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A Class of Cellulated Spheres with
Non-Polytopal Symmetries

Dedicated to Ted Bisztriczky, on his sixtieth birthday.

Gábor Gévay

Abstract. We construct, for all d ≥ 4, a cellulation of S
d−1. We prove that these cellulations cannot

be polytopal with maximal combinatorial symmetry. Such non-realizability phenomenon was first

described in dimension 4 by Bokowski, Ewald and Kleinschmidt, and, to the knowledge of the author,

until now there have not been any known examples in higher dimensions. As a starting point for the

construction, we introduce a new class of (Wythoffian) uniform polytopes, which we call duplexes. In

proving our main result, we use some tools that we developed earlier while studying perfect polytopes.

In particular, we prove perfectness of the duplexes; furthermore, we prove and make use of the per-

fectness of another new class of polytopes which we obtain by a variant of the so-called E-construction

introduced by Eppstein, Kuperberg and Ziegler.

1 Motivation and Preliminaries

A version of the famous Steinitz problem can be formulated as follows.

Problem 1.1 Given a lattice L, is it isomorphic to the face lattice L(P) of some

convex polytope P?

Its name stems from the fact that the first relevant characterization result is due to
Steinitz (1922). By his well-known theorem, a graph is isomorphic to the 1-skeleton

of a 3-polytope (i.e., 3-polytopal [21]) if and only if it is simple, planar, and 3-con-

nected (see [18, Chapter 13.1] and [32, Lecture 4]). But the problem goes back even
earlier. In fact, in 1909 Brückner gave, inadvertently, the dual of a simplicial 3-sphere,

the polytopality of which was decided more than fifty years later. Grünbaum and
Sreedharan (1967) showed, and Bokowski (2006) confirmed, that there is no 4-poly-

tope such that its boundary complex is isomorphic to Brückner’s sphere (see [4, 18,

24, 28, 32]). Since a characterization result which would generalize Steinitz’ theorem
to arbitrary dimension is still lacking, the investigation of such non-polytopal ex-

amples is of continuing interest. Their existence is highly supported by some recent

general results. In particular, Pfeifle and Ziegler [28] proved that for n large enough,
there are far more simplicial 3-spheres than 4-polytopes on n vertices. In other words,

“most” triangulations of S
3 are not isomorphic to the boundary complex of a convex
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4-polytope. On the other hand, deciding the polytopality of questionable examples
provides a great challenge to the researchers working with and on algorithmic meth-

ods; see the works of Jürgen Bokowski on the algorithmic Steinitz problem ([4, 8],
and the references therein.)

Thus, we think it may be of interest for further research that in this paper we give
an infinite series of examples of (d−1)-spheres, with d ≥ 4, the polytopality of which

is to be decided (Problem 5.1 in Section 5). These are constructed in two main steps:

in Section 2 we introduce the polytopes called uniform duplexes, and in Section 4 we
apply the so-called E-construction to these polytopes.

Although we cannot answer the question of polytopality of our examples, we were
able to solve a restricted version of the problem. Let Σ be a combinatorial structure

generalizing the boundary complex of a polytope such that one can assign to it a
lattice L(Σ) of its suitably defined substructures. In seeking the possible polytopal

realizations of Σ, one may ask whether all of its combinatorial automorphisms can

be realized by geometric symmetries of a polytope. Let G(P ) denote the group of
geometric symmetries of a polytope P, i.e., the group of all Euclidean isometries of

the ambient space (affine hull of P) which map P to itself, and let A(P) denote the

group of automorphisms of its face lattice L(P). Since geometric symmetries preserve
incidences, they induce combinatorial automorphisms. Thus, in general, A(P) is

larger than G(P), in the sense that A(P) contains a proper subgroup isomorphic to
G(P). Now our question can be formulated in the following form.

Problem 1.2 Given a combinatorial structure Σ, does there exist a polytope P such
that L(Σ) ∼= L(P) and A(Σ) ∼= G(P) ?

This goes back to the following question of Grünbaum and Shephard [19]: “Given
any d-polytope P, does there always exist a polytope P ′ combinatorially equivalent to

P such that G(P ′) ∼= A(P)?”

The question is settled in three dimensions by a theorem of Mani which states

that for each 3-polytopal graph G there exists a convex 3-polytope P such that every

automorphism of G is induced by a symmetry of P.

