategy adopted by a group should play nicely with Bayesian learn-
ing, especially if Group Rationality is taken to be part of the group’s ethos. One
consequence of the interplay is that it should make no difference whether all
individuals update on the same evidence and pool their updated credences, or
whether they pool their individual credences and then update the pool on the
evidence.

External Bayesianity. For all probability functions P1, . . . ,Pn on A and
for all propositions X and E in A ,

F(P1(− | E), . . . ,Pn(− | E))(X ) = F(P1, . . . ,Pn)(X | E)

where Pi(− | E) is the probability function obtained from Pi by updating on
E using Bayes’ Rule.
That is, the following diagram should commute:

(P1, . . . ,Pn) (P1(− | E), . . . ,Pn(− | E))

F(P1, . . . ,Pn)
F(P1(− | E), . . . ,Pn(− | E))(−)
= F(P1, . . . ,Pn)(− | E)

update on E

pool using F pool using F

update on E

To drive the intuition, suppose you wish to determine whether a group is
responsible for some harm caused by a decision that they made collectively –
perhaps they’re the board of a corporation whose products caused injury and
they’re liable if their corporate credence that this would happen is above some
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threshold. To do this, you need to determine what the group’s credences were in
a range of relevant propositions, and you hope to ascribe those group credences,
which attached to the collective agent that is the group, rather than to any of the
individuals, by using a pooling strategy. Then it seems you’ll want that pooling
function to satisfy External Bayesianity. If it doesn’t, it’s possible that it will
ascribe different credences to the group depending on whether you update the
individuals on the group’s evidence and then pool the posteriors or pool the
priors and update them on the group’s evidence. And that sort of arbitrariness
might well undermine your claim that the group is liable based on the credence
you ascribe – perhaps they are if you use the group credences derived from
pooling then update, but not if you update first then pool. And even if both give
credences that render them liable, it’s plausible that the group is more liable,
and therefore deserving of a more severe rebuke, the higher their credence. So
the credence itself matters, not just whether it lies above some threshold.

3.7 Preserving Judgments of Independence
Our sixth criterion maintains that, after pooling, there should be no probabilis-
tic correlation established between propositions that all members of the group
judge beforehand to be probabilistically independent:

Probabilistic Independence Preservation. For all probability functions
P1, . . . ,Pn on A , if, for all i = 1, . . . ,n and X,Y in A such that P(Y ) > 0,
Pi(X | Y ) = Pi(X ), then

F(P1, . . . ,Pn)(X | Y ) = F(P1, . . . ,Pn)(X )

Probabilistic Independence Preservation, like Bayesian learning, shields
groups from being Dutch Booked in some form. As Henry Kyburg andMichael
Pittarelli (1996) illustrated, if Probabilistic Independence Preservation is vio-
lated, then there exists a book of bets that the group will find acceptable but
that guarantees they’ll lose money come what may.23 Whatever values each
individual holds, it’s reasonable to assume that all group members prefer not to
exchange bets on propositions in the agenda that result in such a loss. Indeed,
any group that takes Group Rationality as part of its ethos should be commit-
ted to Probabilistic Independence Preservation, for its violation by a chosen
pooling strategy strictly goes against it.

23 See also Elkin and Wheeler (2018) for a variation of the argument in the context of peer
disagreement. We give a detailed version of the argument in Section 6.
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3.8 No Regrets
Similar in spirit, our final criterion concerns an expected and unnecessary loss
from “throwing away money,” so to speak, by overpaying for bets or under-
selling them. Call the loss ex ante regret. Let each probability function Pi for
i = 1, . . . ,n induce a pair of regret functions, r−Pi

(·, ·) and r+Pi
(·, ·), that repre-

sent the ex ante regret of trading bets under Pi that pay one monetary unit if
X ∈ A is true and zero otherwise. Each function maps a price-proposition
pair (u,X ) ∈ [0,∞) × A , relative to Pi, to a real number, and we assume
throughout that they take the functional forms r−Pi

(u,X ) = max{u − Pi(X ),0}
and r+Pi

(v,X ) = max{Pi(X ) − v,0}.
For u ∈ [0,∞) and X ∈ A , r−Pi

(u,X ) is the ex ante regret of buying a bet on
X for a price u and r+Pi

(u,X ) is the ex ante regret of selling a bet on X for a price
u, relative to Pi. Considering the ex ante regrets with respect to trading bets for
all individuals i = 1, . . . ,n, pooling strategies should ensure the following:

No Regrets. For all probability functions P1, . . . ,Pn on A , for all proposi-
tions X in A , and for all individuals i = 1, . . . ,n,

• r−Pi
(F(P1, . . . ,Pn)−(X ),X ) = 0, and

• r+Pi
(F(P1, . . . ,Pn)+(X ),X ) = 0.

That’s to say all individuals i should have no ex ante regrets of trading bets at
the group’s maximum buying price F(P1, . . . ,Pn)−(X ) = minF(P1, . . . ,Pn)(X )
and minimum selling price F(P1, . . . ,Pn)+(X ) = maxF(P1, . . . ,Pn)(X ) for all
X ∈ A . Given that the most common pooling strategies return a single proba-
bility function, F(P1, . . . ,Pn)−(X ) = F(P1, . . . ,Pn)+(X ) = F(P1, . . . ,Pn)(X ).24
We’ll extend pooling strategies later on, where the poolingmechanism returns a
set of probability functions that need not be a singleton set, that is, the credences
may be imprecise.
From a practical standpoint, the No Regrets criterion should be quite intu-

itive, as no rational individual, in general, should be willing to pay a price above
an asset’s perceived value when buying it, nor should the individual be willing
to accept a price below the perceived value of the asset when selling it. In other
words, individuals should neither happily expect to overpay for an asset nor
undersell it. That just seems to be a bit of common sense. Although the con-
straint is quite strong, as it quantifies over all individuals, it is plausible when
the individuals are epistemic peers (Elkin & Wheeler, 2018) or if the group is
held liable for decisions made under the group’s credences since the groupmust

24 In other words, the most common pooling strategies yield fair prices such that the bettor is
indifferent to taking a bet for/against X ∈ A and abstaining (Vicig & Seidenfeld, 2012, 9).
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answer for any bad deals made upon violating it when at least one individual
signaled so much all along.
In the next section, we’ll attend to the pooling axioms provided here and

learn, unsurprisingly, that not all of them play nicely with one another. But
evaluating pooling strategies beyond mere impossibility results will be a goal
of ours in the coming pages, illuminating the context-dependency of some cri-
teria. This will be, in part, motivated by the earlier philosophical discussions.
With any luck, our unifying approach might inspire others to look beyond mere
technical difficulties and consider the instrumental value of pooling strategies
based on the epistemic and practical interests and needs of groups in different
circumstances.

4 Opinion Pooling Strategies
Now that we’ve laid out a handful of properties that we’d like our pooling
strategies to have, let’s meet some of the strategies themselves. We’ll first con-
sider two families: the linear pooling strategies, and the multiplicative pooling
strategies (of which the geometric pooling strategies are a subfamily). The lin-
ear pooling strategies are perhaps the ones that occur to us first when we try
to formulate a way to aggregate credences, and they boast a number of desir-
able features, many of which are unique to them. But there are features they
lack, and we look to the multiplicative rules to find ones that have those fea-
tures. After wrapping up our discussion of linear andmultiplicative pooling, the
approaches that focus on precise probabilities, we turn to methods that appeal
to imprecise probabilities. While the latter boast an even greater number of fea-
tures than the classical strategies, we’ll come to find that in the end, only one
gets us everything.

4.1 Linear Pooling
Earlier, we met epidemiologists Anya, Bon, and Carys who are, respectively,
20%, 60%, and 70% sure that polio will be completely eradicated by 2030. How
sure are they as a group? If they were to act as a group, perhaps by deciding how
much funding a government should plan to spend on care for polio patients in
the future, which credences should they use? If they were to be held responsible
as a group, perhaps for that funding planning decision, which credences should
we attribute to them? If we’re to summarize their views as a single credence to
give some third party some information about views within the group, which
should we use?
A natural answer to all of these questions is to say that we should take the

average of their credences; or, more precisely, their arithmetic mean. That is,
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we should say that, as a group, Anya, Bon, and Carys have credence 1
30.2 +

1
30.6 +

1
30.7 = 0.5 that polio will be eradicated by 2030.

Here is the pooling strategy in greater generality:

Straight Linear Pooling Suppose P1, . . . ,Pn are probabilistic credence
functions defined on the same agenda A . Then, for any X in A ,

LP(P1, . . . ,Pn)(X ) = 1
n
P1(X ) + · · · + 1

n
Pn(X )

That is, the straight linear pool’s credence in X is simply the average of the indi-
viduals’ credence in X. Notice that Straight Linear Pooling serves as a natural
candidate for pooling under the equal weight view and may be epistemically
motivated by such an account (Jehle & Fitelson, 2009).
But straight linear pooling is just one member of a larger family of strate-

gies. In straight linear pooling, the same weight is afforded to each individual’s
opinion. In the larger family, these weights can vary, which might be moti-
vated by permissivist views like the justificationist and total evidence views.
For instance, in the case of epidemiologists earlier, we might decide to give
less weight to Carys, because her work is not directly on polio itself, while
Anya’s and Bon’s is. So perhaps Anya receives weight 2/5, rather than 1/3, and
Bon receives the same, but Carys receives 1/5, rather than 1/3. Then the weighted
linear pool of their credences is 2

50.2 +
2
50.6 +

1
50.7 = 0.46.

So, to specify a specific pooling strategy in this family, we have to specify the
weight that each individual will receive. Aweight is a nonnegative real number,
and the weights for all the individuals must add up to 1. So, if P1, . . . ,Pn are the
probabilistic credence functions of the individuals in the group, then a sequence
of weights is a sequence Λ = (λ1, . . . , λn), where 0 ≤ λ1, . . . , λn ≤ 1 and
λ1 + · · ·+λn = 1. In the previous paragraph, the sequence of weights for Anya,
Bon, and Carys was (2/5, 2/5, 1/5). So here is the generalization of linear pooling,
tracing back at least to Stone (1961):

Linear Pooling Suppose P1, . . . ,Pn are probabilistic credence functions
defined on the same agenda A ; and suppose Λ = (λ1, . . . , λn) is a sequence
of weights. Then, for any X in A ,

LPΛ(P1, . . . ,Pn)(X ) = λ1P1(X ) + · · · + λnPn(X )

Note: If P1, . . . ,Pn are probabilistic credence functions, then LPΛ(P1, . . . ,Pn)
is a probabilistic credence function as well.
We say that LPΛ is dictatorial if one individual gets all the weight, that is,

if λi = 1 for some i and λj = 0 for all j , i. In that case, for any X in A ,

LPΛ(P1, . . . ,Pn)(X ) = Pi(X )
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Individual i is then a dictator for that group – what they say goes! Assuming
Non-Dictatorship, such a pooling strategy must be ruled out, but on the other
hand, the case of Harry from Section 2.1 provides a compelling instance where
we might relax the constraint and accept the latter strategy. But let’s set that
issue aside for now.
To evaluate the linear pooling strategies, let’s focus our attention on the

axioms from Section 3 that these pooling strategies satisfy, which they don’t,
and whether there are any combinations of these axioms that these pooling
strategies alone satisfy.
Each linear pooling strategy LPΛ satisfies the following axioms:

(1a) Local Unanimity Preservation
Why? The arithmetic mean of n copies of the same number is just that
number.

(1b) Global Unanimity Preservation
Why? This follows from Local Unanimity Preservation.

(2) Eventwise Independence
Why? The pooled credence in a proposition is always just the weighted
average of the individual credences in that proposition. In order to calcu-
late the linear pool’s credence in a proposition, you don’t need to know
the individuals’ credences in anything other than that proposition.

(3) Boundedness
Why? The weighted average of a sequence of numbers is always at least
as great as the smallest in the sequence and at most as great as the
largest.

Rather unsurprisingly, the only weighted linear pooling strategies that satisfy
the following are non-dictatorial ones:

(4) Non-Dictatorship
Why? The clue is in the name!

The only weighted linear pooling strategies that satisfy External Bayesianity
and Probabilistic Independence Preservation are dictatorial:

(5) External Bayesianity
Why? This follows from a theorem by Madansky (1964), which says that
the only way to ensure that a linear pooling strategy will commute with
Bayesian updating on evidence regardless of the individual credence func-
tions it is fed is to make it dictatorial, so that there is one individual whose
opinions always give the group’s opinions, no matter what they are, or
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what the other individuals think. To see that linear pooling violates Exter-
nal Bayesianity, it’s sufficient to give Madansky’s theorem for the case of
two individuals.25

Theorem 1 (Madansky, 1964). Suppose that

(a) P,Q are probabilistic credence functions defined on A ,
(b) Λ = (λ,1 − λ) is a sequence of weights,
(c) X and E are propositions in A ,
(d) P(E),Q(E) > 0,

Then, if

LPΛ(P,Q)(X|E) = LPΛ(P(− | E),Q(− | E))(X )

Then at least one of the following must be true:

(i) Λ is dictatorial. That is, λ = 0 or λ = 1.
(ii) P(X |E) = Q(X |E). That is, all individuals agree on how likely X is

given E.
(iii) P(E) = Q(E). That is, all individuals agree on how likely E is.

Given that it is easy to specify P,Q, along with X and E, such that (ii) and
(iii) don’t hold, it follows that, if linear pooling with weights Λ commutes
with conditionalization, then (i) must be true and Λ is dictatorial.

(6) Probabilistic Independence Preservation
Why? This follows from a theorem that is in the background in Laddaga
(1977) and Lehrer & Wagner (1983). It says that it is extremely rare for
linear pooling to preserve judgments of independence, and only dictato-
rial versions guarantee it. A probabilistic credence function P takes two
propositions X and Y to be independent iff P(X ∧ Y ) = P(X )P(Y ).26

Theorem 2 (Laddaga, 1977; Lehrer & Wagner, 1983). Suppose that

(a) P,Q are probabilistic credence functions defined on A ,
(b) Λ = (λ,1 − λ) is a sequence of weights,
(c) X and Y are propositions in A .

Then, if

(1) P and Q both take X and Y to be independent, and
(2) LPΛ(P,Q) takes X and Y to be independent.

25 We sketch the proof of this result in the Appendix.
26 We sketch the proof in the Appendix.
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Then at least one of the following must be true:

(i) Λ is dictatorial. That is, λ = 0 or λ = 1;
(ii) P(X ) = Q(X ). That is, the individuals agree on how likely X is.
(iii) P(Y ) = Q(Y ). That is, the individuals agree on how likely Y is.

Lastly, no linear pooling function satisfies

(7) No Regrets
Why? Suppose that Pi , Pj for some individuals i, j. Let F−(P1, . . . ,Pn)(X )
be the group’s maximum buying price for a bet on X that pays 1 mon-
etary unit if X is true and 0 otherwise, and F+(P1, . . . ,Pn)(X ) be the
group’s minimum selling price for the same bet. Following de Finetti
(1974), any probability function Q yields fair prices for bets on all
X ∈ A . That is, the maximum buying price for a bet on X is Q(X )
and likewise, the minimum selling price for the same bet is Q(X ). In
other words, Q(X ) is a two-sided price for a bet on and against X. Thus,
LPΛ−(P1, . . . ,Pn)(X ) = LPΛ+(P1, . . . ,Pn)(X ) = LPΛ(P1, . . . ,Pn)(X ) for
all X ∈ A . Suppose that Pi(X ) < LPΛ(P1, . . . ,Pn)(X ) < Pj(X ). Then,
r−Pi

(LPΛ(P1, . . . ,Pn)(X ),X ) > 0, thus violating No Regrets. (In this case,
we also have r+Pj

(LPΛ(P1, . . . ,Pn)(X ),X ) > 0.)

That completes the list of axioms. Let’s wrap up our discussion of them by
noting one of the central results in the area, which says that Local Unanimity
Preservation and Eventwise Independence together characterize the family of
weighted linear pooling strategies (Aczél & Wagner, 1980; McConway, 1981).
That is,

Theorem 3 (Aczél & Wagner 1980; McConway 1981). If F is a pooling
strategy and F satisfies Local Unanimity Preservation and Eventwise Inde-
pendence, then there is a sequence of weights Λ = (λ1, . . . , λn) such that, for
any probabilistic credence functions P1, . . . ,Pn,

F(P1, . . . ,Pn) = LPΛ(P1, . . . ,Pn)

Like all characterization results, this one, together with the list of axioms that
linear pooling strategies never satisfy, furnishes us with a number of impossi-
bility theorems as corollaries. For instance, there can be no pooling strategy that
satisfies Unanimity Preservation, Eventwise Independence, Non-Dictatorship,
and External Bayesianity. After all, any one that satisfies the first two axioms
is a linear pooling strategy, and the only such strategies that satisfy the fourth
axiom are dictatorial and so violate the third axiom.
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How concerning is such an impossibility theorem? That depends on how
plausible the axioms are. We’ll return to Probabilistic Independence Preser-
vation and No Regrets in due course, but let us briefly say why External
Bayesianity might not be so desirable.
Daniel and Fang are at a horse race. Each has an unconditional credence for

whether Sugar will win the race today, an unconditional credence for whether
she won yesterday’s race, and conditional credences for whether she will win
today given her placing in yesterday’s race. Daniel thinks it’s very likely she
won yesterday, while Fangs think it’s very unlikely. Each of them is equally
expert on the matter in hand, and so, before they learn about yesterday’s race,
they should both receive the same weight when we aggregate them to give the
group credences. But now they each pick up a newspaper and learn that Sugar
won yesterday’s race. They both update their credences accordingly. We now
ask what weights they should receive when we aggregate their new updated
credences to give the group’s new updated credences: should we expect them
to remain the same as before the evidence came in? A natural answer is that we
shouldn’t. We should expect Daniel to receive higher weight after the evidence
comes in, since he had a much higher credence in the proposition that was
learned as evidence – his track record, initially the same as Fang’s, is now
superior to theirs. If that’s right, External Bayesianity is not a feature we should
want our pooling strategies to have, for it demands that weights remain the same
before and after updating. What’s more, the following theorem due to Raiffa
(1968) shows that linear pooling actually agrees with our intuitive response to
the case of Daniel and Fang:27

Theorem 4 (Raiffa 1968). Suppose that

(a) P,Q are probabilistic credence functions defined on A ,
(b) Λ = (λ,1 − λ) and Λ′ = (λ′,1 − λ′) are sequences of weights,
(c) X and E are propositions in A ,
(d) P(E),Q(E) > 0,

And suppose that

LPΛ(P,Q)(X|E) = LPΛ′(P(−|E),Q(−|E))(X )

Then

λ′ =
λP(E)

λP(E) + (1 − λ)Q(E)

27 We give the proof in the Appendix.
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and

1 − λ′ = (1 − λ)Q(E)
λP(E) + (1 − λ)Q(E)

That is, if the group’s credence before the evidence arrives is a linear pool of
the individuals’ priors and the group’s credence after the evidence is a linear
pool of their posteriors, and if the latter is obtained from the former by condi-
tioning on the evidence, then the weight assigned to an individual afterwards
is proportional to the weight before and their credence in the evidence.
The upshot: perhaps the failure to satisfy External Bayesianity does not deal

a devastating blow against linear pooling. Violating Probabilistic Independence
Preservation and No Regrets, however, is less benign, which we’ll come to in
Section 6.

4.2 Geometric Pooling
Our next collection of pooling strategies belong to the family of multiplicative
pooling rules. Unlike the linear pooling strategy that was our concern in the
previous section, geometric pooling is defined in two stages.28 First, we pick a
partition of the logical space and pool the credences assigned to the elements
of that partition; secondly, we use those pooled credences to define the pooled
credences in more coarse-grained propositions.
Let’s use Anya, Bon, and Carys again. To specify the geometric pool of their

credences, we must specify a partition. So let’s take the two-cell partition that
contains (i) Eradicated, which says polio will be eradicated by 2030, and (ii)
Not Eradicated, which says it won’t. So the epidemiologists’ credences are as
follows:

Eradicated Not Eradicated
Anya 0.2 0.8
Bon 0.6 0.4

Carys 0.7 0.3

As we saw in the previous section, to obtain the linear pool of their credences in
Eradicated, we simply take their arithmetic mean, that is, 130.2+

1
30.6+

1
30.7 =

0.5, and to obtain the linear pool of their credences in Not Eradicated, we take
their arithmetic mean as well, that is 1

30.8+
1
30.4+

1
30.3 = 0.5. And notice that

the linear pool of a set of probabilistic credence functions is always guaranteed
to be probabilistic itself.

28 Geometric pooling is also known as logarithmic pooling (Genest et al., 1984).
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To obtain the geometric pool of their credences in Eradicated, we start by
taking their geometric mean, that is, 0.2 1

3 × 0.6 1
3 × 0.7 1

3 ≈ 0.438. But if we
did nothing else and also took the geometric pool of their credences in Not
Eradicated to be the geometric mean of their credences in that proposition, that
is, 0.8 1

3 × 0.4 1
3 × 0.3 1

3 ≈ 0.458, we’d end up with non-probabilistic credences,
since these two numbers don’t sum to 1. So instead of taking the geometric
pool of some credences to be their geometric mean, we instead take it to be
the normalized geometric mean. That is, we take the geometric means of the
credences in each cell of the partition, and thenmultiply each of these geometric
means by the same factor to ensure that the results sum to 1, as credences over
a partition are required to do. The pooled credence in any proposition that is a
disjunction of elements of the partition is then the sum of the pooled credences
in the disjuncts.

Straight Geometric Pooling Suppose:
(i) P1, . . . ,Pn are probabilistic credence functions defined on A , and
(ii) S ⊆ A is a partition.

Then, first: for each S in S ,

GPS (P1, . . . ,Pn)(S) =
n
√
P1(S) × · · · × Pn(S)∑

S′∈S
n
√
P1(S′) × · · · × Pn(S′)

=

∏n
i=1 Pi(S)

1
n∑

S′∈S
∏n

i=1 Pi(S′)
1
n

And, second: for any X in A that is a disjunction of propositions from S ,

GPS (P1, . . . ,Pn)(X ) =
∑
S∈S
S⊆X

GPS (P1, . . . ,Pn)(S)

One immediate consequence of this definition is that, if we are to pool the
credences of a group of individuals who share the agenda A , then there must
be a partitionS ⊆ A such that every proposition inA is a disjunction of some
propositions from this partition. We cannot pool the opinions of a group who
have credences only in The die will land on six, The die will land on an even
number, The die will land on a number less than 4. Of course, this is guaranteed
if we assume, as we have done throughout, thatA is the full algebra of subsets
of a finite set of possible worlds W .
Another consequence is that the geometric pool of some credences is sensi-

tive to the partition you choose. Suppose Rodrigo and Stefan have the following
credences:
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Heavy Rain Light Rain No Rain
Rodrigo (PR) 1/6 1/3 1/2
Stefan (PS) 1/3 1/6 1/2

Then start with the partition S = {Heavy Rain,Light Rain,No Rain}. Then

Heavy Rain Light Rain No Rain
GPS (PR,PS) 0.24 0.24 0.52

Next, the partition S ′ = {Rain,No Rain}. Then

Heavy Rain Light Rain No Rain
GPS ′(PR,PS) 0.25 0.25 0.5

In fact, just as there is a whole family of linear pooling strategies, each fixed
by a sequence of weights, so there is a whole family of geometric pooling
strategies:

Geometric Pooling Suppose:
(i) P1, . . . ,Pn are probabilistic credence functions defined on A ,
(ii) S ⊆ A is a partition, and
(iii) Λ = (λ1, . . . , λn) is a sequence of nonnegative real numbers that sum to 1.

Then, first: for each S in S ,

GPΛS (P1, . . . ,Pn)(S) =
P1(S)λ1 × · · · × Pn(S)λn∑

S′∈S P1(S′)λ1 × · · · × Pn(S′)λn

=

∏n
i=1 Pi(S)

λi∑
S′∈S

∏n
i=1 Pi(S′)λi

And, second: for any X in A that is a disjunction of propositions from S ,

GPΛS (P1, . . . ,Pn)(X ) =
∑
S∈S
S⊆X

GPΛS (P1, . . . ,Pn)(S)

4.3 Multiplicative Pooling
In fact, even the family of geometric pooling strategies is just one in a larger
group of families known as the weighted multiplicative pooling strategies.
Where geometric pooling uses sequences of weights that sum to 1, multipli-
cative pooling strategies use sequences that sum to any positive real number,
though the most common is n, where n is the number of individuals pooled. So
we have:

Multiplicative Pooling Suppose:
(i) P1, . . . ,Pn are probabilistic credence functions defined on A ,
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(ii) S ⊆ A is a partition, and
(iii) Λ = (λ1, . . . , λn) is a sequence of nonnegative real numbers.

Then, first: for each S in S ,

MPΛS (P1, . . . ,Pn)(S) =
P1(S)λ1 × · · · × Pn(S)λn∑

S′∈S P1(S′)λ1 × · · · × Pn(S′)λn

=

∏n
i=1 Pi(S)

λi∑
S′∈S

∏n
i=1 Pi(S′)λi

And, for any X in A that is a disjunction of propositions from S ,

MPΛS (P1, . . . ,Pn)(X ) =
∑
S∈S
S⊆X

GPS (P1, . . . ,Pn)(S)

As we did with linear pooling, let’s see which of our axioms geometric and
multiplicative pooling strategies satisfy.

(1a) Local Unanimity Preservation
Nomultiplicative pooling strategy satisfies this. Indeed, we saw an exam-
ple earlier, in which Rodrigo and Stefan both gave credence 0.5 to No
Rain, but when we pooled over the more fine-grained partition of Light
Rain, Heavy Rain, and No Rain, their pooled credence for No Rain was
0.52.

(1b) Global Unanimity Preservation
Any weighted geometric pooling strategy satisfies this, but no other
multiplicative strategy. The problem is that

MPΛS (P, . . . ,P)(S) = P(S)λ1+· · ·+λn∑
S′∈S P(S′)λ1+· · ·+λn

And, if λ1 + · · · + λn , 1, it is easy to find P such that this is not equal to
P(S) for all S in S .

(2) Eventwise Independence
None of the multiplicative pooling strategies satisfy this. While the
numerator in the definition of MPΛS (P1, . . . ,Pn)(S) depends only on the
individuals’ credences P1(S), . . . ,Pn(S) in S, the denominator that nor-
malizes this credence and ensures that the credences in the elements of
the partition sum to 1 depends on the individuals’ credences in the other
elements of the partition.

(3) Boundedness
Any pooling strategy that violates Local Unanimity Preservation will vio-
late Boundedness as well. And, in particular, Rodrigo and Stefan’s pooled
credence in No Rain provides an example again. The pooled credence of
0.52 does not lie between the maximum individual credence of 0.5 and
the minimum individual credence of 0.5.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009315203
Downloaded from https://www.cambridge.org/core. IP address: 18.223.206.19, on 31 Jan 2025 at 18:30:22, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009315203
https://www.cambridge.org/core


38 Decision Theory and Philosophy

(4) Non-Dictatorship
As in the case of linear pooling, anymultiplicative rule for which λi, λj > 0
for i , j is non-dictatorial.

(5) External Bayesianity
Perhaps the most notable feature of the multiplicative rules is that they do
satisfy External Bayesianity.

(6) Probabilistic Independence Preservation
No non-dictatorial multiplicative rule satisfies this.

(7) No Regrets
Like linear pooling, no multiplicative rule satisfies No Regrets. This
is made obvious by the multiplicative rules violating Boundedness.
Since GPΛS (P1, . . . ,Pn)(X ) and MPΛS (P1, . . . ,Pn)(X ) can lie outside of
[min(P1(X ), . . . ,Pn(X )),max(P1(X ), . . . ,Pn(X ))] for someX ∈ A , either
r−Pi

(GPΛS (P1, . . . ,Pn)(X ),X ) > 0 or r+Pi
(GPΛS (P1, . . . ,Pn)(X ),X ) > 0 and

r−Pi
(MPΛS (P1, . . . ,Pn)(X ),X ) > 0 or r+Pi

(MPΛS (P1, . . . ,Pn)(X ),X ) > 0 for
all i. If the group credences lie in [min(P1(X ), . . . ,Pn(X )),max(P1(X ), . . .,
Pn(X ))] for all X ∈ A , then the same holds for GPΛS and MPΛS as LPΛ.

Let’s quickly take stock before moving on to imprecise group credences.
What has been observed so far is that the linear and multiplicative pooling
strategies fail to meet all of the desirable criteria we’d like them to. Take either
the entire set of criteria or particular subsets, and we end up with some impos-
sibility results. Notably, the linear and multiplicative rules fare poorly with the
pragmatically oriented axioms, Probabilistic Independence Preservation and
No Regrets. Given the discussion on group responsibility in Section 2.3, failure
to satisfy the latter criteria might hint that it’s impossible to provide the sorts of
group credences required for an adequate account of collective responsibility.
In Section 6, we’ll better motivate the axioms and revisit this point.

4.4 Imprecise Probability Pooling
Up until now, we’ve considered “classical” pooling strategies that map opinion
profiles to a single probability function. Rather than mapping sets of credences
in propositions to precise, point-valued probabilities, we could pool credences
using one of themany tools of imprecise probability (IP), giving us sets of prob-
abilities instead, for example, [0.2, 0.7]. On such occasions, we’ll use pooling
functions taking the form of F : ∆nA → P(∆A ), where P(∆A ) is the power
set of ∆A , which yield sets of probability functions representing the credences
of groups.29

29 The credences of individuals can be modeled more generally by a (convex or non-convex) set
of probability function P ⊆ ∆A and pooled by a function F : P(∆A )n → P(∆A ) (see
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A group’s credences under this account can simply be summarized by a
collective lower probability

F−(P1, . . . ,Pn)(X ) = inf{P(X ) : P ∈ F } ∀X ∈ A ,

which induces a collective upper probability,

F+(P1, . . . ,Pn)(X ) = sup{P(X ) : P ∈ F } ∀X ∈ A ,

through a conjugacy relation:F+(P1, . . . ,Pn)(X ) = 1−F−(P1, . . . ,Pn)(¬X ).30
WhileF− andF+ may sufficiently summarize a group’s credences, they alone
don’t tell us the whole story. That’s why we suggest that IP pooling models
also include the set F (P1, . . . ,Pn).31 Throughout, we’ll focus on the proper-
ties of F . However, that doesn’t mean that collective lower probability isn’t
useful. We’ll show that it indeed has an important role. Following the likes
of Peter Walley (1991), we give F− a behavioral interpretation. Given a bet
on X that pays 1 monetary unit if X is true and 0 otherwise for all X ∈ A ,
F−(P1, . . . ,Pn)(X ) is said to be a group’s supremum acceptable buying price
for the bet, and F+(P1, . . . ,Pn)(X ) the group’s infimum acceptable selling
price. Thus, the pair F− and F+ have significance under the behavioral inter-
pretation and are central components in the elicitation of group credences in
uncertain propositions.
With one type of imprecise probability framework at hand that we might

exploit in forming group credences,32 here’s a natural candidate for pooling:

Convex Imprecise Probability Pooling Suppose that P1, . . . ,Pn are
probabilistic credence functions defined on the same agenda A .

C(P1, . . . ,Pn) = conv{Pi : i = 1, . . . ,n},

where ‘conv’ is the convex hull operator. Accordingly, C returns the convex
hull of credences for all propositions X ∈ A . (The range of the function is

Stewart & Quintana, 2018, section 7; Elkin, 2021). For the purposes of this Element, however,
we stick to classical profiles, that is, collections of precise probability functions for n ≥ 2 indi-
viduals, but we acknowledge that the framework could be generalized further to accommodate
individually imprecise agents.

30 See e.g., Walley (1991); Bradley (2016); Elkin & Wheeler (2018).
31 For instance, we could have two sets F (P1, . . . , Pn) and F ∗(P1, . . . , Pn) that yield the same

lower and upper credences for all propositions, yet the sets are structurally different (see Joyce,
2010).

32 The term imprecise probability serves as an umbrella for a broad class of models of uncertainty
in which sets of probability functions is merely one and among the least general. It cov-
ers Dempster-Shafer belief functions (Shafer, 1976), possibility measures (Dubois & Prade,
1988), lower previsions (Walley, 1991), and sets of desirable gambles (Couso & Moral, 2011),
among others.
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40 Decision Theory and Philosophy

consequently restricted to D ⊂ P(∆A ), which is the set of all convex sets of
probability functions.) The given aggregation rule was considered in the past
by Isaac Levi (1985) in forming a consensus between Bayes agents and has
been more recently studied systematically by Rush Stewart and Ignacio Ojea
Quintana (2018), whose approach we’ll often follow.33

Some, however, might be curious about the convexity property of the pooling
strategy. Convexity, so it seems, is as contentious as how to pool, at least as far
as the literature on imprecise probability is concerned. Some see it as a math-
ematical convenience (e.g., Walley, 1991), while others find it philosophically
motivated (e.g., Levi, 1974, 1985; Stewart & Quintana, 2018). Levi (1985),
for example, appears somewhat sympathetic to the linear pooling rule as a way
of forming a compromise. However, he insists that in case of a disagreement,
there is no uniquely rational (linear) compromise that individuals or groups are
warranted in adopting. Rather, the set of all possible linear pools must be con-
sidered credible, but due to conflict, they are held in suspense. In other words,
individuals and groups should suspend judgment on all possible credal (linear)
compromises. And this commits individuals and groups to adopting the convex
hull in their credal judgments provided that all credal distributions are permis-
sible for calculating expectations prior to resolving the conflict through further
inquiry.
Of course, not everyone is compelled by Levi’s view, but setting aside the

philosophical motivations and mathematical considerations, convexity seems
quite natural. However, there are practical reasons for why convexity should
be abandoned that we’ll come to in Section 6. These reasons will also show us
why we can’t rely solely on lower and upper probabilities. Alternatively, we’ll
introduce a pooling strategy shortly that relaxes the convexity constraint and
that foreshadows the pragmatic concerns convexity gives rise to. But first, let’s
attend to the given IP pooling strategy and evaluate it under extended versions
of our axioms.34

(1a) Local Unanimity Preservation
If all group members i = 1, . . . ,n have a shared probability function,
P, then C(P1, . . . ,Pn)(X ) = {P(X )} for all X ∈ A . Why? Because
conv{P} = {P}.

33 See also Peter Walley’s (1982) technical report and Teddy Seidenfeld, Joseph Kadane, and
Mark Schervish’s (1989) discussion of Levi’s proposal situated in decision and social choice
theory.

34 Restatements of some of the axioms that accommodate sets of probabilities are given in
Stewart & Quintana (2018) and Elkin (2021). The others are fairly straightforward, and any
subtleties that might not be immediately obvious are noted.
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Opinion Pooling 41

(1b) Global Unanimity Preservation
This follows from (1a).

(2) Eventwise Independence
Here’s a sketch. Suppose there’s a function G : A × [0,1]n→P([0,1]).
Let G (X,P1(X ), . . . ,Pn(X ))= conv{Pi(X ) : i= 1, . . . ,n} for all X ∈A . For
any P(X ) ∈ conv{Pi(X ) : i = 1, . . . ,n}, P(X ) is some convex
combination of Pi(X ) for i = 1, . . . ,n. Given the definition of C,
C(P1, . . . ,Pn)(X ) = conv{Pi(X ) : i = 1, . . . ,n} for all X ∈ A . So,
any P(X ) ∈ C(P1, . . . ,Pn)(X ) is some convex combination of Pi(X ) for
i = 1, . . . ,n. It follows that C(P1, . . . ,Pn)(X ) = G (X,P1(X ), . . . ,Pn(X )).
C(P1, . . . ,Pn)(X ) thus only depends on the Pi(X )’s for all X ∈ A and
probability functions P1, . . . ,Pn.35

(3) Boundedness
The IP pooling strategy trivially satisfies Boundedness. Since for all
X ∈ A and probability functions P1, . . . ,Pn, inf C(P1, . . . ,Pn)(X ) =
min(P1(X ), . . . ,Pn(X )) and supC(P1, . . . ,Pn)(X ) = max(P1(X ), . . .,
Pn(X )), C(P1, . . . ,Pn)(X ) ⊆ [min(P1(X ), . . . ,Pn(X )),max(P1(X ), . . .,
Pn(X ))].36

(4) Non-Dictatorship
A dictatorship is impossible under C given that necessarily, Pi ∈
C(P1, . . . ,Pn) for all i = 1, . . . ,n under all permutations of individuals.

(5) External Bayesianity

Proposition 5 (Stewart & Quintana, 2018). Suppose that F is a convex
IP pooling function, then F is externally Bayesian.

A remarkable feature of C is that it’s indeed externally Bayesian and it
satisfies Boundedness. Recall that linear pooling is the only other strategy
satisfying Boundedness, but unfortunately, it’s not externally Bayesian. In
the classical setup, we have an impossibility result, where no (classical)
pooling strategy jointly satisfies Boundedness and External Bayesianity.
Although we presented a particular case earlier where External Bayesian-
ity might not be so desirable in our discussion of linear pooling that
might mitigate the impossibility result, the property may be necessary
in establishing justified group credences (recall Lackey’s GEAA account
in Section 2.2). The extension to imprecise probabilities affords us an

35 For a more complete but slightly indirect derivation, see the proofs for Lemma 1 and
Proposition 2 in Stewart & Quintana (2018).

36 Note that for imprecise probabilities, Boundedness implies the inclusion rather than the
membership of pooled credences.
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42 Decision Theory and Philosophy

escape from the impossibility, allowing us to enjoy both properties. The
same goes for the combination of Eventwise Independence and External
Bayesianity, where only C satisfies both.

(6) Probabilistic Independence Preservation
Because C yields the set of all convex combinations of credences for
all propositions X ∈ A and probability functions P1, . . . ,Pn, C violates
Probabilistic Independence Preservation in case Pi , Pj for some i, j.
Why? Recall Theorem 2 (Laddaga, 1977; Lehrer & Wagner, 1983). A
corollary of the theorem is that non-extreme weighted averages of proba-
bilistic credences, for which at least two are not the same, rarely preserve
the probabilistic independence of some propositions X and Y that all ini-
tially judged to be probabilistically independent. Thus, there exists some
P ∈ C(P1, . . . ,Pn) such that for propositions X and Y that all i judged to
be independent, P(X|Y ) , P(X ).37

(7) No Regrets

Observation 6 (Elkin, 2021). Suppose that F is a convex IP pooling
function, then F satisfies No Regrets.

Elkin (2021) showed in a more general setting, where credences of indi-
viduals are modeled as (convex) sets of probability functions, P, that
pooling under a convex IP pooling functionF (P1, . . . ,Pn) = conv

(
∪i Pi

)
entails that no group member has ex ante regrets of buying a bet on a
proposition X for a price F−(P1, . . . ,Pn)(X ) nor selling the same bet
for a price F+(P1, . . . ,Pn)(X ) for all individuals i = 1, . . . ,n, opinion
profiles (P1, . . . ,Pn) in the domain, and propositions X ∈ A , that is,
r−Pi (F (P1, . . . ,Pn)−(X ),X ) = 0 and r+Pi(F (P1, . . . ,Pn)+(X ),X ) = 0. Since
we’re considering classical opinion profiles only, that is, collections of
precise probability functions, our convex IP pooling strategy is but a spe-
cial case – that is, in themore general setting, all Pi are singleton sets.With
C as a special case of the more general IP pooling strategy, it’s straightfor-
ward to show that no groupmember has ex ante regrets of trading at prices
C−(P1, . . . ,Pn)(X ) and C+(P1, . . . ,Pn)(X ) for all propositions X ∈ A .

The convex IP pooling strategy is almost perfect in terms of meeting the
desirable criteria we have laid out. Probabilistic Independence Preservation is

37 Although convex IP pooling doesn’t satisfy Probabilistic Independence Preservation, Stew-
art and Quintana (2018) show that it does satisfy a similar constraint, namely, Confirmational
Irrelevance Preservation (32).We point out that independence is amuch richer notion in impre-
cise probability theory than in classical probability. For an overview of the different concepts,
see Cozman (2012).
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Opinion Pooling 43

the only one standing in the way. But notice that none of the other strategies
we’ve considered meet the requirement either, unless if the pooling functions
are dictatorial (or in the trivial case of pooling a unanimous opinion profile).
Thus, failing to satisfy Probabilistic Independence Preservation might not be
all that concerning.
Indeed, Lehrer and Wagner (1983) contend that such a violation is rather

benign, as individuals (and groups) are unlikely to havemuch epistemic interest
in the newly established probabilistic dependencies. What Lehrer and Wagner
failed to recognize, however, is that such a violation has significant practical
implications that individuals and groups will indeed have a significant interest
in. We’ll come back to this point in Section 6. For now, we want to present an
easy fix for imprecise group credences through a weaker rule, although maybe
less intuitive:

Non-Convex Imprecise Probability Pooling Suppose that P1, . . . ,Pn are
probabilistic credence functions defined on the same agenda A .