The phenomenon that the full combinatorial symmetry group cannot be realized

by a combinatorially prescribed polytope, appears first in four dimensions. The first
examples are known as McMullen’s sphere (1968) and Kleinschmidt’s sphere (1984).

Both were carefully investigated by Bokowski et al. (see [6], resp. [3] and [7]; they are
also described in [4]). Most recently, an infinite series of examples was found in four

dimensions [4, 5, 26].

Such examples are also interesting in the context of the universality theorems for

polytopes [29]. In fact, Kleinschmidt’s sphere stimulated Mnëv when he established

his famous universality theorem which implies that for d ≥ 4 the realization spaces of
d-polytopes can be arbitrarily complicated [3,4]. The realization space of the infinite

series given in [5, 26] has also been investigated, see the works of Paffenholz [25, 26].

To the knowledge of the author, no such examples are known in higher dimen-

sions. Thus we believe that our main result, formulated in Theorem 5.3 considerably
extends the set of known spheres having non-polytopal symmetries.

The lattice L in Problem 1.1, or the Σ in Problem 1.2, may refer to various combi-
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natorial structures generalizing the (boundary complex of) a polytope. Most gener-
ally, such a structure is a strongly regular cell complex. We recall some definitions.

A regular cell complex Γ is defined [1, 2] as a finite collection of closed topological
balls σ in a Hausdorff space ‖Γ‖ =

⋃
σ∈Γ

such that

(i) the interiors σ̊ partition ‖Γ‖, i.e., every x ∈ ‖Γ‖ lies in exactly one σ̊,

(ii) the boundary ∂σ is a union of some members of Γ, for all σ ∈ Γ.

The balls σ ∈ Γ are called the closed cells of Γ, their interiors σ̊ are the open cells. The

space ‖Γ‖ is called the underlying space. Conversely, we also speak of the (regular)

cell decomposition (or cellulation) of the space ‖Γ‖.

A regular cell complex is also called a regular CW complex. If its underlying space

is (topologically) a sphere, then it is called a regular CW sphere.

The face poset F(Γ) = (Γ,≥) is the set of closed cells ordered by containment.
The augmented face poset F̂( Γ) = F(Γ) ∪ {0̂, 1̂} is the face poset enlarged by new

elements such that 0̂ < σ < 1̂ for all σ ∈ Γ.

A regular cell complex has the intersection property if the intersection of any two
non-empty closed cells is also a cell in the complex.

We adopt the following term used in [13, 27, 28]. A regular cell complex is called
strongly regular if it has the intersection property. We note that the intersection prop-

erty is necessary and sufficient for the augmented face poset of a regular cell complex

to be a lattice (see [2, Problem 4.47, p. 223] and [27, p. 607].)

The concept of a strongly regular cell complex is a natural generalization of the

boundary complex of a polytope. However, it is too general for our present pur-

poses. We should like to emphasize that our construction produces objects that are
conceptually very close to a convex polytope, the latter being regarded primarily as a

geometric object. Accordingly, we use the following definition for our spheres.

Definition 1.3 A strongly regular cell complex is called a cellulated geometric sphere,
in short, a CG sphere, if its underlying space is a sphere S in geometric sense, i.e., S is

the locus of points equidistant from a fixed point in a Euclidean space E
d.

We note that we already used this concept, implicitly, in our earlier work where
the 3-spheres with non-polytopal symmetries, discovered by the author of the present

paper, were also treated as CG spheres, in the guise of spherical tessellations [5].

2 Duplexes

In this section we introduce a new class of polytopes which will serve as the starting

point for constructing our cellulated spheres.

Definition 2.1 Let T and T ′ be two concentric regular simplices of equal size such
that one is the mirror image of the other with respect to their common centre. Then

the intersection T ∩T ′ is called a uniform duplex. A polytope combinatorially equiv-

alent to a uniform duplex is called a duplex.
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Here we adopt a term which was coined by Coxeter [9, 12] (see also [31]).

Definition 2.2 A convex polygon is uniform if it is regular. Recursively, if d ≥ 3, a

convex d-polytope is uniform if its facets are uniform and its (geometric) symmetry
group is transitive on its vertices.

We briefly summarize some basic properties of duplexes. Since duplexes of odd

and even dimension behave slightly differently, we treat the two cases separately.