K(P1, . . . ,Pn) = {Pi}ni=1.

The upshot of the weaker IP pooling strategy is that we get everything (we
leave it to the reader to verify that all the criteria are met). Besides the proper-
ties that K enjoys, it has been argued elsewhere that the probabilistic approach
as a revisionarymethod for individual beliefs yields a plausible response to peer
disagreement (Elkin & Wheeler, 2018); as a deference principle for policymak-
ers yields a cautious approach to reasoning in the face of scientific disagreement
under an epistemic version of the Precautionary Principle (Elkin, 2023); as a
non-Bayesian compromise between two Bayes agents with shared preferences
can meet the so-called weak Pareto criterion; that is, if the two agents strictly
prefer a to b, then the compromise position must also reflect the strict prefer-
ence (Seidenfeld et al., 1989).We’ll have more to say about the Pareto criterion
later in Section 6.
In addition to the advantages mentioned so far, one might also view K as

a middle ground between the equal weight and steadfast views regarding peer
disagreement. K encodes equal weight by visibly respecting each credence in
an equal manner through their representation in K for all propositions X ∈ A ,
which is maintained under all permutations of individuals. At the same time,
though, K gives group members a (weak) sense of steadfastness, as the group
does not jettison any member’s credences in favor of some difference splitting
compromise. A closer look at K showcases a reconciliation between two seem-
ingly opposing views. But notice that in whole, K expresses a sort of skepticism
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through its equal treatment of each Pi ∈ K, ultimately satisfying Feldman and
Levi’s call for suspended judgment in the face of conflict. In a similar way, C
realizes the same benefits, though, in whole, it leansmore conciliationist by rec-
ognizing and treating credibly every possible difference-splitting compromise
by all possible degrees.
Interestingly, what we can take away from Levi’s philosophical view of IP as

a way of combining credences is that it preserves positive intuitions one might
have toward linear pooling since C can be thought of as a mere robustifica-
tion of LPΛ. Under such a robustification, C allows us to model ambiguity with
respect to the “objectively” correct compromise. That is, ambiguity concern-
ing the objectively correct weighting distribution for individuals i = 1, . . . ,n.
Taken in a different way, C can be seen as encoding higher-order uncertainty
toward the objective linear pool, together with the principle of indifference.
The function C is thus open to interpretation. Whether one is lured one way or
the other is no matter for us. The point is that C offers flexibility in interpret-
ing group credences, all while preserving the intuition that the most feasible
compromises are linear pools.
Furthermore, the robustification of linear pooling can be taken in yet another

direction. Peter Walley (1991) suggested that IP is not only useful for capturing
beliefs and behavior from a more general subjective Bayesian perspective, but
it can also be instrumental in confirmatory endeavors in science as an essential
tool in robustness or sensitivity analysis. Extended to groups, C (and to some
extent K) provides a credible set of compromises for multiple experts. Pick any
P ∈ C as one’s prior. Collect some data D and update P on D. Now, update all
other possible compromises Q ∈ C. If the confirmatory strength of D is rela-
tively strong for all Q ∈ C, then the confirmatory strength of D is robust with
respect to all convex combinations of credences for multiple experts.38 In other
words, even if the weightings of expert opinions wildly differed from that of
the chosen P, D would still confer a relatively strong degree of confirmation.
Thus, C is not merely the semblance of indeterminacy in this context. Rather,
it is a vehicle for furnishing robustness and reassurance as a credible set of
compromises representing a group of experts. And the advantage of the Exter-
nal Bayesianity property C and K both possess is that we don’t get different
outcomes if the order of revisions is changed.
While C and K boast many advantages, both are too inclusive in some

instances, making them implausible. With respect to peer disagreement, recall

38 The confirmatory strength of evidence depends on the measure chosen. See Fitelson (1999) for
a survey of confirmation measures. But in practice, Bayesians tend to adopt the Bayes Factor
(Benjamin et al., 2018). A robust extension of the Bayes Factor is given by Ebner et al. (2019).
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Harry from the discussion of the justificationist view. Harry’s report that 2 + 2
does not equal 4 makes his testimony incredible. But in representing you and
Harry collectively, his probabilistic credence in the proposition ‘2 + 2 = 4’
that is zero (or close to zero) is automatically respected and equally weighed
from the group perspective given that it is necessarily in the convex closure
of Pme and PHarry and the non-convex set {Pme,PHarry}. Or suppose an expert
knows that the group is committed to pooling under C or K and that they hold
radically unsupported views on the matter. They then submit an extreme cre-
dence (close to 1 or 0) contra the overall sentiment of the expert community,
biasing the group credence severely in one direction and almost trivializing the
collective’s attitude, for example, [0.01,0.99].
What we might say in these kinds of cases is that Harry and the extrem-

ist expert ought to be taken less seriously and given little weight, if any at
all. Unfortunately for C and K, that’s not an option. Some proposals seem to
offer some insight into the matter (see, e.g., Nau, 2002), but the optimal solu-
tion for IP models is far from certain. And even if a feasible weighting system
is established for IP, it’s hard to say whether Harry and the extremist expert
should be discounted altogether, since by doing so, one must now worry about
committing to dictatorial IP pools.
To conclude this section, we sum up the axioms that aremet by the introduced

pooling strategies on the next page in a final report card featured in Table 1.

5 Promoting Group Epistemic Rationality
In the last section, we asked how well the group credences delivered by the
various pooling strategies live up to the demands laid out in Section 3. In
this section, we move away from the axiomatic approach and look to evalu-
ate pooling strategies by how well they secure two epistemic ends: accuracy
and justification. One may view this section as an attempt at relating pool-
ing and justified group belief (a question that came about in Section 2.2) and
how groupsmight support a commitment to promoting Group Rationality when
choosing a pooling strategy.

5.1 Getting to the Truth: How to Measure (In)Accuracy?
We begin with accuracy. The idea is that, while a credence in a proposition
can’t be true or false in the way that a belief in a proposition can be, it can
nonetheless be more or less accurate. For instance, if you are 60% confident
it will rain tomorrow, while I’m 5% confident, then we’d likely say that your
credence turns out to be more accurate than mine if it does indeed rain, while
mine turns out to bemore accurate if it doesn’t.We begin this section bymaking
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clear how we should measure the accuracy of a whole set of credences, rather
than just a single one. To do this, we follow an approach often taken in the area
of formal epistemology that has come to be known as accuracy-first epistemol-
ogy.39 There, we say that the accuracy of a credence function at a world is its
proximity to the ideal credence function at that world; and its inaccuracy is its
distance from the ideal. So, to specify a measure of accuracy, we must specify
the ideal credence function for a given world, and a measure of the distance
from one credence function to another. All measures of the inaccuracy of cre-
dences agree on which credence function is ideal at a world; they differ in the
way they measure distance.
So let’s start by identifying the ideal credence function. Suppose A is the

algebra over a finite set of possible worlds W , as introduced in Section 3. We
then assume that, for w in W , the credence function defined over A that best
represents w, and hence is most accurate and therefore is ideal, is the one that
assigns credence 1 to all propositions in A that are true at w, and credence 0
to all that are false at w. We write Vw for this credence function; so Vw(X ) = 1
if X is true at w and Vw(X ) = 0 if X is false.
Next, the measure of distance from one credence function to another. We

needn’t go into themathematical details, but accuracy-first epistemologists tend
to assume that we measure these distances using functions known as additive
and continuous Bregman divergences, and they have a number of arguments for
doing so.40 These are mathematical functions D that take two credence func-
tions P and Q defined over the same agenda A and return a measure D(P,Q)
of the distance from P to Q. Given such a functionD, we define an inaccuracy
measure I as follows: the inaccuracy I(P,w) of credence function P at world
w is D(Vw,P).
Here are the two most popular Bregman divergences as illustrations:

• Squared Euclidean distance

SED(P,Q) =
∑
X∈A

|P(A) − Q(A)|2

• Generalized Kullback-Leibler divergence

GKL(P,Q) =
∑
X∈A

P(X ) log P(X )
Q(X ) − P(X ) + Q(X )

39 For some representative papers, see Joyce (1998); Greaves & Wallace (2006); Joyce (2009);
Leitgeb & Pettigrew (2010a); Leitgeb & Pettigrew (2010b); Pettigrew (2016). See also the
Element in this series by Jason Konek and Ben Levinstein.

40 We’ll drop the “additive and continuous” in what follows, since we won’t be discussing any
other sort of Bregman divergence. For arguments in favour of this way of measuring distance,
see Joyce (2009); D’Agostino & Sinigaglia (2010); Pettigrew (2016).
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And here are the measures of the inaccuracy of a credence function P at a
possible world w that arise from them:

• Brier score B(P,w) = SED(Vw,P)
• Additive log score L(P,w) = GKL(Vw,P)

To give a quick illustration, suppose P assigns credence 0.4 to X and 0.6 to its
negation. Then its Brier score in the world w in which X is true is:

|Vw(X ) − P(X )|2 + |Vw(¬X ) − P(¬X )|2

= |1 − 0.4|2 + |0 − 0.6|2 = 0.72

One of the attractions of using additive and continuous Bregman divergences
for this purpose is that the inaccuracy measures they generate are additive and
continuous strictly proper inaccuracy measures. We give more details about
this class of inaccuracy measures in the Appendix (Section 8), but here we
simply note two crucial results we can obtain if we assume that we measure
inaccuracy using one of them. These results provide a sort of proof-of-concept
for accuracy-first epistemology.
First: Suppose C is a credence function on A that does not satisfy the prob-

ability axioms. Then there is an alternative credence function P on A that
does satisfy those axioms and which is guaranteed to be more accurate than C.
That is,

I(P,w) < I(C,w)

for all worlds in W . This is due variously to Savage (1971); Joyce (1998);
Predd et al. (2009).
Second: Suppose P is a prior probability function onA and suppose E ⊆ A

is a partition that contains the possible pieces of evidence you might receive.
Suppose R is an updating rule that takes each possible piece of evidence E
in E , and returns a posterior probability function RE, which it recommends
as the correct response to learning E. Let the inaccuracy of R at world w be
the inaccuracy of the posterior it recommends when you learn the piece of
evidence that is true at w. Then R minimizes expected inaccuracy from the
point of view of the prior P if R recommends updating by Bayes’ Rule: that is,
RE(X ) = P(X | E)whenever P(E) > 0. This result is due to Greaves & Wallace
(2006).
In what follows, we will always assume that the inaccuracy of a credence

function at a world is given by an additive, continuous, and strictly proper
measure.
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5.1.1 The Accuracy of Pooling Strategies I

With this account of the accuracy of a credence function, we can now ask
how well a pooling strategy performs by this standard. How accurate are the
credences to which it gives rise?41

The community of Shakespeare scholars is huge. Nonetheless, let’s assume
that we have asked each of them how likely they think it is that various his-
torical individuals – Christopher Marlowe, Francis Bacon, Edward de Vere,
Shakespeare himself – were the author of the works traditionally attributed to
WilliamShakespeare of Stratford-upon-Avon. Nowwewish to summarize their
views, perhaps because we are writing an article on the state of the debate. We
pick a pooling strategy and apply it to the individual credences. It gives us a
credence function we might ascribe to the scholarly community. Now suppose
that credence function has the following feature: there’s another one that we
might have ascribed to the scholarly community but didn’t, and every member
of the scholarly community thinks that alternative one would be more accu-
rate; that is, from the point of view of each individual’s own personal credence
function, that one is better than the one we actually ascribed, in expectation. In
that sort of situation, it seems that we’ve ascribed the wrong credences to the
group. So we should demand that this situation doesn’t occur. Here is a formal
statement of the property we’d like our pooling strategy F to have:

Accuracy Consensus. Suppose I is an additive and continuous strictly
proper inaccuracy measure. For any sequence of individual credence func-
tions P1, . . . ,Pn, defined on A , if Q = F(P1, . . . ,Pn), then there should be
no group credence function Q⋆ defined on A such that, for all Pi,

EPi (I(Q⋆)) =
∑
w∈W

Pi(w)I(Q⋆,w) <
∑
w∈W

Pi(w)I(Q,w) = EPi (I(Q))

Now, it turns out that this is sufficient to narrow the field of pooling strategies
to just the linear ones. That is, Accuracy Consensus characterizes the linear
pooling strategies.42

41 This question also holds a central place in a broader field of study called the wisdom of crowds.
Assessing the accuracy of judgments in collective settings (de Condorcet, 1785) and quanti-
ties more generally (Galton, 1907) has a long tradition. When it comes to binary outcomes,
however, the linear pool tends to provide neutral judgments closer to 0.5 when opinions are
diverse. More recently, some have suggested that in improving on the accuracy, pooled cre-
dences should be extremized, that is, pushed closer to 0 or 1, undermathematical transformation
(Ranjan & Gneiting, 2010; Baron et al., 2014; Satopää et al., 2014). This is a fascinating litera-
ture, andwe encourage the reader to investigate it further, but unfortunately, a proper discussion
can’t be given in the limited space afforded here.

42 We give the proof in the Appendix.
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Theorem 7 (Pettigrew, 2019b). Suppose I is an additive and continuous
strictly proper inaccuracy measure. Then:

(i) If there is no sequence of weights Λ = (λ1, . . . , λn) such that Q = LPΛ

(P1, . . . ,Pn), then there is an alternative credence function Q⋆ such that,
for each Pi,

EPi(I(Q⋆)) =
∑
w∈W

Pi(w)I(Q⋆,w) <
∑
w∈W

Pi(w)I(Q,w) = EPi (I(Q))

(ii) If there is a sequence of weights Λ = (λ1, . . . , λn) such that Q = LPΛ

(P1, . . . ,Pn), then there is no alternative credence function Q⋆ such that,
for each Pi,

EPi(I(Q⋆)) =
∑
w∈W

Pi(w)I(Q⋆,w) <
∑
w∈W

Pi(w)I(Q,w) = EPi (I(Q))

We want our pooling strategy to satisfy Accuracy Consensus in cases in
which it is important that all the individuals in the group can get behind the
group credence we have ascribed to them collectively. So this is not so impor-
tant when we’re asking how an individual should respond in a case of peer
disagreement – in those cases, it really doesn’t matter whether the peers with
which you disagree can get behind your new credences, since they’re your
credences alone and not theirs. But it is important if you are representing the
group’s opinions to others, such as in the dispute over the authorship ofHamlet,
or if you are using the group’s credence to assess whether the group is liable for
some harm their collective action has caused, such as in the corporate liability
case we considered earlier.
In these cases, if accuracy is the goal of our precise credences, we have an

argument in favor of linear pooling. But what if accuracy is also the goal of
our imprecise credences? Does this favor a particular way of pooling these
opinions? This is an open question. So far, there is no fully satisfactory the-
ory of credal accuracy for imprecise credences. The major stumbling block
is a suite of impossibility results that show there can be no way to measure
the accuracy of imprecise credences that has a property analogous to the strict
propriety of measures like the Brier score or the logarithmic scoring rule for
their precise counterparts (Seidenfeld et al., 2012; Mayo-Wilson & Wheeler,
2016; Schoenfield, 2017). For any putative measure, there must be imprecise
credences that think of themselves as worse than some alternative. Nonethe-
less, hope is not lost. Jason Konek (2019) has proposed a strategy for solving
the problem, though the technical details remain to be worked out. It might be
hoped that, once this is done, we can formulate an argument for a particular
way of pooling imprecise credences.
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For the moment, however, we might point out some interesting implications
of Theorem 7 relating to imprecise credences. It says that, for some proba-
bilistic credence functions P1, . . . Pn, the convex hull, that is, conv{Pi : i =
1, . . . ,n}, is the set of all and only those credence functions that are not dom-
inated in expected accuracy relative to P1, . . . ,Pn; that is, all and only those
credence functions for which there is no alternative preferred in expectation by
all members of the group. Interestingly, this is exactly the set that the IP pool-
ing function C returns when it’s asked to pool P1, . . . ,Pn. Might this furnish
us with an accuracy-based argument for that pooling function? It certainly sug-
gests an argument against any IP pooling function that returns a set that includes
probability functions that conv{Pi : i = 1, . . . ,n} does not include: those func-
tions will be dominated in expectation. It’s less obvious that it can provide an
argument against an IP pooling function that returns a set that does not include
members that conv{Pi : i = 1, . . . ,n} does include. Accuracy considerations
are good at ruling out credence functions that lie outside the convex hull, but
they don’t say anything particularly positive about those that lie inside, beyond
saying that they aren’t ruled out.

5.1.2 The Accuracy of Pooling Strategies II

Let’s put aside imprecise credences for now. Here’s another accuracy-based
consideration in favor of linear pooling. So far, we’ve been considering only
how to aggregate individuals’ credences. But, for many of the pooling strate-
gies available, we can use them to aggregate any attitude that is represented
numerically. For instance, we might use them to aggregate estimates of numer-
ical quantities, such as estimates of the price of fuel in 2024, or the average
height of a 41-year-old French person in 1872, or the first year in the future in
which humans no longer exist. And if we consider these quantities and these
estimates, we might measure their accuracy using the squared Euclidean dis-
tance between the estimate and the true value, just as we measured the accuracy
of a credence earlier using the squared Euclidean distance between it and the
credence that best represents the world.
Lila, Mona, and Nomy are at their local county fair, where there’s a compe-

tition to estimate the weight of the prize marrow in kilograms. Lila says 100,
Mona says 94, and Nomy say 93. In fact, it’s 91. Francis, who is running the
competition, notices that the average inaccuracy of the three estimates is greater
than the inaccuracy of the straight linear pool of those estimates. That is,

1
3
(100 − 91)2 + 1

3
(94 − 91)2 + 1

3
(93 − 91)2 >

(
100 + 94 + 93

3
− 91

)2
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After a quick calculation, he concludes that this is no coincidence. However
many quantities they were estimating, whatever the true values had been, and
whatever estimates they gave, providing they were not all the same, it would
have been the case that, had you to choose between using the straight linear
pool of their estimates or picking one of them at random and using that person’s
estimates, the linear pool would have been more accurate in expectation. This
is a corollary of a result that is sometimes known as the Diversity Prediction
Theorem (Galton, 1907; Page, 2007). Here’s the theorem:43

Theorem 8 (Page, 2007). Suppose (X1, . . . ,Xm) is a sequence of quantities,
whose true values are given by the sequence T = (t1, . . . , tm). For each
individual i, Ai = (ai1, . . . ,aim) gives their estimates of the quantities. Then

SED
(
T,
1
n

n∑
i=1

Ai

)
=
1
n

n∑
i=1

SED(T,Ai) −
1
n

n∑
i=1

SED
(
Ai,

1
n

n∑
i=1

Ai

)
And here’s the corollary:

Corollary 9. Suppose (X1, . . . ,Xm) is a sequence of quantities, whose true
values are given by the sequence T = (t1, . . . , tm). For each individual i,
Ai = (ai1, . . . ,aim) gives their estimates of the quantities. Then, if Ai , Aj for
some i, j, then

SED
(
T,
1
n

n∑
i=1

Ai

)
<
1
n

n∑
i=1

SED(T,Ai)

Perhaps you find this an attractive feature of linear pooling. Do any other
strategies boast this property too? As the following theorem shows, they do
not.44

Theorem 10. Suppose X1, . . . ,Xm is a sequence of quantities. For each indi-
vidual i, Ai = (ai1, . . . ,aim) gives their estimates of the quantities. Now suppose
that A ,

∑n
i=1

1
nAi. Then there are possible true values T = (t1, . . . , tm) of the

quantities such that

SED (T,A) > 1
n

n∑
i=1

SED(T,Ai)

This accuracy-based argument for linear pooling becomes relevant when you
are pooling the credences of a group of individuals in order to set your own

43 We give the proof in the Appendix.
44 We give the proof in the Appendix.
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credences, and youwish to do so in away that is as accurate as possible. Perhaps
you work in local government and you’re charged with forming an opinion on
the consequences of a proposed housing project, a topic about which you have
no expertise whatsoever. You call up a variety of experts and ask their opinions.
They all have different credences in the relevant propositions – perhaps not
wildly different, but certainly not exactly the same. How should you set your
credences? You could pick one of the experts at random and defer to them;
or you could pool the individuals’ credences and defer to that. Straight linear
pooling guarantees that the second option is more accurate in expectation; and
it is the only pooling operator that does. This might tell in favor of using linear
pooling.
Interestingly, in just the sort of case where the Diversity Prediction Theorem

seems to tell in favor of linear pooling, there is a result that tells against it.
In these situations, it seems that you would demand the following: were you
to learn the opinion of only one expert, you should just defer to that; were
you to learn the opinion of two experts, you should defer to the pool of their
opinions. But there’s something else we should want as well. We’ve assumed
that you yourself don’t have any opinions about the topic in question – that’s
why you’re asking the experts! So you presumably don’t have any credences
about what the experts will say either, nor what your conditional credences are
on the topic given what the experts say. Nonetheless, you should at least want
it to be possible to fill in those credences, both conditional and unconditional,
in such a way that your deference to the experts individually and to the pool
of their opinions would be the result of updating using Bayes’ Rule on what
you’ve learned about their opinions. And you should want that to be possible
even if you think the experts might disagree – indeed, you should want it to
be possible especially in those cases! More formally, here’s the condition you
want, where E1 is the random variable that gives the credence of the first expert
in proposition X, E2 is the random variable that gives the credence of the second
expert inX, and we say that you defer toEi if, upon learning only the probability
that Ei assigns to X, you’d set your credence in X to match it.

Deference Compatibility. There is a probability function P such that
(i) P(E1 = E2) < 1. That is, it thinks it’s possible that E1 and E2 differ in their

opinion about X.
(ii) P(X | E1 = p) = p and P(X | E2 = q) = q. That is, P defers to each of the two

experts individually.
(iii) P(X | E1 = p,E2 = q) = F(p,q). That is, P defers to the pool of the two

experts.

A number of researchers have noticed that linear pooling doesn’t satisfy
Deference Compatibility (Dawid et al., 1995; Bradley, 2018; Gallow, 2018;
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Dawid & Mortera, 2020).45 And, more recently, Snow Zhang has shown that a
large range of other pooling functions doesn’t do it either (Zhang, ms).
So our local government official, tasked with forming their own opinion on

the basis of the opinions of the experts they’ve consulted, faces something of
a dilemma. Linear pooling gives him the benefits of the Diversity Prediction
Theorem, but falls foul of Deference Compatibility.

5.1.3 The Principle of Coherent Minimal Mutilation

So far, we’ve been using squared Euclidean distance and the other Bregman
divergences tomeasure the distance from the true values of a series of quantities
to a series of estimates of those quantities, or from the most accurate credences
in a series of propositions to a series of other credences in those propositions.
But there is another use to which we might put them. This is inspired by the
work of Konieczny and Pino Pérez (1998, 1999) on the topic of merging oper-
ators, which take different sources of information that might conflict with one
another and try to extract a single coherent source.46

Oskar, Prince, and Quentin are the senior executives of a corporation that is
being sued for some misdemeanor. At the heart of the case is the question of
whether the company believed that their actions would cause the harms they
did in fact cause. We know the credences of each of the executives, but we need
to identify credences for the executive team itself. It’s natural to think that, in
order to do that, we need to identify credences to which the three executives,
and more importantly their lawyer, could not object.
Here’s one sort of grounds on which they might object: they might say that

the credences assigned to the executive team, or the corporation more broadly,
lie further from their individual credences than is necessary. Of course they
recognize that, since the three of them have different credences, whatever is
ascribed to the group will divergence from the opinions of at least two of them.
But they might reasonably demand that the group credences diverge as little
as is necessary from their own. Here’s one way of making this precise: first,
pick a measure of the distance between credence functions; second, say that
a group’s credence function is the credence function such that the sum of the
distances from it to each of the individuals’ credence functions is minimal.
Here’s a formal version – it has a distance measure D as a parameter, so that
there are different versions depending on how you measure that distance.

45 We give the proof in the Appendix.
46 For other work in this tradition, see Osherson & Vardi (2006); Pigozzi (2006); Predd et al.

(2008).
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Principle of Coherent Minimal MutilationD. If P1, . . . ,Pn are probability
functions on A , then

CMMD(P1, . . . ,Pn) = min
P∈∆A

n∑
i=1
D(P,Pi)

where ∆A is the set of probability functions over A .

Osherson & Vardi (2006) and Predd et al. (2008) call this the Coherent Approx-
imation Principle. It turns out that, if we measure the distance using the squared
Euclidean distance measure, this principle characterizes the linear pooling
strategy.

Theorem 11 (Osherson & Vardi, 2006). If P1, . . . ,Pn are probability functions
on A , then

LP(P1, . . . ,Pn) = CMMSED(P1, . . . ,Pn) = min
P∈∆A

n∑
i=1

SED(P,Pi)

However, as mentioned earlier, squared Euclidean distance is just one of
many legitimate ways to measure the distance from one credence function
to another. Another one is the generalized Kullback-Leibler function. And if
we apply the Principle of Coherent Minimal Mutilation with that, we obtain
geometric pooling (Pettigrew, 2019a).

Theorem 12 (Pettigrew, 2019a). If P1, . . . ,Pn are probability functions defined
on A , then

GPS (P1, . . . ,Pn) = CMMGKL(P1, . . . ,Pn) = min
P∈∆A

n∑
i=1

GKL(P,Pi)

When should we pool using the Principle of Minimal Mutilation? Perhaps in
the same cases in which we should abide by Accuracy Consensus, that is, when
it is important that the individuals in the group can get behind the group opinion
that we ascribe to them. There is a contractualist flavor to both approaches.
The idea is that it is legitimate to ascribe an attitude to a group if the members
do not have reason to complain about the ascription. They would have reason
to complain about the ascription if there were an alternative one that each of
them expects to be more accurate; and they would have reason to complain if
there were an alternative whose total distance from the individual opinions is
less.
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5.2 Revisiting Justified Group Belief
Often, we would like our pooling functions to preserve whatever justification
the individual members of a group have for assigning the credences they do, as
suggested in Section 2. So, if each individual in a group is justified in assigning
the credences she does, you might hope that the credences you assign to the
group on the basis of your pooling function are also justified. What might we
mean by this, and how might we hope to achieve it? Here’s one condition that
captures some of what we might want and that seemingly aligns with Lackey’s
GEAA view discussed in Section 2.2: If each member of the group begins with
the same prior credences and then updates those on their own private evidence,
then pooling the individuals’ posterior credences should get you to the same
probability function as updating the shared prior probability function on the
conjunction of the individuals’ evidence. After all, if the shared prior is the
unique justified prior probability function, then posterior credences are justified
just in case they are obtained from that prior by updating on the available evi-
dence. So the individuals are justified just in case their credences are the shared
priors updated on their private evidence, and the group is justified just in case
its credences are the shared priors updated on the group’s evidence, which is
the conjunction of the private evidence of its members. Here’s this requirement
more formally:

Evidence Pooling. For all probability functions P1, . . . ,Pn on A and all
propositionsE1, . . . ,En inA , if each individual i assigns positive probability
to Ei, so that P1(E1), . . . ,Pn(En) > 0, then, for all propositions X in A ,

F(P1(− | E1), . . . ,Pn(− | En))(X ) = F(P1, . . . ,Pn)(X | E1 ∧ . . . ∧ En)

Notice that this differs from External Bayesianity by allowing that different
individuals can receive different evidence. External Bayesianity is therefore a
special case.
Now it turns out that two of the pooling functions we’ve met so far boast

this property: if we use any weighted geometric pooling or weighted multi-
plicative pooling operator over the most fine-grained partition – that is, the
partition given by the possible worlds – then they satisfy Evidence Pooling
(Baccelli & Stewart, 2023; Weisberg & Pettigrew, 2023).47

However, it’s not clear how useful such a pooling function is in this con-
text.48 After all, suppose we wish to use it to extract and pool the evidence

47 We give the proof in the Appendix.
48 The discussion that follows in the remainder of this section borrows from Winkler (1968);

Morris (1983); Weisberg & Pettigrew (2023).
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from the individuals in the group. Then, we have to collect, for each individual,
the credences they assign to every element in the most fine-grained partition,
namely, the one given by the possible worlds. And if we must do that, it would
have been easier just to ask each individual for their private evidence, and then
update the shared prior on that. The pooling function is overkill.
This raises an interesting question. In many cases within science, we’re inter-

ested in a sequence of hypotheses, which form a partition, while the evidence
any given scientist might gather forms a different partition, and neither of these
partitions is a fine- or coarse-graining of the other. Often, in such situations,
each hypothesis assigns a chance to each of the different possible pieces of evi-
dence, and this allows us to use Bayes’ Theorem (together with the Principal
Principle) to update our priors to given our posteriors when we learn a particu-
lar piece of evidence.49 In physics, the hypotheses might be different theories
of the behavior of subatomic particles and the different possible pieces of evi-
dence might be different outcomes of an experiment we’re about to run; in
climate science, the hypotheses might be different versions of a single model
that are obtained by specifying different values for a particular parameter, such
as climate sensitivity, and the evidence might be readings transmitted from a
radiosonde.
If H1, . . . ,Hk is a partition of hypotheses, and E is a piece of evidence, and

Hi says that the chance of E is Ci(E), then Bayes’ Theorem (together with the
Principal Principle) says:

P(Hi |E) =
P(Hi)P(E|Hi)∑k
j=1 P(Hj)P(E|Hj)

=
P(Hi)Ci(E)∑k
j=1 P(Hj)Cj(E)

For instance, suppose I am holding a coin, and each hypothesis Hi posits a
different bias qi for the coin. The coin is then tossed N times and lands heads
M times. Hypothesis Hi assigns probability qMi (1 − qi)N−M to this evidence. So
the posterior credence upon learning it is

P(Hi |E) =
P(Hi)qMi (1 − qi)N−M∑k
j=1 P(Hj)qMj (1 − qj)N−M

Now suppose Taj has prior P1, while Ursula has P2. They then witness different
sequences of coin tosses. Taj witnesses N1 tosses with M1 heads among them;
we’ll call this evidence E1. Ursula witnesses N2 tosses with M2 heads among

49 The Principal Principle is a constraint on your credences. It says that your credence in a prop-
osition, conditional on the objective chance of that proposition being r, should be r. That is,
P(X | chance of X is r) = r.
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them; we’ll call this E2. And now suppose we apply geometric pooling to their
posteriors over the partition H1, . . . ,Hn, which we’ll call H :50

GPH (P1(−|M1 out of N1),P2(−|M2 out of N2))(Hi)

= K
(
P1(Hi)qM1

i (1 − qi)N1−M1
) 1
2
(
P2(Hi)qM2

i (1 − qi)N2−M2
) 1
2

= GPH (P1,P2)(Hi |1/2(M1 +M2) out of 1/2(N1 + N2))

That is, aggregating the posteriors of our individuals using geometric pooling
gives the same result we’d get if we were to aggregate their priors and then
update not on their total evidence but their total evidence with the sample size
halved. If Taj saw 20 heads out 100 tosses and Ursula saw 80 out of 200, geo-
metrically pooling their posteriors would give the same result as pooling their
priors and updating them on seeing 50 heads out of 150, rather than 100 heads
out of 300. And of course, since geometric pooling satisfies Unanimity Pres-
ervation, if Taj and Ursula have the same prior, the geometric pool of their
posteriors will be that shared prior updated on their evidence with the sample
size halved.
We can avoid the problem of halving the sample size by moving from

geometric pooling to multiplicative pooling.

MPH (P1(−|M1 out of N1),P2(−|M2 out of N2))(Hi)
= K

(
P1(Hi)qM1

i (1 − qi)N1−M1
) (

P2(Hi)qM2
i (1 − qi)N2−M2

)
= MPH (P1,P2)(Hi |(M1 +M2) out of (N1 + N2))

The problem is that multiplicative pooling doesn’t satisfy Unanimity Preserva-
tion. So, even if Taj and Ursula share the same prior, the multiplicative pool
of their posteriors will not be their shared prior updated on their total evidence
with the full sample size.
Finally, notice that this fact about multiplicative pooling is not peculiar to

cases of coin tosses and hypotheses that specify Bernoulli distributions. Sup-
pose that each hypothesis Hi specifies a chance function Ci, and suppose that
possible pieces of evidenceE andF are probabilistically independent according
to each Ci – that is, Ci(E & F) = Ci(E)Ci(F). Then

MPH (P(−|E),Q(−|F)(Hi)
= K (P(Hi)Ci(E)) (Q(Hi)Ci(F))
= KP(Hi)Q(Hi)Ci(E & F)
= MPH (P,Q)(Hi |E & F)

50 In what follows, K is a normalizing constant.
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So, in sum, multiplicative pooling is the best pooling operator we have met if
we hope to assign group credences that inherit the justification of the individual
credences they pool.

6 Promoting Group Practical Rationality
As individuals and as groups, credences play two roles in our lives. They record
how we represent the world to be and they guide our actions. This is why we
said Group Rationality in Section 2.2 should be extended to include practical
goals of groups also. In the previous section, we asked which pooling strategies
give us group credences that are instrumental in meeting some fundamental
epistemic aims concerning accuracy and justification. In this section, we ask
which furnish us with group credences that serve as good guides to action and
further promote Group Rationality. Specifically, we want a pooling strategy to
give us group credences that are the most effective means to achieving practical
goals, thereby making good on the commitment to the ideal ethos, extended to
practical rationality. We’ll see that some pooling strategies fail to live up to the
standard through induced consequences that are contrary to any rational group’s
practical interests, leaving groups liable for the group credences formed under
such strategies.51

But before we get to those issues, let’s first jog the reader’s memory on
the basics of expected utility theory that is taken as the standard for rational
behavior.

6.1 A Quick Primer on Expected Utility Theory
We’ll present Savage’s (1954) version of expected utility theory here, since it
is the most straightforward, but everything we’ll say in this section holds for
other formulations of the theory as well.
A decision problem consists of:

(i) a setO of different options that are available to the person who faces it, and
(ii) a setS of states of the world for which the outcomes of the various options

in O are defined, where S is a partition.

Savage’s version of expected utility theory requires an individual who faces a
decision problem to have:

51 Recall from Section 2.3 on group responsibility that groups can be held liable for the inten-
tional attitudes they hold, including their credences. The responsibility is passed down to all
the members regardless of their role given their complicity through a joint commitment to the
group’s ethos.
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(a) a probabilistic credence function P that takes each state S in S and gives
the individual’s credence P(S) in that state, and

(b) a utility function U that takes each option A in O and each state S inS and
gives the utility U(A,S) that the individual assigns to choosing A in S.

We then define the expected utility of each option A inO from the point of view
of P as follows:

EP(U(A)) =
∑
S∈S

P(S)U(A,S)

Expected utility theory then requires us to choose an option that has maximal
expected utility.

6.2 Dutch Booking Newly Established Dependencies
As suggested at the start of the section, we ideally want pooling strategies to
guide us in making good decisions, and to do so in accordance with expected
utility theory. Like with a pooling strategy’s epistemic viability, its pragmatic
viability might be indicated through its properties. Let’s focus then on the prag-
matically oriented axiomatic constraints on pooling strategies introduced in
Section 3.
The first we’ll consider is the Probabilistic Independence Preservation

axiom. Recall that it says that if all individuals i = 1, . . . ,n judge X,Y ∈ A

to be probabilistically independent, that is, Pi(X|Y ) = Pi(X ), then the pooled
credences for X and Y should maintain this independence property. Why? Con-
sider Bill and Sue whose credences concerning the outcome of a biased coin
toss with an unknown bias are given as follows.

Heads Tails
Bill (PB) 1/4 3/4
Sue (PS) 3/5 2/5

In addition to those credences, Bill and Sue are both opinionated on a separate
matter, namely, the weather today.

Rain ¬ Rain
Bill (PB) 7/10 3/10
Sue (PS) 2/5 3/5

Although Bill and Sue have different credences in the possible outcomes
in these two matters, both agree that they’re probabilistically uncorrelated.
That is, PB(Rain ∧ Heads) = PB(Rain)PB(Heads), PS(¬Rain ∧ Tails) =
PS(¬Rain)PS(Tails), and so on.
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Suppose now that Bill and Sue agree to pool their credences to come up
with group credences that they may employ jointly if they were to bet on the
propositions. For convenience, let’s say that Bill and Sue choose the Straight
Linear Pooling strategy. The following provides a summary, where the first two
columns are the credences of Bill and Sue and the last two columns the straight
linear pools of their credences.

PB(· ∧ ·) PS(· ∧ ·) LP(· ∧ ·) LP(·) LP(·)
Heads ∧ Rain 0.175 0.24 0.2075 0.23375
Tails ∧ Rain 0.525 0.16 0.3425 0.31625

Heads ∧ ¬ Rain 0.075 0.36 0.2175 0.19125
Tails ∧ ¬ Rain 0.225 0.24 0.2325 0.25875

Unfortunately for Bill and Sue, maintaining that the two matters under con-
sideration remain probabilistically uncorrelated after pooling puts them in a
bad situation. Suppose that a clever bookie has observed Bill and Sue’s pool-
ing strategy. The bookie now has a strong incentive to propose to Bill and Sue
one of many combinations of bets on the conjunctions of propositions. Here is
one such combination that Bill and Sue should see as fair. The bookie will buy
for $207.50 Bet 1 from Bill and Sue that pays $1000 if Heads ∧ Rain is true
and nothing otherwise. The bookie will buy for $316.25 Bet 2 from Bill and
Sue that pays $1000 if Tails ∧ Rain is true and nothing otherwise. The bookie
will buy for $191.25 Bet 3 from Bill and Sue that pays $1000 ifHeads∧¬Rain
is true and nothing otherwise. The bookie will buy for $232.50 Bet 4 from Bill
and Sue that pays $1000 if Tails ∧ ¬Rain is true and nothing otherwise.52
Bets 1-4 book a sure loss for Bill and Sue, despite Bill and Sue expecting

the bundle to break even on both sides. How so? We know that the bookie can
obtain a reward of $1000 at most since only one of the conjunctive propositions
can be true. Given that the set of bets exhausts all possibilities, the bookie is
guaranteed to win one of the bets. Bill and Sue aimed to ensure that the out-
come is a wash by charging the bookie a price in line with the probabilistic
group credences for each bet yielded by LP. Where they go wrong, though,
is in maintaining that the two matters under consideration remain probabilisti-
cally uncorrelated, that is, P(· ∧ ·) = P(·)P(·). The bookie recognized that Bill
and Sue’s pooling strategy does not preserve probabilistic independence and
exploited their compromise by swapping the value given by LP(·)LP(·) with
LP(· ∧ ·) in Bets 2 and 3, which Bill and Sue remained committed to being the
same. As a result, the bookie’s expected utility from the four bets is $52.50,

52 For convenience, we’ll assume throughout that utility is linear in money.
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whereas Bill and Sue’s is –$52.50. Whatever the case may be, Bill and Sue are
sure to surrender the latter amount.53

Did Bill and Sue have bad judgment in this particular instance? Not neces-
sarily. It’s quite sensible for them individually and as a group to judge that a
coin toss is irrelevant to whether it rains or not before and after pooling their
credences. But that is just what Probabilistic Independence Preservation says.
Considering the practical irrationality we have seen that emerges when the
axiom is flouted by pooling strategies, it seems that the Probabilistic Independ-
ence Preservation is an axiom worth satisfying. Indeed, we might be further
compelled by it upon connecting the consequences of violating Probabilistic
Independence Preservationwith an earlier discussion from Section 2.3. If group
members are complicit qua intentional participants in actions performed by the
group, then Probabilistic Independence Preservation seems like a desirable con-
straint all members would be jointly committed to upholding. For they are all
liable for bad outcomes resulting from a chosen strategy that violates it. In this
instance, Bill and Sue are responsible for the unnecessary loss resulting from
their chosen pooling strategy.
By holding groups liable for their decisions, including deciding on a pooling

strategy for forming group credences, choosing a pooling strategy is further
constrained. The trouble is that most of the pooling strategies we’ve seen fare
poorly when it comes to living up to this group responsibility. Recall that lin-
ear, geometric, multiplicative, and convex IP pooling all violate Probabilistic
Independence Preservation.54 Only the non-convex IP function is able to meet
the demand.
Perhaps what we might conclude from this discussion is that in purely epi-

stemic terms, Lehrer and Wagner may be right that the violation is benign. But
susceptibility to a Dutch Book, as shown earlier, is a nontrivial concern, as no
pooling strategy should commit groups to booking a sure loss. Not only would
that be irresponsible toward the group agent but all the members individually,
given that they all individually safeguarded themselves by having probabilis-
tic credences, yet by merely forming a betting coalition, they now are jointly
susceptible to being Dutch Booked. The pragmatic implications of the axiom
discussed here provide further support for the axiom, despite only one pooling
strategy satisfying it.