Case I. Odd dimension. We start from a regular d-simplex Td, with d = 2k + 1

(k = 1, 2, . . . ). We represent it in the hyperplane
∑

xi = 0 of a Euclidean (d + 1)-
space with vertices

(2k + 1,−1, . . . ,−1︸ ︷︷ ︸
2k+1

)P,

where the superscript denotes that all permutations of the coordinates are to be taken.
Then the centroids of its k-faces can be given as

(2.1) (1, . . . , 1︸ ︷︷ ︸
k+1

−1, . . . ,−1︸ ︷︷ ︸
k+1

)P.

Clearly, the same vectors provide the centroids of the k-faces of −Td, the mirror im-

age of Td with respect to the origin. Alternatively, Td and −Td are reciprocal to each

other with respect to the sphere circumscribed to these points. This means, on the
other hand, that the intersection of Td and −Td is a polytope which can be considered

as the k-th simple truncation of either of them [11, Chapter 8.1]. Thus the uniform
duplex Td ∩ −Td is a (Wythoffian) uniform polytope in the sense of Definition 2.2,

which justifies using this term in our definition for duplexes. Its Coxeter symbol is

• · · · •︸ ︷︷ ︸
k

©• • · · · •︸ ︷︷ ︸
k

.

We shall denote it by D d . Its vertices are exactly the points (2.1). As it follows from
Coxeter’s theory of Wythoffian polytopes [9], its facets are of type

• · · · •︸ ︷︷ ︸
k−1

©• • · · · •︸ ︷︷ ︸
k

and • · · · •︸ ︷︷ ︸
k

©• • · · · •︸ ︷︷ ︸
k−1

.

Clearly, these are congruent with each other, and D d has d + 1 of both of them.

Furthermore, the ridges, i.e., (d − 2)-faces, are of the following types:

(2.2) • · · · •︸ ︷︷ ︸
k−2

©• • · · · •︸ ︷︷ ︸
k

, • · · · •︸ ︷︷ ︸
k

©• • · · · •︸ ︷︷ ︸
k−2

and

(2.3) • · · · •︸ ︷︷ ︸
k−1

©• • · · · •︸ ︷︷ ︸
k−1

.
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Notice that the latter is again a duplex (of odd dimension). (Here we assume that
k ≥ 2, since for k = 1 there is only one type of ridge, as a 3-duplex is just an

octahedron.)

By adding the vector (1, . . . , 1) to (2.1) and applying the scaling factor 1
2
, one

observes that the vertex set of a particular kind of polytope is obtained; namely, this

is the hypersimplex ∆2k+1(k + 1) [32]. Thus, in fact, our family of duplexes of odd

dimension does not form a new class of polytopes (hypersimplices were introduced
by Gelfand and his co-workers in 1975 [14]).

Case II. Even dimension. Td is now a regular d-simplex with d = 2k (k = 1, 2, . . . ).
We represent it with vertices

(2k,−1, . . . ,−1︸ ︷︷ ︸
2k

)P.

The centroids of its (k − 1)-faces and k-faces are

(2.4)
1

k
(k + 1, . . . , k + 1︸ ︷︷ ︸

k

,−k, . . . ,−k︸ ︷︷ ︸
k+1

)P

and

(2.5)
1

k + 1
(k, . . . , k︸ ︷︷ ︸

k+1

,−(k + 1), . . . ,−(k + 1)︸ ︷︷ ︸
k

)P,

respectively. Recall now that the fundamental domain of the symmetry group of Td,

given by the Coxeter graph

• · · · •︸ ︷︷ ︸
k−1

• • • · · · •︸ ︷︷ ︸
k−1

,

is a spherical simplex, provided that the action of the group is restricted to the unit
sphere S

d−1; this simplex is the radial projection on S
d−1 of an orthoscheme whose

vertices are just the centroids of suitably chosen j-faces of Td, for all j = 0, 1, . . . ,

d − 1 [11, Theorem 11.23]. Take the midpoint of the edge of this spherical simplex
joining the two vertices that correspond to the centroid of a (k− 1)-face and a k-face.

One sees at once that it is in the point set

(2.6) (1, . . . , 1︸ ︷︷ ︸
k

, 0,−1, . . . ,−1︸ ︷︷ ︸
k

)P,

apart from a certain scaling factor.

Now we choose that factor 1 and apply the Wythoff construction to this partic-

ular point. In our case this means that we take in fact all the permutations of the
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coordinates and form the convex hull of the point set (2.6). What is obtained is the
(uniform) polytope whose Coxeter symbol is

(2.7) • · · · •︸ ︷︷ ︸
k−1

©• ©• • · · · •︸ ︷︷ ︸
k−1

.