53 Our Dutch Book argument is a variation of those given by Kyburg & Pittarelli (1996) and Elkin
& Wheeler (2018).

54 We remind the reader that independence is a more nuanced concept in IP.
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6.3 No Regrets, or How to Stop Throwing Away Money
The No Regrets axiom similarly aims at avoiding unnecessary loss if a group
were to make bets on uncertain propositions. The difference, however, is that
No Regrets concerns ex ante loss whereas Probabilistic Independence Preser-
vation concerns ex post loss (although the loss is knowable before resolving
the decision-maker’s uncertainty).55 Whether one of the resulting feelings is
worse than the other is an empirical matter, but we take for granted that both
are undesirable. In this section, we’ll try to better motivate No Regrets and
show its plausibility.
As many know, used car salesmen thrive on swindling unknowing and often

innocent customers. The lessons of George Akerlof’s (1970) seminal paper
highlight the significance of information asymmetry and how it can be exploited
in these kinds of markets. Used car dealerships seemed to have taken notice and
apparently have settled on charging hefty premiums for their vehicles whether
in good shape or bad. Unfortunately for the average consumer, the informa-
tion asymmetry puts them at a disadvantage not only in buying a quality car
but also in bargaining. While not every buyer having to transact with a dealer
deserves sympathy, it seems fair to commend those who do their best in the face
of information asymmetry. That is, those who do their best at mitigating their
exposure to surrendering an excess amount of money through an exchange for
a perceptibly overpriced asset or forfeiting a fair price by selling an asset for
less than its perceived value.
Consider Lisa and Stan who are jointly in the market for a used car with a

$10,000 budget each has equally contributed to. They have collected informa-
tion on a class of cars that suit their needs and some basic red flags that might be
present. After perusing a car lot, Stan spots a car he is familiar with. Overall, it
looks like the car is in good condition and has a moderate amount of mileage on
it. Stan is willing to pay the sticker price of $9,999. Asking for Lisa’s opinion,
Stan learns that she’s very much pessimistic that this would be a reasonable
deal. In fact, Lisa reveals that her estimate is much lower and she would only
pay $6,000. While they both like the car, they are at a stalemate on price and
ultimately its value.
Suppose that Lisa lets Stan dictate, leading him to buy the car at the asking

price. They both feel relieved by the car seeming to run well. But setting aside
the car’s condition over the long-term, was the purchase itself a good deal for
both of them? As it turns out, not so much. After taking the car out for a spin,

55 The ex ante aspect also differentiates it from Loomes and Sugden’s (1982) more general regret
theory that attends to ex post regret, but the motivation is not all that different from theirs as
well as more recent accounts of regret aversion (Arntzenius, 2008; Arvan, 2020).
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they meet a friend who is a knowledgeable appraiser at a leading appraisal firm.
Hating that she has to be the bearer of bad news, the friend informs them at the
current valuation, the car is worth at most $6,000. It turns out that Lisa was
on to something. Both immediately feel significant regret toward the price they
jointly paid for the car. Likemany others, they too got swindled by the infamous
used car salesman. The thought of overpaying that much for the vehicle sickens
them both.
Suppose instead of Lisa letting Stan dictate, the two agree to compromise.

Stan is willing to come down on the offer as long as Lisa is willing to come
up. That is to say that the compromise is in the bounds, exclusively, of their
buying prices. Lisa, still reluctant to play along due to expecting any price paid
higher than $6,000 to incur a loss from her perspective, agrees for the sake of
the group. Stan makes an offer of $8,000 to the dealer. After some showboating
hesitation, the dealer accepts with unexpressed rejoice. Unfortunately for Lisa
and Stan, the story concludes in the same way.While they saved a noninsignifi-
cant amount of money this time around, paying 33% above the car’s valuation
still is not in their best interest. Again, it appears that Lisa was on to something
all along.
What lesson can we draw from this classic and maybe all too familiar tale?

For one thing, collectively exchanging money for goods engenders a risk of
unnecessary loss resulting from paying too much. Of course, we can recon-
struct the case to show that on the other side, the risk of selling an asset for
too little can be just as salient and the regret also being psychologically pain-
ful if realized.56 A feasible principle would suggest that as these risks present
themselves, groups are wise to minimize them. That is just what No Regrets
says in the context of trading bets. Treating the credences of all group mem-
bers as pricing signals on bets, a group should suspend judgment on the set of
all prices in-between the bounds in the face of conflict and only transact at the
prices where there is agreement.
Recall Levi’s view from Section 4.4. That means that for all X ∈ A , the

group should happily buy a bet for a price x as high as min(P1(X ), . . . ,Pn(X ))
since all prices x ≤ min(P1(X ), . . . ,Pn(X )) are acceptable by i = 1, . . . ,n and
sell the bet for a price y as low as max(P1(X ), . . . ,Pn(X )) since all prices y ≥
max(P1(X ), . . . ,Pn(X )) are acceptable by i = 1, . . . ,n. Any price in (x,y) will
give at least one i ex ante regret of transacting, and from the group’s perspective,
that signal should be taken as a forewarning of an increased risk of overpaying
or underselling the bet if the group were to pool in a way that ignores i’s signal.

56 Whether the intensity of regret varies on the different sides of transactions is an empirical
matter.
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If the group proceeds to pool in a way that ignores such a signal, the group is
liable for any bad deals made.57

One final thing we’ll mention on the No Regrets axiom is that while it might
not entail that groups maximize expected utility at the group-level in accord-
ance with the demands of Savage’s theory, one can still view it as a principle
of practical rationality for ambiguity averse groups.58 For each individual i in
the group, i’s expectation of buying a bet on X ∈ A for a price u ∈ [0,∞) is

Pi(X )(1 − u) + (1 − Pi(X ))(−u)

Every u > Pi(X ) implies that the expectation is negative and thus r−Pi
(u,X ) > 0.

No Regrets ensures that individually, no member’s expectation for paying a
price u given by a pooling function is negative, thus minimizing the ex ante
regret of overpaying for the bet. The axiom commits a group then to taking a
cautious approach when choosing a maximum buying price u ∈ [0,∞), letting
min(P1(X ), . . . ,Pn(X )) determine it on the group’s behalf for all X ∈ A , as
the group has a nonnegative expectation for buying a bet at a price u and thus
no ex ante regrets for any i when u = min(P1(X ), . . . ,Pn(X )). We leave it to
the reader to see how this similarly follows for a selling price v ∈ [0,∞) when
v = max(P1(X ), . . . ,Pn(X )).

6.4 The Ex Ante Pareto Condition
The practical irrationality resulting from violating the Probabilistic Inde-
pendence Preservation and No Regrets axioms narrowly focuses on betting
behavior. But groups are likely to have practical interests in things beyond bet-
ting. As we said before, group credences should serve as a good guide to action.
In this section, we consider a principle concerned more generally with group
decision-making called Ex Ante Pareto. To motivate it, consider the following
example.
Gail, Harb, and Isamu are effective altruists. Each is a total hedonic util-

itarian, so they all share the same utility function, which values an outcome
in accordance with how much pleasure it contains and how little pain. They
all have different credence functions. As a group, they’d like to provide a list

57 A quick note on pooling strategies that don’t satisfy Boundedness. When it comes to plac-
ing bets, the group will be happy on one side, depending on the side of the interval
[min(P1(X ), . . . , Pn(X )), max(P1(X ), . . . , Pn(X ))] that F(P1, . . . , Pn)(X ) lands on, but all
i = 1, . . . , n will be unhappy on the opposite transactional side since they all will have ex ante
regrets. If F(P1, . . . , Pn)(X ) ∈ [min(P1(X ), . . . , Pn(X )), max(P1(X ), . . . , Pn(X ))], then the
same holds for multiplicative pooling strategies as the linear pooling strategies.

58 SeeGilboa & Schmeidler (1989) for an axiomatization of ambiguity averse preferences. Ambi-
guity averse agents tend to abide by the so-called Γ-Maximin decision criterion. See Seidenfeld
(2004) for a discussion of the decision rule, which we’ll come back to shortly.
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of charities that they take to offer the greatest expected goodness per dollar
donated. So they seek a strategy by which to pool their credences, which they’ll
then combine with their shared utility function using expected utility theory in
order to give an assessment of the various possible charities they might list.
Which strategy should they choose?
When they’re making their list, they naturally want to avoid a situation in

which there are two options, A and B, such that each individual expects A to be
better than B, but the group’s credences expect B to be better than A. In fact, the
inconsistency wouldn’t only be odd, but potentially unjustified if individually,
the members jointly accept that A is better than B in expectation, yet the group
expects the reverse. To avoid such an outcome, it’s reasonably straightforward
to see that, if they use a linear pooling strategy, they’ll avoid this for sure. After
all, given a single utility function and multiple credence functions, the expected
utility of an option by the lights of a linear pool of the credence functions is just
a weighted average of the expectations of that option from the point of view of
the individual credence functions. That is,

Eλ1P1+· · ·+λnPn (U(A)) = λ1EP1 (U(A)) + · · · + λnEPn (U(A))

So, if EPi(U(A)) > EPi(U(B)), for all i, then

Eλ1P1+· · ·+λnPn (U(A)) > Eλ1P1+· · ·+λnPn (U(B))

In the jargon, we say that linear pooling strategies satisfy the Ex Ante Pareto
condition.

Ex Ante Pareto For any probabilistic credence functions P1, . . . ,Pn, any
utility function U, and any options A and B, if, for all i, EPi (U(A)) <
EPi (U(B)), then EF(P1 ,...,Pn)(U(A)) < EF(P1 ,...,Pn)(U(B)).

What’s more, the linear pooling strategies are the only (classical) ones that
satisfy it. Here is the corollary of a theorem due to Philippe Mongin (1995) that
shows this:59

Theorem 13 (Mongin, 1995). Suppose U is a utility function. And suppose F is
a pooling strategy that is not a linear pooling strategy. Then there are credence
functions P1, . . . ,Pn and options A and B such that

(i) EPi(U(A)) > EPi(U(B)), for each i, and
(ii) EF(P1 ,...,Pn)(U(A)) < EF(P1 ,...,Pn)(U(B)).

In the example that motivated this discussion, we assumed that our three effec-
tive altruists agree on their utility function. But what about a case in which the

59 We give a proof in the Appendix.
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individuals whose opinionwewish to aggregate disagree on both credences and
utilities? Consider Jasper and Kamal who are trying to decide whether to stay
at home or go to the cinema to see a new film calledOcean. However, neither is
sure whether the film is a nature documentary or a casino heist. They have dif-
ferent utilities for those two options, as well as different credences concerning
which it is:

Credences Nature Heist
Jasper 3/4 1/4
Kamal 1/4 3/4

Utilities Nature Heist
Jasper 3 −5
Kamal −5 3

As a result, both Jasper and Kamal assign an expected utility of 1 to going to
see Ocean, though for different reasons. And let’s assume that both agree that
staying at home will have a utility of 0 for sure, and so an expected utility of
0 for both of them. Then they both prefer the cinema to staying at home. But
suppose we now ask what they would choose to do as a group. We use linear
pooling to combine their credences, giving a group credence of 1/2 that Ocean
is a nature documentary and 1/2 that it is a heist movie. But then notice this:
whether we use Jasper’s utility function or Kamal’s or some weighted average
of the two, it turns out that the expected utility of going to the cinemawill be−1,
while the expected utility of staying at home remains 0. Although they both
prefer the cinema to staying at home, the group they comprise prefers staying
at home to going to the cinema. So, while linear pooling assures us of the Ex
Ante Pareto property when the members of the group have the same utility
function, it does not when they have different ones. And, due to a classic result
by Mongin (1995), no pooling strategy does. But Mongin’s result is situated in
the traditional setup that doesn’t allow for IP pooling rules. So, how do such
strategies fare in satisfying the Pareto criterion?
Before trying to answer this question, we note that expected utility with

imprecise probabilities is more nuanced than the classical theory, although the
latter can be recovered as a special case. This is because there are various ways
to evaluate options, given that we’re now considering sets of expected utilities
for each option produced under a non-empty (convex or non-convex) set of
probability functions. That said, here are just a couple of ways. On the weaker
side,

Maximality. For a non-empty (convex or non-convex) set of probability
functions, P, utility function, U, and options A,B ∈ O , A is (strictly) pre-
ferred to B iff for all P ∈ P, EP(U(B)) < EP(U(A)); A is said to be admissible
iff for all B ∈ O , there exists some P ∈ P such that EP(U(B)) ≤ EP(U(A)).60

60 See Walley (1991).
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We might think of the set, P, here as a credal committee, where each P ∈ P
is a committee member (Joyce, 2010). Under this personification, Maximality
implies that for any A ∈ O , A is inadmissible iff all of the committee mem-
bers of the credal committee are in agreement that A is expected to be strictly
worse than some other option B. Quite naturally, Maximality extends classi-
cal expected utility theory by credal committees and yields a robust decision
criterion.
On the cautious side, we’ve already come across the Γ-Maximin decision

criterion in our discussion of No Regrets (footnote 58). To put it succinctly,

Γ-Maximin. For any non-empty (convex or non-convex) set of probability
functions, P, utility functionU, and options A,B ∈ O , A is (strictly) preferred
to B iff E(U(B)) < E(U(A)), where E(U(·)) = min{EP(U(·)) : P ∈ P} is the
lower expected utility for all options; A is said to be admissible iff for all
B ∈ O , E(U(B)) ≤ E(U(A)).

The latter tells us to consider the worst-case expected utilities for all options
and take the best of worst. While the criterion is naturally pessimistic, it’s often
associated with decisions made in the face of ambiguity (Gilboa & Schmeidler,
1989).
From the given IP-based decision criteria, we may draw some plausible

restatements of the Ex Ante Pareto condition:

Ex Ante ParetoMaximality For any probabilistic credence functionsP1, . . . ,Pn,
any utility function U, and any options A and B, if, for all i, EPi (U(A)) <
EPi (U(B)), then for all P ∈ F (P1, . . . ,Pn), EP(U(A)) < EP(U(B)).

and

Ex Ante Pareto Γ−Maximin For any probabilistic credence functionsP1, . . . ,Pn,
any utility function U, and any options A and B, if, for all i, EPi (U(A)) <
EPi (U(B)), then EF (P1 ,...,Pn)(U(A)) < EF (P1 ,...,Pn)(U(B)).

It’s obvious that our non-convex strategy K satisfies Ex Ante ParetoMaximality.
Why? K just is the set of probability functions for i = 1, . . . ,n. So, the strict
inequality holds with respect to all the expectations given by all Pi ∈ K if the
strict inequality holds with respect to the expectations of all i individually. But
what about the convex strategy C? What we obtain from the results of Mon-
gin (1995) is that given any sequence of nonnegative weights λ1, . . . , λn such
that

∑n
i=1 λi = 1 and probability functions P1, . . . ,Pn, any convex combina-

tion of the probability functions and corresponding weights, λ1P1 + · · ·+λnPn,
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satisfies Ex Ante Pareto (assuming a shared utility function U). Since every
Q ∈ C(P1, . . . ,Pn) is a convex combination of P1, . . . ,Pn, Q satisfies Ex Ante
Pareto with a fixed U if EPi (U(A)) < EPi(U(B)) for i = 1, . . . ,n. Thus, C
satisfies Ex Ante ParetoMaximality with a fixed U if EPi (U(A)) < EPi (U(B)) for
i = 1, . . . ,n. But just the same as in the linear pooling case, the Pareto condition
is violated if individuals disagree on utilities for both C andK (Seidenfeld et al.,
1989).
Suppose instead that a group is more cautious and bases their evaluation

of the options in O on Γ-Maximin. We can straightforwardly show that func-
tions C and K satisfy Ex Ante Pareto Γ−Maximin. Assume that EPi(A)< EPi (B)
for i= 1, . . . ,n. Let E (U(A))= {EP(U(A)) :P ∈ C(P1, . . . ,Pn)} and E (U(B)) =
{EP(U(B)) : P ∈ C(P1, . . . ,Pn)} be the set of expectations given under
C(P1, . . . ,Pn) for A and B, respectively. In case all Pi are identical, E (U(A)) and
E (U(B)) are singleton sets, and it is not the case that EPi(U(A)) ≥ EPi (U(B))
for Pi by our initial assumption. So, min E (U(A)) < min E (U(B)). Now,
assume instead that Pj , Pk for some j,k. Let Pj yield the min E (U(B)).
We already know that EPj(U(A)) < EPj (U(B)) by assumption. And by defini-
tion, min E (U(A)) ≤ EPj (U(A)). It follows that min E (U(A)) < min E (U(B)).
This suffices to show that C(P1, . . . ,Pn) satisfiesEx Ante Pareto Γ−Maximin. The
same applies for K(P1, . . . ,Pn).
Again, these results hold only if there is some utility function, U, shared by

i = 1, . . . ,n. While such a limitation might make the results seem less impor-
tant, there are times when a common utility function may be held by a group
for expediency, for example, in determining public policy. But in general, the
limitation can’t be ignored since values often differ among individuals and con-
sequently, individuals will have different utility functions (recall Jasper and
Kamal). Supposing that Jasper and Kamal are Bayes agents, there is only one
solution for them that preserves Pareto. As Seidenfeld et al. (1989) showed for
two Bayes agents with different utility functions and different probability func-
tions, the set of probability and utility function pairs for the Bayes agents is the
only solution that satisfies the Pareto requirement (see point (i) in Theorem 1
of their paper).

6.5 The Instability of Group Preferences
Violations of Ex Ante Pareto raise another problem for groups who wish to act
on their pooled credences. As noted earlier, when we use decision theory to
help us make a choice that we face, we render that choice as a decision prob-
lem, complete with options and states of the world. But to do this we must
decide at which level of grain to describe the states of the world. For instance,

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009315203
Downloaded from https://www.cambridge.org/core. IP address: 18.223.206.19, on 31 Jan 2025 at 18:30:22, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009315203
https://www.cambridge.org/core


70 Decision Theory and Philosophy

suppose you are trying to decide whether to take an umbrella when you leave
the house. You might describe the decision problem using just two states of the
world: Rain and No rain. Or you might choose a slightly finer grained descrip-
tion:Heavy rain, Light rain,No rain. Or an even more fine-grained description:
Heavy rain for the first hour and light rain thereafter; Light rain throughout;
Light rain for the first hour and heavy rain thereafter; Heavy rain throughout;
No rain. And so on. A key assumption in much standard individual decision
theory is that it shouldn’t matter which level you choose. That is, you should
never find yourself in a situation where you prefer to take the umbrella when the
problem is stated at one level of grain, while you prefer to leave it behind when
it is stated at another level.61 This is assured in various versions of expected util-
ity theory by assuming that the utility you assign to a coarse-grained outcome
is just your expectation of its utility in terms of any set of more fine-grained
outcomes that make it up.62 So, for instance, the utility you assign to taking
an umbrella when it rains is the utility you assign to taking an umbrella in
heavy rain, weighted by your credence in heavy rain given it rains at all and
you take an umbrella, plus the utility you assign to taking an umbrella in light
rain, weighted by your credence in light rain given it rains at all and you take
an umbrella. We might call such an assumption Inter-Grain Coherence.
But what the example of the cinema goers shows is that we cannot guarantee

this in the case of group decision-making. If we describe the decision so that
there is just one state of the world, and the group must choose between going
to the cinema and staying at home, the group will prefer to go to the cinema,
since it has utility 1 in that single state of the world, while staying home has
utility 0. But if we describe it so that there are two states of the world, one
in which Ocean is a nature documentary and the other in which it is about a
casino heist, the group will prefer to stay at home, since the pooled credences
will favor doing that, regardless of whose utility function we use. Indeed, as
Matthias Hild (2001) shows, it is possible to describe cases in which there is a
long chain of finer and finer grained descriptions of a decision problem, together
with assignments of utilities and credences to them, such that the group’s pref-
erences, calculated by pooling both credences and utilities using linear pooling,
flip back and forth as you move from level to level. What’s more, this isn’t just
a problem for linear pooling. It follows from any violation of the Ex Ante Pareto
property. And, as Mongin’s theorem showed, any pooling strategy whatsoever
violates that. So, if you wish to make decisions using the credences you obtain

61 In decision theory, this is known as the problem of partition invariance or partition sensitivity.
See, for instance, (Weirich, 2020, Section 3.2).