Observe the bilateral symmetry of this Coxeter symbol; it corresponds to the fact

that the point set (2.6), and hence the polytope (2.7), is symmetric under reflection
in the origin. Equivalently, this polytope arises from −Td as well through a procedure

analogous to the above. In fact, (2.4) and (2.5) are at the same time the centroids of

the k-faces and (k−1)-faces of −Td, respectively. We conclude that the polytope (2.7)
is just the (uniform) duplex Td ∩ −Td. (We recall that in a continuous sequence of

truncations in which the truncating hyperplanes proceed from the centroids of the
(k − 1)-faces to the centroids of the k-faces, (2.7) is an intermediate stage where

these hyperplanes go through the points (2.6); in every stage the initial point of the

Wythoff construction is a point on the edge connecting two such centroids of the
orthoscheme mentioned above).

Analogously to the odd case, the types of its facets are

• · · · •︸ ︷︷ ︸
k−1

©• ©• • · · · •︸ ︷︷ ︸
k−2

and • · · · •︸ ︷︷ ︸
k−2

©• ©• • · · · •︸ ︷︷ ︸
k−1

,

for k ≥ 2; but we are especially interested in the ridges here as well. These are of the

following types:

©• •, • ©• , and(2.8)

©• ©•(2.9)

(i.e., regular triangle and hexagon) for k = 2, as well as

(2.10)

• · · · •︸ ︷︷ ︸
k−1

©• ©• • · · · •︸ ︷︷ ︸
k−3

, • · · · •︸ ︷︷ ︸
k−3

©• ©• • · · · •︸ ︷︷ ︸
k−1

,

and

(2.11) • · · · •︸ ︷︷ ︸
k−2

©• ©• • · · · •︸ ︷︷ ︸
k−2

,

for k > 2. Here one can observe as well that the latter is again a duplex.
The facet structure of the uniform duplex of dimension 4 is depicted in Figure 1.

This polytope occurs as a Wythoffian uniform polytope in [10, 12], where its vertex

coordinates in the general form (2.6) are given. It is described as a perfect polytope
in [15], and also in [16]; in the latter an assignment of coordinates to all 30 vertices

is also given. Its symmetry properties are investigated in more detail in [17]. It is also
interesting in the context of abstract regular polytopes [20]. It has 10 Archimedean

truncated tetrahedra as facets; its 2-faces are: 20 regular triangles (ridges of non-

duplex type, see (2.8)) and 20 regular hexagons (ridges of duplex type, see (2.9)).
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Figure 1: The uniform 4-duplex.

Actually, it was the starting point for our construction described in full generality in
the next section; thus we use it here to convey the intuitive idea of that.

The following property of the ridges of uniform duplexes will be crucial for the

proof of our main result.

Lemma 2.3 Let D d be a uniform d-duplex such that its vertex set is (2.1) if d = 2k+1,

and is (2.6) if d = 2k (k = 2, 3 . . . ). Then both types of the ridges of D d have a

circumsphere. The radius of this sphere for the ridges of duplex type, resp. non-duplex

type, is

(2.12) r2k+1
D =

√
2k, resp. r2k+1

N =

√
2
(

k − 1

k

)
, if d = 2k + 1,

and

(2.13) r2k
D =

√
2(k − 1), resp. r2k

N =

√
2
(

k − 1 − 2

2k − 1

)
, if d = 2k.

Proof Since D d is a Wythoffian polytope (both in odd and in even case), it is vertex-

transitive; thus it has a circumsphere. A supporting hyperplane of D d containing

any facet F ⊂ D d intersects that circumsphere in a sphere which is circumscribed
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around F. Likewise, any face of lower dimension of D d has its own circumsphere. We
are interested, in particular, in the radius of two such spheres.

It is clear that for all i = 1, 2, . . . , d + 1, the hyperplanes

(2.14) xi = 1 and xi = −1

are supporting hyperplanes of D d. Let H be such a hyperplane for some fixed i.
H contains exactly those vertices of D d (from (2.1) or (2.6)) the i-th coordinate of

which is fixed as either 1 or −1. Among these vertices one easily finds d affinely

independent points. Hence the vertices in H form actually the vertex set of a facet of
D d. Thus the supporting hyperplanes (2.14) determine the facets of D d originating

(as truncations ) from the facets of T or T ′, depending on the sign on the right-hand
side of the equations (2.14) (clearly there are no other facets).