62 See, for instance, Joyce (1999, 176–178).
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from your pooling strategy, you can’t be confident that, had you elicited the
individuals’ credences and utilities at a finer level of grain, and pooled those,
you wouldn’t have ordered the options differently. And that undermines the
normative force of the ordering that you in fact have.
Now there’s a natural response to this problem in theory. For any group of

individuals, we can describe the states of the world at such a level of grain that
everything that any member of that group cares about is specified within the
descriptions of the states of the world. At this point, any further fine-graining
adds no detail that changes the individuals’ utilities. And so no further fine-
graining can lead to flips of preference. We might then propose always to use
that level of grain when we aggregate the opinions of the individuals to give
the group preference ordering.
The problem with this proposal is that it isn’t feasible. Think of the myriad

things that affect the utility you assign to a situation: the number of drops of
rain that fall on you when you’re out without an umbrella, their temperature,
their size, the duration of the rain shower, the water-resistance of your footwear,
the likelihood of a car driving through a nearby puddle and splashing you; and
that’s before we even look outside the immediate situation to consider the pre-
cise well-being of those you care about, the future state of the environment,
and so on. Inter-Grain Coherence is so important precisely because we want to
be sure that the level of grain at which we choose to describe the states of the
world in our decision problem does not matter because we can only feasibly
use decision theory to guide our actions if we can approach the decision using
a fairly coarse-grained set of states of the world. But for group decision-making
based on pooled credences, it isn’t available.
In closing this section, perhaps the take home message is that when it comes

to group decision-making, respecting some ideal pragmatic constraints under
pooled credences is quite difficult to achieve.We illustrated what happens when
Probabilistic Independence Preservation and No Regrets are flouted. And we
considered another feasible constraint, namely, Ex Ante Pareto, and showed
why it’s a further feature we would want pooling strategies to meet, but again,
it’s another one that’s hard to meet without some strict assumptions.
As per Section 2.3, groups can be held liable for failing to live up to

the expectations of preventing the undesirable outcomes we described in this
section. Given that few pooling strategies satisfy Probabilistic Independence
Preservation and No Regrets and that none satisfy Ex Ante Pareto when utility
functions differ, what wemight come to realize is that it’s impossible for groups
to live up to all their responsibilities when acting under pooled credences. We
signaled so much after discussing the multiplicative strategies in Section 4 and
have made it apparent here.
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Some, however, might suggest that the constraints we’ve considered on
group decision-making are too stringent, but we contend that no viable inter-
pretation of Group Rationality, taken as part of a group’s ethos, would ever
admit to such consequences being acceptable. This leaves us in a bit of an awk-
ward position, as pooling should benefit groups in their practical endeavors, but
considering the picture painted here, things look fairly grim.

7 Relaxing Some Constraints
So far, we have made two important idealizing assumptions. First, we’ve
assumed that every individual in the group has the same agenda – that is, they
assign credences to exactly the same propositions. Second, we’ve assumed
that every individual in the group has coherent credences – that is, their cre-
dence function is probabilistic. In the wild, these assumptions fail more often
than they hold. How might we aggregate opinions in the cases in which they
fail? We’ll ask first how to aggregate incoherent agents and then ask how to
aggregate individuals with different agendas.

7.1 Aggregating Incoherent Individuals
One decision we must make from the outset: should we require that the cre-
dence function given by our pooling strategy is itself coherent, even if the
individuals’ credence functions are not? How we answer this depends on the
use to which we wish to put that strategy. If we will use it to provide a sum-
mary of the individuals’ beliefs, there is no need to require this. For instance, if
Veronica andWei both have high credences in a proposition and also both have
high credences in its negation, and are thereby incoherent, then it seems that
a summary of their credences should also give a high credence to the proposi-
tion and a high credence to its negation, and so should be incoherent itself. On
the other hand, if we will use the pooled credences to make a decision, then it
seems we must ensure that they are coherent, since all of our decision theories
require coherent credences as inputs.63 We’ll describe both approaches here.
Little has been written on this question, and in this section, we will follow the

lead of one of the few existing proposals. We met it already in Section 5.1.3. It
was first proposed in this context by Osherson and Vardi (2006), and developed
further by Predd et al. (2008) and Pettigrew (2019a).
Begin by fixing an agenda A . We’ll assume throughout this section that all

individuals have this same agenda. Suppose we have a function that measures

63 For instance, see our presentation of Savage’s version of expected utility theory in the last
section.
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how far one credence function lies from another when both are defined on this
agenda. Call the measure D. Earlier, we met two examples of such measures:
the squared Euclidean distance, and the generalized Kullback-Leibler diver-
gence. Importantly, those measure distance from any credence function to any
another, regardless of whether either or both are probabilistic. Now, given a
profile of credence functions C1, . . . ,Cn, each of which may or may not be
probabilistic, we say that the pool of these functions is the credence function C
such that the sum of the distances from C to each of the Cis is minimal. That is:

Principle of Minimal MutilationD

MMD(C1, . . . ,Cn) = arg min
C

n∑
i=1
D(C,Ci)

Earlier, we saw two results:

(i) if we take D to be the squared Euclidean distance measure, and the indi-
vidual credence functions are probabilistic, and we demand that the pooled
credence function is too, then the resulting pooling strategy is just linear
pooling;

(ii) if we take D to be the generalized Kullback-Leibler divergence, and the
individual credence functions are probabilistic, and we demand that the
pooled credence function is too, then the resulting pooling strategy is just
geometric pooling.

It turns out that, if we do not require that the individual or pooled credences are
probabilistic, we obtain the following:

(ii) if we takeD to be the squared Euclidean distance measure, the pooled cre-
dence function is just the linear pool of the individual credence functions;
that is,

MMSED(C1, . . . ,Cn)(X ) = 1
n
C1(X ) + · · · + 1

n
Cn(X )

(ii) if we takeD to be the generalized Kullback-Leibler divergence, the pooled
credence function is not the geometric pool of the individual credence func-
tions, as you might expect; rather, the pooled credence in each element
of the partition is the geometric mean of the individual credences in that
element; that is,

MMGKL(C1, . . . ,Cn)(S) = C1(S)
1
n × · · · × Cn(S)

1
n

But now let’s suppose that we do want the pooled credences to be probabilistic.
Then there seem to be three routes we might take.
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(i) We might simply say that the pool of C1, . . . ,Cn is the probabilistic cre-
dence function C such that the sum of the distances from C to each of the
Cis is minimal. This is just the Principle of Coherent Minimal Mutilation
that we met earlier.

CMMD(C1, . . . ,Cn) = arg min
P∈∆A

n∑
i=1
D(P,Ci)

(ii) Or we might first apply the Principle of Minimal Mutilation MMD and
then afterwards fix up any incoherence in the resulting pooled credence
function. And indeed, there’s a natural way to do that using our distance
measure D: if C is incoherent, we fix it up by taking the probabilistic
credence functionP for which the distance fromP toC is minimal. That is,

FixD(C) = arg min
P∈∆A

D(P,C)

So, on this proposal, we aggregate possibly incoherent credences as
follows:64

(FixD ◦ MMD)(C1, . . . ,Cn) = FixD(MMD(C1, . . . ,Cn))

(iii) And, finally, we first fix up the incoherent individual credences first, and
then apply our standard pooling strategies to this.

(MMD ◦ FixD)(C1, . . . ,Cn) = MMD(FixD(C1), . . . ,FixD(Cn))

So there are three options: pool-then-fix, fix-then-pool, fix-and-pool-together.
We might hope that these three routes to aggregation agree with one another.

It turns out that, if we focus only on groups whose shared agenda is a parti-
tion, then using generalized Kullback-Leibler to aggregate credences and fix
up incoherences does lead to three methods that always agree; however, if we
use squared Euclidean distance instead, and the partition has more than two
cells, we don’t (Pettigrew, 2019a). Then:

Theorem 14 (Pettigrew, 2019a).

(i) CMMSED = FixSED ◦ MMSED , MMSED ◦ FixSED

(ii) CMMGKL = FixGKL ◦ MMSED = MMGKL ◦ FixGKL

What can we conclude from this result? It might provide the foundations
for a “no dilemma” argument in favor of using generalized Kullback-Leibler

64 Here, we use the mathematical notation ◦. If f and g are functions, then f◦g is the function that
results from first applying g and then applying f. It is sometimes read as ‘f following g’. So, for
instance, if f and g are both one-place functions, ( f ◦ g)(x) = f (g(x)).
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divergence instead of squared Euclidean distance to measure distance between
credence function, and therefore geometric pooling instead of linear pooling
to aggregate credences. After all, if you use squared Euclidean distance, you
must decide whether you will aggregate a set of incoherent credence functions
and then fix them up so that they are coherent, or whether you should first
fix them up and then aggregate them. The theorem shows that these give dif-
ferent results. And it seems there’s no nonarbitrary way to decide which to
use. If you use generalized Kullback-Leibler, on the other hand, you avoid this
dilemma.

7.2 Aggregating Individuals with Different Agendas
Xia and Yoaav are climate scientists who study future sea level rise. Xia assigns
credences to two propositions: sea level will rise by less than 1cm in the next
ten years, which we’ll call X; sea level will rise by between 1 cm and 2 cm
in the next ten years, which we’ll call Y. Yoaav also assigns credence to two
propositions: he doesn’t assign credence to X, but he does assign credence to Y;
and he also assigns credence to the proposition that sea level will rise by more
than 2 cm in the next ten years, which we’ll call Z. Here are their credences:

X Y Z
Xia (C1) 0.1 0.3 −

Yoaav (C2) − 0.5 0.4

How should we aggregate their credences? One easy option is to say that we
should only aggregate their credences in the propositions to which they both
assign credences. So, in this example, we aggregate their credences in Y only.
That’s possible for linear pooling: the aggregate is simply 1/20.3+ 1/20.5 = 0.4.
But it’s not possible for geometric pooling: recall, in order to use that pooling
strategy, you must have credences defined over a partition. In any case, it seems
unsatisfactory to be left with only their pooled credences in one proposition.
We’d like pooled credences in all three.
One proposal is an extension of the methods of minimal mutilation intro-

duced in Section 5.1.3 and explored further in Section 7.1.65 Here’s the idea,
which is due to Osherson & Vardi (2006): Fix a measure d of the distance from
one credence to another, and for credence functions C1 and C2 defined on A ,
letD(C1,C2) =

∑
X∈A d(C1(X ),C2(X )). Then the pool of Xia’s credences (C1)

and Yoaav’s credences (C2) is the probabilistic credence function P for which

65 SeeQuintana (2024, Section 4.4) for an argument that this leads to using imprecise probabilities
to pool precise probability functions.
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the sum of the distance from P to C1 and the distance from P to C2 is mini-
mal. More precisely, if A is the union of Xia’s and Yoaav’s agendas, so that
A = {X,Y,Z}:

CMMD(C1,C2) = arg min
P∈∆A

(d(P(X ),C1(X )) + d(P(Y ),C1(Y ))

+ d(P(Y ),C2(Y )) + d(P(Z),C2(Z)))

In full generality, given credence functions C1, . . . ,Cn defined on A1, . . . ,An

respectively, and letting A =
⋃n

i=1 Ai,

CMMD(C1, . . . ,Cn) = arg min
P∈∆A

n∑
i=1

∑
X∈Ai

d(P(X ),Ci(X ))

Here are its outputs for squared Euclidean distance and generalized Kullback-
Leibler:

X Y Z
CAPSED(C1,C2) 0.14 0.42 0.44
CAPGKL(C1,C2) 0.116 0.418 0.466

But notice the following problem: X, Y, and Z form a partition. So, while Xia
does not assign a credence to Z, the credences she assigns to X and Y do commit
her to a credence in Z, namely the credence shemust assign to Z if her credences
are to be coherent: in her case, 0.6. And similarly, while Yoaav doesn’t assign a
credence to X, his credences in Y and Z commit him to assigning credence 0.1 to
X. Now it seems natural to require of our pooling strategy for Xia andYoaav that
it should give the same result whether we pool their actual credences or their
actual credences together with the credences to which their actual credences
commit them. But the Principle of Coherent Minimal Mutilation does not do
that. Their actual and committed credences and the results of applying that
principle to them are given as follows.

X Y Z
Xia⋆(C⋆

1 ) 0.1 0.3 0.6
Yoaav⋆(C⋆

2 ) 0.1 0.5 0.4
CAPSED(C⋆

1 ,C
⋆
2 ) 0.1 0.4 0.5

CAPGKL(C⋆
1 ,C

⋆
2 ) 0.102 0.396 0.502

That is, these two applications of the Principle of Coherent Minimal Mutila-
tion violate what Pettigrew (2022) calls Extension Invariance:

Extension Invariance Suppose P1, . . . ,Pn are credence functions defined
on A1, . . . ,An. Then, if there are unique probabilistic credence functions
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P⋆1 , . . . ,P
⋆
n defined on A =

⋃n
i=1 Ai such that P⋆i extends Pi, that is,

P⋆i (X ) = Pi(X ) for all X in Ai, then it should be that

F(P⋆1 , . . . ,P
⋆
n ) = F(P1, . . . ,Pn)

Pettigrew (2022) considers a number of alternatives to the Principle of Coherent
Minimal Mutilation and finds them all wanting except for the following, which
he proposes:

Maximal Entropy Pooling Pick a pooling strategy that applies to credence
functions defined on the same agenda. Suppose P1, . . . ,Pn are defined on
A1, . . . ,An. Then, for each Pi, let P⋆i be the coherent extension of Pi to
A =

⋃n
i=1 Ai that maximizes Shannon entropy. Then let

ME∗
F(P1, . . . ,Pn) = F(P⋆1 , . . . ,P

⋆
n )

This clearly satisfies Extension Invariance, since it deals with credence func-
tions that have unique extensions. But it also gives plausible answers in other
cases. For instance, suppose Zayn and Zara have the following credences:

X Y Z
Zayn(C1) 0.8 − −
Zara(C2) − − 0.8

Then here are the unique extensions with maximal entropy:

X Y Z
Zayn⋆(C⋆

1 ) 0.8 0.1 0.1
Zara⋆(C⋆

2 ) 0.1 0.1 0.8

And here are the linear pools and geometric pools:

X Y Z
MELP(C⋆

1 ,C
⋆
2 ) 0.45 0.1 0.45

MEGP(C⋆
1 ,C

⋆
2 ) 0.425 0.15 0.425

8 Conclusion
The members of a group often disagree in their opinions about various matters.
Nonetheless, we often need to identify a single set of opinions that resolves
that disagreement and can stand for the group. We might want to summarize
the opinions in the group, such as when we want to communicate succinctly
the views of Shakespeare scholars concerning the authorship of Hamlet; or we
might wish to identify the group’s opinion in order to make a prediction our-
selves or on their behalf, such as whenwewant to find the opinion of the climate
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science community concerning future sea level rise when we’re debating the
merits of different mitigation strategies; or we might need to ascribe opinions
to the group treated as an agent in its own right in order to hold it accountable
for certain collective actions its members have undertaken, as in the case of
corporate responsibility.
Opinion pooling functions are tools we use for these purposes; and, as always

with tools, different ones are apt for different purposes. We’ve enumerated
many of the important features you might want a pooling strategy to have, and
we’ve explained which ones have which features; and we’ve described cer-
tain sorts of goals you might have when you’re pooling credences, and we’ve
shown which pooling strategies best serve them. Perhaps the central insight of
the Element is that, while the axiomatic approach to choosing between pooling
strategies is powerful and has proved fruitful as means of characterizing dif-
ferent strategies, we often do better to look directly at the purpose for which
we wish to use the pooling strategy and ask which will best serve that pur-
pose. For instance, if our purpose is to arrive at accurate pooled credences, we
should specify a measure of that accuracy and use that to evaluate the pooled
credences given by different methods, without worrying about whether they
satisfy the formal properties encoded in the axioms; if our purpose is to arrive at
credences we can use to make decisions, then we look at the decisions licensed
by the pooled credences that different strategies produce, again regardless of
the axioms they satisfy; and similarly when we wish to use the pooled cre-
dences to judge whether a group is culpable when a decision they make causes
undesirable consequences; and so on. If this is indeed the takeaway message,
then no strategy does everything, but there are strategies that do a great deal
and for each purpose there are strategies that serve it well. We hope that we
have provided the guidance you might need to pick the one that will serve you
best.
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Appendix
Proof of Theorem 1

Theorem 1 (Madansky, 1964). Suppose that

(a) P,Q are probabilistic credence functions defined on A ,
(b) Λ = (λ,1 − λ) is a sequence of weights,
(c) X and E are propositions in A ,
(d) P(E),Q(E) > 0,

Then, if

LPΛ(P,Q)(X|E) = LPΛ(P(−|E),Q(−|E))(X )

Then at least one of the following must be true:

(i) Λ is dictatorial. That is, λ = 0 or λ = 1;
(ii) P(X|E) = Q(X|E); or
(iii) P(E) = Q(E).

Proof.

LPΛ(P,Q)(X|E) = LPλ(P(−|E),Q(−|E))(X )

iff

λP(XE) + (1 − λ)Q(XE)
λP(E) + (1 − λ)Q(E) = λP(X|E) + (1 − λ)Q(X|E)

iff

λ(1 − λ)(Q(E) − P(E))(P(XE)Q(E) − Q(XE)P(E))
P(E)Q(E)(λP(E) + (1 − λ)Q(E)) = 0

iff

λ(1 − λ)(Q(E) − P(E))(P(XE)Q(E) − Q(XE)P(E)) = 0

iff at least one of the following is true:

(i) λ = 0 or λ = 1;
(ii) P(X|E) = Q(X|E); or
(iii) P(E) = Q(E).
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Proof of Theorem 2
Theorem 2 (Laddaga, 1977; Lehrer & Wagner, 1983). Suppose that

(a) P,Q are probabilistic credence functions defined on A ,
(b) Λ = (λ,1 − λ) is a sequence of weights,
(c) X and Y are propositions in A .

Then, if

(1) P and Q both take X and Y to be independent – that is, P(XY ) = P(X )P(Y )
and Q(XY ) = Q(X )Q(Y ) – and

(2) LPΛ(P,Q) takes X and Y to be independent – that is, LPΛ(P,Q)(XY ) =
LPΛ(P,Q)(X )LPΛ(P,Q)(Y )

Then at least one of the following must be true:

(i) Λ is dictatorial. That is, λ = 0 or λ = 1;
(ii) P(X ) = Q(X ). That is, the individuals agree on how likely X is.
(iii) P(Y ) = Q(Y ). That is, the individuals agree on how likely Y is.

Proof.

LPΛ(P,Q)(XY ) = LPΛ(P,Q)(X )LPΛ(P,Q)(Y )

iff

λP(X )P(Y )+(1−λ)Q(X )Q(Y ) = (λP(X )+(1−λ)Q(X ))(λP(Y )+(1−λ)Q(Y ))

iff

λ(1 − λ)(P(X ) − Q(X ))(P(Y ) − Q(Y )) = 0

iff at least one of the following is true:

(i) Λ is dictatorial. That is, λ = 0 or λ = 1;
(ii) P(X ) = Q(X ). That is, the individuals agree on how likely X is.
(iii) P(Y ) = Q(Y ). That is, the individuals agree on how likely Y is.

Proof of Theorem 3
Theorem 3 (Aczél & Wagner, 1980; McConway, 1981). If F is a pooling
strategy defined for probability functions on an algebra over three or more
worlds, and F satisfies Local Unanimity Preservation and Eventwise Independ-
ence, then there is a sequence of weights Λ = (λ1, . . . , λn) such that, for any
probabilistic credence functions P1, . . . ,Pn,

F(P1, . . . ,Pn) = LPΛ(P1, . . . ,Pn)

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009315203
Downloaded from https://www.cambridge.org/core. IP address: 18.223.206.19, on 31 Jan 2025 at 18:30:22, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009315203
https://www.cambridge.org/core


Opinion Pooling 81

Proof. Suppose F satisfies Local Unanimity Preservation and Eventwise Inde-
pendence. That is,

(i) for all X, if P1(X ) = . . . = Pn(X ), then

F(P1, . . . ,Pn)(X ) = P1(X ) = . . . = Pn(X )

(ii) there is G such that, for all X,

F(P1, . . . ,Pn)(X ) = G(P1(X ), . . . ,Pn(X ))

Now, pick X, Y, Z from A that partition the logical space. Now, pick real num-
bers 0 ≤ a1, . . . ,an,b1, . . . ,bn ≤ 1 with ai + bi ≤ 1, for all i = 1, . . . ,n, and
define P1, . . . ,Pn as follows:

Pi(X ) = ai Pi(Y ) = bi Pi(Z) = 1 − ai − bi

Then

F(P1, . . . ,Pn)(X ∨ Y) = F(P1, . . . ,Pn)(X ) + F(P1, . . . ,Pn)(Y )

So, by Eventwise Independence,

G(a1 + b1, . . . ,an + bn) = G(a1, . . . ,an) + G(b1, . . . ,bn)

Now, for each i = 1, . . . ,n, define Gi as follows:

Gi(x) = G(0, . . . ,0︸  ︷︷  ︸
i−1

,x,0, . . . ,0︸  ︷︷  ︸
n−i

)

Then

G(x1, . . . ,xn) = G1(x1) + . . . + Gn(xn)

and, for each i = 1, . . . ,n, and for all 0 ≤ a,b ≤ 1 and a + b ≤ 1,

Gi(a + b) = Gi(a) + Gi(b)

SoGi satisfies Cauchy’s functional equation, and so there is λi such thatGi(x) =
λix for all 0 ≤ x ≤ 1. Since G(x1, . . . ,xn) is always a probability, λi ≥ 0.
What’s more, by Local Unanimity Preservation (i.e., (i) from the beginning of
the proof),

1 = G(1, . . . ,1) = G1(1) + . . . + Gn(1) = λ1 + . . . + λn

So 0 ≤ λ1, . . . , λn ≤ 1 and λ1 + . . . + λn = 1 and

F(P1, . . . ,Pn)(X ) = G(P1(X ), . . . ,Pn(X )) =
G1(P1(X )) + . . . + Gn(Pn(X )) = λ1P1(X ) + . . . + λnPn(X )
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Proof of Theorem 4
Theorem 4 (Raiffa, 1968). Suppose that

(a) P,Q are probabilistic credence functions defined on A ,
(b) Λ = (λ,1 − λ) and Λ′ = (λ′,1 − λ′) are sequences of weights,
(c) X and E are propositions in A ,
(d) P(E),Q(E) > 0,

And suppose that

LPΛ(P,Q)(X|E) = LPΛ′(P(−|E),Q(−|E))(X )

Then

λ′ =
λP(E)

λP(E) + (1 − λ)Q(E)

and

1 − λ′ = (1 − λ)Q(E)
λP(E) + (1 − λ)Q(E)

Proof.

LPΛ(P,Q)(X|E) = LPΛ′(P(−|E),Q(−|E))(X )

iff
λP(XE) + (1 − λ)Q(XE)
λP(E) + (1 − λ)Q(E) = λ

′P(X|E) + (1 − λ′)Q(X|E)

iff

λ′ =
λP(E)

λP(E) + (1 − λ)Q(E)

Proof of Theorem 7
Theorem 7 (Pettigrew, 2019b). Suppose I is an additive and continuous inac-
curacy measure. Then, if there is no sequence of weights Λ = (λ1, . . . , λn) such
that Q = LPΛ(P1, . . . ,Pn), then there is an alternative credence function Q⋆

such that, for each Pi,

EPi (I(Q⋆)) =
∑
X∈A

Pi(w)I(Q⋆,w) <
∑
X∈A

Pi(w)I(Q,w) = EPi(I(Q))

Proof. The proof proceeds in two stages. First, we use the additive and contin-
uous inaccuracy measure I to define a Bregman divergenceD. Then we appeal
to a result about Bregman divergences to establish the result.
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Since I is additive, there is s such that

I(P,w) =
∑
X∈A

s(Vw(X ),P(X ))

Now define the divergence D from P to P′ as follows:

D(P,P′) = EP(I(P′)) − EP(I(P))

Then let φ(p) = −ps(1,p) − (1 − p)s(0,p) and Φ(P) = ∑
X∈A φ(P(X )). Then it

is possible to show that

D(P,P′) = Φ(P) − Φ(P′) − ∇Φ(P′)(P − P′)

So D is a Bregman divergence.
Now we appeal to the following fact about Bregman divergences: if X is a

set of credence functions and Q lies outside the convex hull X + of X , then
there is Q⋆ in X + such that, for all P in X ,

D(P,Q⋆) < D(P,Q)

So letX = {P1, . . . ,Pn}. Then ifQ is not a linear pool of P1, . . . ,Pn, then there
is Q⋆ in X + such that

D(P,Q⋆) < D(P,Q)

But then, by the definition ofD,

EP(I(Q⋆)) − EP(I(P)) < EP(I(Q)) − EP(I(P))

So

EP(I(Q⋆)) < EP(I(Q))

as required.

Proof of Theorem 8
We state and prove a stronger version of the result, which is due to Pfau (2013).
It holds for all Bregman divergences, not just squared Euclidean distance.

Theorem 8 (Pfau, 2013). Suppose D is a Bregman divergence. Suppose
(X1, . . . ,Xm) is a sequence of quantities, whose true values are given by the
sequence T = (t1, . . . , tm). For each individual i, Ai = (ai1, . . . ,aim) gives their
estimates of the quantities. Then

D

(
1
n

n∑
i=1

Ai,T

)
=
1
n

n∑
i=1
D(Ai,T) −

1
n

n∑
i=1
D

(
Ai,

1
n

n∑
i=1

Ai

)
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Proof. Let A⋆ = 1
n
∑n

i=1 Ai. Now, since D is a Bregman divergence, there is Φ
such that

D(X,Y) = Φ(X ) − Φ(Y ) − ∇Φ(Y )(X − Y )

Then the result follows easily from the following three equations:

D(A⋆,T) = Φ(A⋆) − Φ(T) − ∇Φ(T)(A⋆ − T)

1
n

n∑
i=1
D(Ai,T) =

1
n

n∑
i=1

(
Φ(Ai) − Φ(T) − ∇Φ(T)

(
1
n

n∑
i=1

Ai − T

))
=
1
n

n∑
i=1

(
Φ(Ai) − Φ(T) − ∇Φ(T)

(
A⋆ − T

) )
1
n

n∑
i=1
D(Ai,A⋆) =

1
n

n∑
i=1

(
Φ(Ai) − Φ(A⋆) − ∇Φ(A⋆)

(
Ai − A⋆

) )
=
1
n

n∑
i=1

(
Φ(Ai) − Φ(A⋆)

)
− ∇Φ(A⋆)

(
1
n

n∑
i=1

Ai − A⋆
)

=
1
n

n∑
i=1
Φ(Ai) − Φ(A⋆)

Proof of Theorem 10
Theorem 10. Suppose X1, . . . ,Xm is a sequence of quantities. For each indi-
vidual i, Ai = (ai1, . . . ,aim) gives their estimates of the quantities. Now suppose
that A ,

∑n
i=1

1
nAi. Then there are possible true values T = (t1, . . . , tm) of the

quantities such that

SED (T,A) > 1
n

n∑
i=1

SED(T,Ai)

Proof. The right-hand side of the inequality is

1
n

∑
i

SED(T,Ai) =
1
n

∑
i

∑
j
(tj − aij)2

=
1
n

∑
i

∑
j

(
t2j − 2aijtj + a2ji

)
=

∑
j
t2j − 2

1
n

∑
i,j

aijtj +
1
n

∑
i,j

a2ij
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So SED(T,A) > 1
n
∑

i SED(T,Ai) iff∑
j
a2j − 2

∑
j
ajtj >

1
n

∑
i,j

a2ij − 2
∑
i,j

1
n
aijtj

iff

2

(∑
j

(
1
n

∑
i
aij − aj

)
tj

)
>
1
n

∑
i,j

a2ij −
∑
j
a2j

And, if (a1, . . . ,an) , (∑i
1
nai1, . . . ,

∑
i
1
nain), there is i such that

∑
i
1
naij−aj , 0,

and so it is always possible to choose T = (t1, . . . , tn) so that the inequality holds,
as required.

Proof of Theorem 13
Theorem 13 (Mongin, 1995). Suppose

(a) U is a utility function;
(b) F is a pooling strategy.

If F is not a linear pooling strategy, then there are credence functions P1, . . . ,Pn

and options A and B such that

(i) EPi (U(A)) > EPi (U(B)), for each i, and
(ii) EF(P1 ,...,Pn)(U(A)) < EF(P1 ,...,Pn)(U(B))

Proof. Given a probabilistic credence function P defined on an algebra
generated by the partition S = {S1, . . . ,Sm}, represent P by the vector
⟨P(S1), . . . ,P(Sm)⟩ in the m-dimensional unit cube [0,1]m. So, if X is a set
of probabilistic credence functions on the algebra generated by S , it is rep-
resented by a set of such vectors. Given a set X of such vectors, let X + be
the convex hull of X : that is, X + is the smallest convex set that contains X ;
equivalently, if X = {P1, . . . ,Pn},

X + = {λ1P1 + . . . + λnPn : 0 ≤ λ1, . . . , λn ≤ 1}

Now, suppose F is not a linear pooling strategy. Then there are credence func-
tions P1, . . . ,Pn such that F(P1, . . . ,Pn) does not belong to {P1, . . . ,Pn}+. But
now it follows from the Separating Hyperplane Theorem that there is a vector
A = ⟨a1, . . . ,am⟩ in Rm such that, for each Pi,

S · Pi < S · F(P1, . . . ,Pn))

And therefore there is a real number b such that, for all Pi,

S · Pi < b < S · F(P1, . . . ,Pn))
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Then define the following two options:

(i) U(A,Sj) = aj
(ii) U(B,Sj) = b

Then, for each Pi,

EPi (U(A)) =
m∑
j=1

Pi(Sj)U(A,Sj) = S · Pi < b = EPi (U(B))

While

EF(P1 ,...,Pn)(U(A)) =
m∑
j=1

F(P1, . . . ,Pn)(Sj)U(A,Sj)

= S · F(P1, . . . ,Pn) > b = EF(P1 ,...,Pn)(U(B))

Proof That Linear Pooling Violates Deference Compatibility
Theorem (Dawid et al., 1995; Bradley, 2018; Gallow, 2018). Suppose:

(a) X is a proposition;
(b) A is the random variable that give the credences that individual A assigns

to X;
(c) B is the random variable that give the credences that individual B assigns

to X;
(d) P is a credence function defined at least for conditional probabilities of the

form P(X|A = a & B = b)

Then, if

(i) P(A = B) < 1;
(ii) P(X|A = a) = a, for all 0 ≤ a ≤ 1;
(iii) P(X|B = b) = b, for all 0 ≤ b ≤ 1;
(iv) P(X|A = a & B = b) = λa + (1 − λ)b, for all 0 ≤ a,b ≤ 1;

then λ = 0 or λ = 1.

Proof. Our proof follows Gallow’s. We suppose that (ii) and (iii) are true, and
0 < λ < 1, and we derive the negation of (i).
First, we show that, for all 0 ≤ a,b ≤ 1,

E[A |B = b] = b and E[B |A = a] = a
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After all,

a = P(X|A = a)

=

∫ 1

0
P(X|A = a & B = b)P(B = b|A = a) db

=

∫ 1

0
(λa + (1 − λ)b)P(B = b|A = a) db

= λa
∫ 1

0
P(B = b|A = a) db + (1 − λ)

∫ 1

0
bP(B = b|A = a) db

= λa + (1 − λ)E[B |A = a]

And so, if 0 < λ < 1, then E[B |A = a] = a. And similarly E[A |B = b] = b.
Second, we use these identities to show that

E[A B] = E[A 2] = E[B2]

E[A B] =
∫ 1

0

∫ 1

0
abP(A = a & B = b) db da

=

∫ 1

0
aP(A = a)

[∫ 1

0
bP(B = b|A = a) db

]
da

=

∫ 1

0
aP(A = a)E[B |A = a] da

=

∫ 1

0
a2P(A = a) da since E[B |A = a] = a

= E[A 2]

And similarly E[A B] = E[B2].
Finally

E[(A − B)2] = E[A 2] − 2E[A B] + E[B2] = 0

So P(A = B) = 1, which contradicts (i).

Proof That Multiplicative Pooling Satisfies Evidence Pooling
Theorem (Baccelli & Stewart, 2023). Multiplicative pooling strategies satisfy
Evidence Pooling.

Proof. Suppose S is a partition and E is a disjunction of elements of that
partition. Then first: suppose S ∈ S and S ⊈ E1 & . . . & En. Then

MPΛS (P1, . . . ,Pn)(S|E1 & . . . &En) = 0 = MPΛS (P1(−|E1), . . . ,Pn(−|En))(S)
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Now, second: suppose S ⊆ E1 & . . . & En. Then

MPΛS (P1(−|E1), . . . ,Pn(−|En))(S) =
∏n

i=1 Pi(S|Ei)λi∑
S′∈S

∏n
i=1 Pi(S′ |Ei)λi

=

∏n
i=1 Pi(S|Ei)λi∑

S′⊆E1 & ... & En

∏n
i=1 Pi(S′ |Ei)λi

=

∏n
i=1 Pi(S)λi∑

S′⊆E1 & ... & En

∏n
i=1 Pi(S′)λi

= MPΛS (P1, . . . ,Pn)(S|E1 & . . . & En)

Inaccuracy Measures
An inaccuracy measure is a function I that takes a credence function P and a
world w and returns the inaccuracy I(P,w) of P at w.

• I is additive if there is a function s : [0,1] → [0,∞] such that

I(P,w) =
∑
X∈A

s(Vw(X ),P(X ))

In this case, we think of s(1,p) as the inaccuracy of credence p in a true
proposition and s(0,p) as the inaccuracy of a credence p in a falsehood. We
call s a scoring rule.

• s is continuous if s(1,x) and s(0,x) are continuous functions of x.
• s is strictly proper if for any 0 ≤ p ≤ 1,

ps(1,x) + (1 − p)s(0,x)

is minimized, as a function of x, at x = p. That is, each probability expects
itself to be most accurate.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009315203
Downloaded from https://www.cambridge.org/core. IP address: 18.223.206.19, on 31 Jan 2025 at 18:30:22, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009315203
https://www.cambridge.org/core


References
Aczél, J., & Wagner, C. G. (1980). A characterization of weighted arithmetic
means. SIAM Journal on Algebraic Discrete Methods, 1(3), 259–260.

Akerlof, G. (1970). The market for “lemons”: Quality, uncertainty, the market
mechanism. The Quarterly Journal of Economics, 84(3), 488–500.

Arntzenius, F. (2008). No regrets, or: Edith piaf revamps decision theory.
Erkenntnis, 68, 277–297.

Arrow, K. J. (1951). Social Choice and Individual Values. New York: Wiley.
Arvan, M. (2020). Neurofunctional Prudence and Morality: A Philosophical
Theory. Routledge.

Baccelli, J., & Stewart, R. T. (2023). Support for geometric pooling. The Review
of Symbolic Logic, 16(1), 298–337.

Baron, J., Mellers, B. A., Tetlock, P. E., Stone, E., & Ungar, L. H. (2014). Two
reasons to make aggregated probability forecasts more extreme. Decision
Analysis, 11(2), 133–145.

Basu, R. (2019). Radical moral encroachment: The moral stakes of racist
beliefs. Philosophical Issues, 29(1), 9–23.

Bazargan-Forward, S. (2017). Complicity. In M. Jankovic, & K. Ludwig (Eds.)
Routledge Handbook on Collective Intentionality, (pp. 327–337). London:
Routledge.

Benjamin, D. J., Berger, J. O., Johannesson, M., et al. (2018). Redefine
statistical significance. Nature Human Behaviour, 2(1), 6–10.

Bovens, L., & Hartmann, S. (2004). Bayesian Epistemology. Oxford: Oxford
University Press.

Bradley, R. (2018). Learning from others: Conditioning versus averaging.
Theory and Decision, 85(1), 5–20.

Bradley, S. (2016). Imprecise probabilities. In E. N. Zalta (Ed.) Stanford Ency-
clopedia of Philosophy. Metaphysics Research Lab, Stanford University.

Briggs, R. A., & Pettigrew, R. (2020). An accuracy-dominance argument for
conditionalization. Noûs, 54(1), 162–181.

Christensen, D. (2007). Epistemology of disagreement: The good news. The
Philosophical Review, 116(2), 187–217.

Christensen, D. (2009). Disagreement as evidence: The epistemology of con-
troversy. Philosophy Compass, 4(5), 756–767.

Couso, I., & Moral, S. (2011). Sets of desirable gambles: Conditioning, rep-
resentation, and precise probabilities. International Journal of Approximate
Reasoning, 52(7), 1034–1055.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009315203
Downloaded from https://www.cambridge.org/core. IP address: 18.223.206.19, on 31 Jan 2025 at 18:30:22, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009315203
https://www.cambridge.org/core


90 References

Cozman, F. G. (2012). Sets of probability distributions, independence, and
convexity. Synthese, 186, 577–600.

D’Agostino, M., & Sinigaglia, C. (2010). Epistemic accuracy and subjective
probability. InM. Suárez, M. Dorato, &M. Rédei (Eds.) EPSA Epistemology
and Methodology of Science: Launch of the European Philosophy of Science
Association, (pp. 95–105). Netherlands: Springer.

Dawid, P., DeGroot, M. H., Mortera, J., et al. (1995). Coherent combination of
experts’ opinions. Test, 4(2), 263–313.

Dawid, P., & Mortera, J. (2020). Resolving some contradictions in the theory
of linear opinion pools. Theory and Decision, 88, 453–456.

de Condorcet, N. (1785). Essay sur l’Application de l’Analyse à la Probabilité
des Décisions Rendue à la Pluralité des Voix. Paris.

de Finetti, B. (1974). Theory of Probability, vol. 1. New York: Wiley.
DeGroot, M. H. (1974). Reaching a consensus. Journal of the American
Statistical Association, 69(345), 118–121.

Dietrich, F. (2010). Bayesian group belief. Social Choice and Welfare, 35(4),
595–626.

Dietrich, F., & List, C. (2015). Probabilistic opinion pooling. In A. Hájek, &
C. R. Hitchcock (Eds.)Oxford Handbook of Philosophy and Probability (pp.
519–542). Oxford: Oxford University Press.

Dietrich, F., & List, C. (2017). Probabilistic opinion pooling generalized. Part
one: General agendas. Social Choice and Welfare, 48, 747–786.

Dogramaci, S., & Horowitz, S. (2016). An argument for uniqueness about
evidential support. Philosophical Issues, 26(1), 130–147.

Dubois, D., & Prade, H. (1988). Possibility Theory: An Approach to Comput-
erized Processing of Uncertainty. New York: Plenum Press.

Easwaran, K., Fenton-Glynn, L., Hitchcock, C., &Velasco, J. D. (2016). Updat-
ing on the credences of others: Disagreement, agreement, and synergy.
Philosophers’ Imprint, 16(11), 1–39.

Ebner, L., Schwaferts, P. M., & Augustin, T. (2019). Robust Bayes factor
for independent two-sample comparisons under imprecise prior informa-
tion. In International Symposium on Imprecise Probabilities: Theories and
Applications, (pp. 167–174). PMLR.

Elga, A. (2007). Reflection and disagreement. Noûs, 41(3), 478–502.
Elkin, L. (2021). Regret averse opinion aggregation. Ergo an Open Access
Journal of Philosophy, 8(16), 473–495.

Elkin, L. (2023). The precautionary principle and expert disagreement. Erken-
ntnis, 88(6), 2717–2726.

Elkin, L., &Wheeler, G. (2018). Resolving peer disagreements through impre-
cise probabilities. Noûs, 52(2), 260–278.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009315203
Downloaded from https://www.cambridge.org/core. IP address: 18.223.206.19, on 31 Jan 2025 at 18:30:22, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009315203
https://www.cambridge.org/core


References 91

Feldman, R. (2006). Reasonable religious disagreements. In L. Antony (Ed.)
Philosophers without Gods: Meditations on Atheism and the Secular Life
(pp. 194–214). Oxford: Oxford University Press.

Fitelson, B. (1999). The plurality of Bayesian measures of confirmation and the
problem of measure sensitivity. Philosophy of Science, 66(S3), S362–S378.