It follows that, fixing two (non-zero) coordinates of the vertices, one obtains the

vertex set of a ridge of D d. Namely, the ridges of non-duplex type (such as (2.2) or
(2.10)) have vertices with fixed coordinates of identical sign, while the vertices of the

ridges of duplex type (such as (2.3) or (2.11) have fixed coordinates of distinct sign.

For the ridges of the latter type an obvious consequence is that they are centrally
symmetric. It follows directly that their centroids are

(1, 0, . . . , 0︸ ︷︷ ︸
d−1

,−1)P.

This together with (2.1) resp. (2.6), taking into consideration (2.14), yields the radius
vectors and then the equality (2.12) for r2k+1

D resp. the equality (2.13) for r2k
D .

In the vertex vector of a ridge of non-duplex type two coordinates, say the i-th

and j-th, are fixed as 1 (or −1). Thus in the vector of the centroid of this ridge the
i-th and j-th coordinate will be 1 (or −1) as well. On the other hand, it is clear that

the rest of the coordinates of this centroid (using vertices either (2.1) or (2.6)) will be

equal to each other. Hence from the condition that the coordinate sum must be zero
one obtains at once the vectors

±1

k
(−k,−k, 1, . . . , 1︸ ︷︷ ︸

2k

)P and ± 1

2k − 1
(−2k + 1,−2k + 1, 2, . . . , 2︸ ︷︷ ︸

2k−1

)P,

in the odd and even case, respectively. This again, together with (2.1) and (2.6) yields
the equalities (2.12) and (2.13) for r2k+1

N and r2k
N , respectively.

Note that for k = 1, r2k+1
N is zero, which is consistent with the fact that in the case

of the octahedron the “ridge” of non-duplex type shrinks in fact to a point.

Corollary 2.4 In a uniform duplex D of dimension at least four the distance of a ridge

of duplex type from the centre of D is smaller than that of a ridge of non-duplex type.

Proof This is equivalent to saying that the size of the circumsphere of a ridge of

duplex type is greater than that of a ridge of non-duplex type, see (2.12) and (2.13).
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We shall need the following observation, which comes from a comparison of the
Coxeter symbols of the facets and edges given above (we used it implicitly in the proof

of Lemma 2.3).

Observation 2.5 Let a duplex of dimension d be constructed from a pair of sim-

plices T and T ′ as in Definition 2.1. Consider a pair of its adjacent facets F1 and F2.

For d ≥ 4, if both F1 and F2 originate from (the facets of) the same simplex (either T

or T ′), then they meet in a ridge of non-duplex type. If they originate from different

simplices, then they meet in a ridge of duplex type.

3 The Uniform Duplexes as Perfect Polytopes

We shall prove our main result in the context of perfect polytopes; as a preparation,

in this section we prove that the uniform duplexes are perfect polytopes.

The notion a perfect polytope was introduced by Stewart Robertson [30]. We
recall some definitions (see [15]). Let G(P) and L(P) denote the (geometric) sym-

metry group and the face lattice of a d-polytope P, respectively, as in Section 1. Two

d-polytopes P and Q in E
d are said to be symmetry equivalent if there exists an isom-

etry ϕ of E
d and a lattice isomorphism λ : L(P) → L(Q ) such that for each g ∈ G(P)

and each F ∈ L(P), λ(g(F)) = (ϕ g ϕ−1)(λ(F)). Now a polytope P is said to be
perfect if all polytopes symmetry equivalent to P are similar to P (where similarity is

meant in the usual geometric sense). Intuitively speaking, a polytope is perfect if its

shape cannot be changed without changing the action of its symmetry group on its
face lattice.

The following result (due to M. R. Pinto, as cited in [22]) shows that the perfect-

ness is preserved in a restricted case of polarity.

Proposition 3.1 Let P be a perfect polytope with its centroid at the origin. Then its

polar dual P△
= {y ∈ E

d | 〈x, y〉 ≤ 1 for all x ∈ P} is perfect as well.

Let G be a finite group of isometries in E
d fixing the origin and denote by e the

identity in G. Then the symmmetry scaffolding of G is the union of the fixed point

sets of all transformations in G \ {e} and is denoted by scaf G. We use the same term
(and notation) for the intersection of this set with the unit sphere S

d−1. (To avoid

confusion, we use the attribute spherical in this latter case, where the distinction is
important). For a point A ∈ scaf G, the fixed point set of A is defined as the set

fixA = {X ∈ R
d | g(X) = X for all g ∈ Stab A},

where Stab A is the stabilizer of A in G. The dimension of fixA is called the degree of

freedom of A. A point in the spherical symmetry scaffolding of G is called a node if

it has zero degree of freedom. Intuitively, a node is a point that cannot be displaced
from its position within a small neighbourhood without increasing the cardinality of

its G-orbit.
Let P be a d-polytope. We locate it so that its centroid coincides with the centre

of the unit sphere S
d−1. We radially project it onto S

d−1. Then the image of its

boundary complex yields a cellulation of S
d−1, which we call the spherical image of P
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and denote by
⌢
P. A vertex of a polytope P is called nodal if in the spherical image of

P it coincides with a node in scaf G(P). A nodal polytope is a polytope such that all its

vertices are nodal.

The notion of a nodal polytope was introduced by the author [15], and several

classes of examples were studied in [15–17]. In particular, we have [15, Theorem 2.3]
the following.

Theorem 3.2 Every vertex-transitive nodal polytope is perfect.

Consider now a uniform duplex D. It symmetry group is easily established as

follows.

Proposition 3.3 The symmetry group of a uniform duplex of dimension d is

Ad × 〈I〉 ∼= Sd+1 ×C2,

where I is a central inversion.

Proof This follows directly from Definition 2.1. In fact, if the dimension of the pair
of simplices (T, T ′) used in the definition is d, then the union of them is obviously

invariant under the action of the reflection group Ad, which is known to be isomor-

phic to Sd+1, the symmetric group of degree d + 1; in addition, there is a central
inversion I that swaps the two simplices. Clearly, all these symmetries are preserved

by the intersection.

Now we are ready to prove the perfectness of uniform duplexes.

Theorem 3.4 Every uniform duplex D is perfect.

Proof By Proposition 3.1 it is sufficient to prove that D △ is perfect (the direct way

would be a bit longer). For this, it is sufficient to prove that D △ is vertex-transitive

and nodal, by Theorem 3.2. Thus consider the vertices of D △. They coincide, up to
rescaling, with the centroids of the facets of D, from which the transitivity is obvious.

To see that these centroids are nodal, consider the spherical fundamental tessellation
of a Coxeter group of type Ad, that is, the tessellation consisting of the fundamental

domain and all its transforms under the action of the group on the unit sphere S
d−1.

It is a basic theorem of the finite reflection groups that this fundamental domain is
a (spherical) simplex [11, Theorem 11.23]. Clearly, the vertices of this fundamental

domain (and hence all the vertices of the tessellation) are nodes in the (spherical)

symmetry scaffolding of the group [15]. Now observe that the centroids of the two
kinds of facets of D correspond just to the vertices of the fundamental domain which

are represented by the two terminal points of the Coxeter graph of the group. Thus
they are nodes.

4 The E-Construction for Uniform Duplexes

Here we apply a construction, called the E-construction, which was introduced by

Eppstein, Kuperberg, and Ziegler in order to produce certain 4-polytopes and
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3-spheres with prescribed combinatorial properties [13]. For its extension and vari-
ous applications, see [25–28].

The construction is essentially as follows. It assigns to a polytope P a regular CW
sphere E(P) by the following two steps: (1) in the boundary of P, one stellarly sub-

divides each facet of P; (2) one merges facets of the subdivision sharing a ridge of

P. In our particular case we describe it in more detail in order to emphasize certain
metrical and symmetry properties.

We start from a uniform duplex D of dimension d ≥ 4 such that it is centered

at the origin and it is scaled so that its ridges of duplex type are tangent to the unit
sphere S

d−1. (Such a scaling is possible, since ridges of the same type form a single

orbit under the action of the symmetry group of D.) Then in the polar dual D △

(that, in our case, is the reciprocal with respect to S
d−1) there is a corresponding

edge E△ for each ridge E of D. Moreover, if E is of duplex type, then E△ is tangent to

S
d−1 as well. In this case the affine hulls of E and E△ form orthogonal complements

in the tangent space of S
d−1. Thus the convex hull conv(E∪E△) forms an orthogonal

bipyramid (see Eppstein et al. [13, p. 240]; here we adopt their approach in describing

the E-construction). More closely, it has the property formulated in the following
definition.

Definition 4.1 A pyramid P is called a uniform pyramid if its basis B is a uniform
polytope and the altitude of P meets B orthogonally at its centroid. A bipyramid is

called a uniform bipyramid if it is the union