Gallow, J. D. (2018). No one can serve two epistemic masters. Philosophical
Studies, 175(10), 2389–2398.

Galton, F. (1907). Vox Populi. Nature, 75, 450–451.
Genest, C. (1984). A characterization theorem for externally Bayesian groups.
Annals of Statistics, 12(3), 1100–1105.

Genest, C., Weerahandi, S., & Zidek, J. V. (1984). Aggregating opinions
through logarithmic pooling. Theory and Decision, 17(1), 61.

Genest, C., & Zidek, J. V. (1986). Combining probability distributions: A
critique and an annotated bibliography. Statistical Science, 1(1), 114–135.

Gilbert, M. (2006). Rationality in collective action. Philosophy of the Social
Sciences, 36(1), 3–17.

Gilbert, M. (2013). Joint Commitment: How We Make the Social World.
Oxford: Oxford University Press.

Gilboa, I., & Schmeidler, D. (1989). Maxmin expected utility with non-unique
prior. Journal of Mathematical Economics, 18(2), 141–153.

Goldman, A. I. (2014). Social process reliabilism. In J. Lackey (Ed.) Essays in
Collective Epistemology, (pp. 13–41). Oxford: Oxford University Press.

Greaves, H., & Wallace, D. (2006). Justifying conditionalization: Conditional-
ization maximizes expected epistemic utility.Mind, 115(459), 607–632.

Hakli, R. (2011). On dialectical justification of group beliefs. In H. B. Schmid,
D. Sirtes, & M. Weber (Eds.) Collective Epistemology, (pp. 119–153).
Berlin: Ontos Verlag.

Hegselmann, R., & Krause, U. (2002). Opinion dynamics and bounded confi-
dence models, analysis and simulation. Journal of Artificial Societies and
Social Simulation, 5(3) 1–33.

Hild, M. (2001). Stable aggregation of preferences. Social Science Working
Paper 1112. California Institute of Technology.

Huemer, M. (2011). Epistemological egoism and agent-centered norms. In
T. Dougherty (Ed.) Evidentialism and Its Discontents, (p. 17). Oxford:
Oxford University Press.

Jehle, D., & Fitelson, B. (2009). What is the “equal weight view”? Episteme,
6(3), 280–293.

Jorgensen Bolinger, R. (2020). Varieties of moral encroachment. Philosophical
Perspectives, 34(1), 5–26.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009315203
Downloaded from https://www.cambridge.org/core. IP address: 18.223.206.19, on 31 Jan 2025 at 18:30:22, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009315203
https://www.cambridge.org/core


92 References

Joyce, J. M. (1998). A nonpragmatic vindication of probabilism. Philosophy of
Science, 65(4), 575–603.

Joyce, J. M. (1999). The Foundations of Causal Decision Theory. Cam-
bridge Studies in Probability, Induction, and Decision Theory. Cambridge:
Cambridge University Press.

Joyce, J. M. (2009). Accuracy and coherence: Prospects for an alethic episte-
mology of partial belief. In F. Huber, & C. Schmidt-Petri (Eds.) Degrees of
Belief (pp. 263–297). London: Springer.

Joyce, J. M. (2010). A defense of imprecise credences in inference and decision
making. Philosophical Perspectives, 24, 281–322.

Kelly, T. (2005). The epistemic significance of disagreement. In J. Hawthorne,
& T. G. Szabo (Eds.) Oxford Studies in Epistemology, vol. 1, (pp. 167–196).
Oxford University Press.

Kelly, T. (2011). Peer disagreement and higher order evidence. In A. Goldman,
& D. Whitcomb (Eds.) Social Epistemology: Essential Readings, (pp. 183–
217). Oxford: Oxford University Press.

King, N. L. (2012). Disagreement: What’s the problem? Or a good peer is hard
to find. Philosophy and Phenomenological Research, 85(2), 249–272.

Konek, J. (2019). IP Scoring Rules: Foundations and Applications. Proceed-
ings of the Eleventh International Symposium on Imprecise Probabilities:
Theories and Applications, vol. 103, (pp. 256–264).

Konieczny, S., & Pino Pérez, R. (1998). On the logic of merging. In Proceed-
ings of KR‘98, (pp. 488–498).

Konieczny, S., & Pino Pérez, R. (1999). Merging with integrity constraints.
In Fifth European Conference on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty (ECSQARU‘99), (pp. 233–244).

Kopec, M. (2019). Unifying group rationality. Ergo: An Open Access Journal
of Philosophy, 6, 517–544.

Kornhauser, L. A., & Sager, L. G. (1986). Unpacking the court. Yale Law
Journal, 96, 82–117.

Kutz, C. (2000). Complicity: Ethics and Law for a Collective Age. New York:
Cambridge University Press.

Kyburg, H. E. (1961). Probability and the Logic of Rational Belief. Middle-
town: Wesleyan University Press.

Kyburg, H. E., & Pittarelli, M. (1996). Set-based Bayesianism. IEEE Trans-
actions on Systems, Man, and Cybernetics-Part A: Systems and Humans,
26(3), 324–339.

Lackey, J. (2010). A justificationist view of disagreement’s epistemic signifi-
cance. In A. Haddock, A. Millar, & D. Pritchard (Eds.) Social Epistemology
(pp. 145–154). Oxford: Oxford University Press.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009315203
Downloaded from https://www.cambridge.org/core. IP address: 18.223.206.19, on 31 Jan 2025 at 18:30:22, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009315203
https://www.cambridge.org/core


References 93

Lackey, J. (2016).What is justified group belief?Philosophical Review, 125(3),
341–396.

Laddaga, R. (1977). Lehrer and the consensus proposal. Synthese, 36, 473–477.
Lehrer, K. (1976). When rational disagreement is impossible. Noûs, 10, 327–
332.

Lehrer, K., & Wagner, C. (1983). Probability amalgamation and the independ-
ence issue: A reply to Laddaga. Synthese, 55(3), 339–346.

Leitgeb, H., & Pettigrew, R. (2010a). An objective justification of Bayesianism
I: Measuring inaccuracy. Philosophy of Science, 77, 201–235.

Leitgeb, H., & Pettigrew, R. (2010b). An objective justification of Bayesianism
II: The consequences of minimizing inaccuracy. Philosophy of Science, 77,
236–272.

Levi, I. (1974). On indeterminate probabilities. Journal of Philosophy, 71, 391–
418.

Levi, I. (1985). Consensus as shared agreement and outcome of inquiry.
Synthese, 62(1), 3–11.

Levinstein, B. A. (2017). Permissive rationality and sensitivity. Philosophy and
Phenomenological Research, 94(2), 342–370.

Lewis, D. (1999). Why conditionalize? In Papers in Metaphysics and Episte-
mology, (pp. 403–407). Cambridge: Cambridge University Press.

List, C., & Pettit, P. (2002). Aggregating sets of judgments: An impossibility
result. Economics & Philosophy, 18(1), 89–110.

List, C., & Pettit, P. (2011). Group Agency: The Possibility, Design, and Status
of Corporate Agents. Oxford: Oxford University Press.

Loomes, G., & Sugden, R. (1982). Regret theory: An alternative theory of
rational choice under uncertainty. The Economic Journal, 92(368), 805–824.

Madansky, A. (1964). Externally Bayesian groups. Memorandum rm-4141-
pr, The RAND Corporation. www.rand.org/content/dam/rand/pubs/research
_memoranda/2008/RM4141.pdf.

Mayo-Wilson, C. & Wheeler, G. (2016). Scoring Imprecise Credences: A
Mildly Immodest Proposal. Philosophy and Phenomenological Research,
93(1), 55–78.

Makinson, D. (1965). The paradox of the preface. Analysis, 25(6), 205–207.
Matheson, J., & Frances, B. (2018). Disagreement. In E. N. Zalta (Ed.)
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford
University.

McConway, K. J. (1981). Marginalization and linear opinion pools. Journal of
the American Statistical Association, 76, 410–414.

Mongin, P. (1995). Consistent Bayesian aggregation. Journal of Economic
Theory, 66(2), 313–351.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009315203
Downloaded from https://www.cambridge.org/core. IP address: 18.223.206.19, on 31 Jan 2025 at 18:30:22, subject to the Cambridge Core terms of

http://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM4141.pdf
http://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM4141.pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009315203
https://www.cambridge.org/core


94 References

Morris, P. A. (1983). An axiomatic approach to expert resolution.Management
Science, 29(1), 24–32.

Moss, S. (2011). Scoring rules and epistemic compromise. Mind, 120(480),
1053–1069.

Moss, S. (2018). Moral encroachment. Proceedings of the Aristotelian Society,
118(2), 177–205.

Nau, R. F. (2002). The aggregation of imprecise probabilities. Journal of
Statistical Planning and Inference, 105(1), 265–282.

Nielsen, M. (2021). Accuracy-dominance and conditionalization. Philosophi-
cal Studies, 178(10), 1–20.

Osherson, D., & Vardi, M. Y. (2006). Aggregating disparate estimates of
chance. Games and Economical Behavior, 56(1), 148–173.

Page, S. E. (2007). The Difference: How the Power of Diversity Creates Bet-
ter Groups, Firms, Schools, and Societies. Princeton: Princeton University
Press.

Pettigrew, R. (2016). Accuracy and the Laws of Credence. Oxford: Oxford
University Press.

Pettigrew, R. (2019a). Aggregating incoherent agents who disagree. Synthese,
196, 2737–2776.

Pettigrew, R. (2019b). On the accuracy of group credences. In T. S. Gendler, &
J. Hawthorne (Eds.) Oxford Studies in Epistemology, vol. 6, (pp. 137–160).
Oxford: Oxford University Press.

Pettigrew, R. (2022). Aggregating agents with opinions about different propo-
sitions. Synthese, 200(5), 1–25.

Pfau, D. (2013). A Generalized Bias-Variance Decomposition for Bregman
Divergences. http://davidpfau.com/assets/generalized_bvd_proof.pdf.

Pigozzi, G. (2006). Belief merging and the discursive dilemma: An argument-
based approach to paradoxes of judgment aggregation. Synthese, 152, 285–
298.

Predd, J., Seiringer, R., Lieb, E. H., et al. (2009). Probabilistic coherence
and proper scoring rules. IEEE Transactions of Information Theory, 55(10),
4786–4792.

Predd, J. B., Osherson, D., Kulkarni, S., & Poor, H. V. (2008). Aggregat-
ing probabilistic forecasts from incoherent and abstaining experts. Decision
Analysis, 5(4), 177–189.

Quintana, I. O. (2024). Radical pooling and imprecise probabilities.Erkenntnis,
89, 153–180.

Raiffa, H. (1968). Decision Analysis: Introductory Lectures on Choices under
Uncertainty. Reading: Addison-Wesley.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009315203
Downloaded from https://www.cambridge.org/core. IP address: 18.223.206.19, on 31 Jan 2025 at 18:30:22, subject to the Cambridge Core terms of

http://davidpfau.com/assets/generalized_bvd_proof.pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009315203
https://www.cambridge.org/core


References 95

Ramsey, F. P. (1926 [1931]). Truth and probability. In R. B. Braithwaite (Ed.)
The Foundations of Mathematics and Other Logical Essays, chap. VII, (pp.
156–198). London: Kegan, Paul, Trench, Trubner.

Ranjan, R., & Gneiting, T. (2010). Combining probability forecasts. Journal of
the Royal Statistical Society Series B: Statistical Methodology, 72(1), 71–91.

Rosen, G. (2001). Nominalism, naturalism, and epistemic relativism. Philo-
sophical Perspectives, 15, 69–91.

Satopää, V. A., Baron, J., Foster, D. P., et al. (2014). Combining multiple
probability predictions using a simple logit model. International Journal of
Forecasting, 30(2), 344–356.

Savage, L. J. (1954). The Foundations of Statistics. New York: John Wiley &
Sons.

Savage, L. J. (1971). Elicitation of personal probabilities and expectations.
Journal of the American Statistical Association, 66(336), 783–801.

Schmitt, F. F. (1994). The justification of group beliefs. In F. F. Schmitt (Ed.)
Socializing Epistemology: The Social Dimensions of Knowledge, (pp. 257–
287). London: Rowman and Littlefield.

Schoenfield, M. (2017). The Accuracy and Rationality for Imprecise Cre-
dences. Noûs, 51(4), 667–685.

Seidenfeld, T. (2004). A contrast between two decision rules for use with
(convex) sets of probabilities: Gamma-maximin versus E-admissibility.
Synthese, 140, 69–88.

Seidenfeld, T., Kadane, J. B., & Schervish, M. J. (1989). On the shared prefer-
ences of two Bayesian decision makers. The Journal of Philosophy, 86(5),
225–244.

Seidenfeld, T., J. Schervish, M. J. & Kadane, J. B. (2012). Forecasting with
imprecise probabilities. International Journal of Approximate Reasoning,
53, 1248–1261.

Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton: Princeton
University Press.

Soll, J. B., & Larrick, R. P. (2009). Strategies for revising judgment: How (and
howwell) people use others’ opinions. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 35(3), 780.

Stewart, R. T., & Quintana, I. O. (2018). Probabilistic opinion pooling with
imprecise probabilities. Journal of Philosophical Logic, 47, 17–45.

Stone, M. (1961). The opinion pool. The Annals of Mathematical Statistics,
32(4), 1339–1342.

Titelbaum, M. G. (2015). Rationality’s fixed point (Or: In defense of right
reason). In J. Hawthorne, & T. S. Gendler (Eds.) Oxford Studies in Epis-
temology, vol. 5, (pp. 253–294). Oxford: Oxford University Press.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009315203
Downloaded from https://www.cambridge.org/core. IP address: 18.223.206.19, on 31 Jan 2025 at 18:30:22, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009315203
https://www.cambridge.org/core


96 References

Tuomela, R. (1992). Group beliefs. Synthese, 91(3), 285–318.
Tuomela, R., & Mäkelä, P. (2016). Group agents and their responsibility. The
Journal of Ethics, 20(1), 299–316.

van Inwagen, P. (1996). It is wrong, always, everywhere, and for anyone, to
believe anything, upon insufficient evidence. In J. Jordan, & D. Howard-
Snyder (Eds.) Faith, Freedom, and Rationality, (pp. 137–154). Hanham:
Rowman and Littlefield.

Vicig, P., & Seidenfeld, T. (2012). Bruno de finetti and imprecision: Imprecise
probability does not exist! International Journal of Approximate Reasoning,
53(8), 1115–1123.

Wagner, C. (1978). Consensus through respect: A model of rational group
decision-making. Philosophical Studies: An International Journal for Phi-
losophy in the Analytic Tradition, 34(4), 335–349.

Wagner, C. (2010). Jeffrey conditioning and external Bayesianity. Logic Jour-
nal of IGPL, 18(2), 336–345.

Walley, P. (1982). The elicitation and aggregation of beliefs. Technical Report
23.

Walley, P. (1991). Statistical Reasoning with Imprecise Probabilities, vol. 42 of
Monographs on Statistics and Applied Probability. London: Chapman and
Hall.

Wedgwood, R. (2007). The Nature of Normativity. Oxford: Oxford University
Press.

Weirich, P. (2020). Causal decision theory. In E. N. Zalta (Ed.) The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford Univer-
sity.

Weirich, P. (2021). Rational Choice Using Imprecise Probabilities and Utili-
ties. Elements in Decision Theory and Philosophy. Cambridge: Cambridge
University Press.

Weisberg, J., & Pettigrew, R. (2023). Geometric pooling: A user’s guide.
The British Journal for the Philosophy of Science. www.journals.uchicago
.edu/doi/10.1086/727000.

Winkler, R. L. (1968). The consensus of subjective probability distributions.
Management Science, 15(2), B61–B75.

Zhang, S. (ms). Coherent combination of Experts’ Opinions: Another impos-
sibility result.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009315203
Downloaded from https://www.cambridge.org/core. IP address: 18.223.206.19, on 31 Jan 2025 at 18:30:22, subject to the Cambridge Core terms of

http://www.journals.uchicago.edu/doi/10.1086/727000
http://www.journals.uchicago.edu/doi/10.1086/727000
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009315203
https://www.cambridge.org/core


Acknowledgments
We are grateful for the feedback provided by Frederik Van De Putte, Erica
Yu, Mans Abrahamson, and two anonymous reviewers on earlier manuscripts.
Lee Elkin was supported by the Dutch Research Council (NWO) through the
ENCODE Vidi project (VI.Vidi.191.105). Richard Pettigrew was supported
by a British Academy Mid-Career Fellowship (MF21\210022). Work on this
Element was facilitated by research visits at the University of Bristol (Lee
Elkin, fall 2023) and Erasmus University Rotterdam (Richard Pettigrew, winter
2023), both funded by the ENCODE project.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009315203
Downloaded from https://www.cambridge.org/core. IP address: 18.223.206.19, on 31 Jan 2025 at 18:30:22, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009315203
https://www.cambridge.org/core


use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009315203
Downloaded from https://www.cambridge.org/core. IP address: 18.223.206.19, on 31 Jan 2025 at 18:30:22, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009315203
https://www.cambridge.org/core


Decision Theory and Philosophy

Martin Peterson
Texas A&M University

Martin Peterson is Professor of Philosophy and Sue and Harry E. Bovay Professor of the
History and Ethics of Professional Engineering at Texas A&M University. He is the author
of four books and one edited collection, as well as many articles on decision theory,

ethics and philosophy of science.

About the Series
This Cambridge Elements series offers an extensive overview of decision theory in its
many and varied forms. Distinguished authors provide an up-to-date summary of the

results of current research in their fields and give their own take on what they believe are
the most significant debates influencing research, drawing original conclusions.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009315203
Downloaded from https://www.cambridge.org/core. IP address: 18.223.206.19, on 31 Jan 2025 at 18:30:22, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009315203
https://www.cambridge.org/core


Decision Theory and Philosophy

Elements in the Series
Rational Choice Using Imprecise Probabilities and Utilities

Paul Weirich
Beyond Uncertainty: Reasoning with Unknown Possibilities

Katie Steele and H. Orri Stefánsson
Evidential Decision Theory

Arif Ahmed
Commitment and Resoluteness in Rational Choice

Chrisoula Andreou
Money-Pump Arguments
Johan E. Gustafsson
Bargaining Theory
Peter Vanderschraaf

Evolutionary Game Theory
J. McKenzie Alexander

The History and Methodology of Expected Utility
Ivan Moscati

Preference Change
David Strohmaier and Michael Messerli

The Measurement of Subjective Probability
Edward J. R. Elliott

Rationality and Time Bias
Abelard Podgorski
Opinion Pooling

Lee Elkin and Richard Pettigrew

A full series listing is available at: www.cambridge.org/EDTP

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009315203
Downloaded from https://www.cambridge.org/core. IP address: 18.223.206.19, on 31 Jan 2025 at 18:30:22, subject to the Cambridge Core terms of

http://www.cambridge.org/EDTP
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009315203
https://www.cambridge.org/core

	Cover
	Title page
	Imprints page
	Opinion Pooling
	Contents
	1 Introduction
	2 Philosophical Motivations
	2.1 Epistemic Peer Disagreement
	2.2 Group Rationality and Justified Group Belief
	2.3 Group Rationality and Responsibility

	3 Desirable Features of Pooling Strategies
	3.1 The Formal Framework
	3.2 Preserving Unanimous Judgments
	3.3 Eventwise Independence
	3.4 Ruling Out Dictators
	3.5 Bounding the Group’s Opinions
	3.6 The Interaction of Pooling and Learning
	3.7 Preserving Judgments of Independence
	3.8 No Regrets

	4 Opinion Pooling Strategies
	4.1 Linear Pooling
	4.2 Geometric Pooling
	4.3 Multiplicative Pooling
	4.4 Imprecise Probability Pooling

	5 Promoting Group Epistemic Rationality
	5.1 Getting to the Truth: How to Measure (In)Accuracy?
	5.2 Revisiting Justified Group Belief

	6 Promoting Group Practical Rationality
	6.1 A Quick Primer on Expected Utility Theory
	6.2 Dutch Booking Newly Established Dependencies
	6.3 No Regrets, or How to Stop Throwing Away Money
	6.4 The Ex Ante Pareto Condition
	6.5 The Instability of Group Preferences

	7 Relaxing Some Constraints
	7.1 Aggregating Incoherent Individuals
	7.2 Aggregating Individuals with Different Agendas

	8 Conclusion

	Appendix
	References
	Acknowledgments�

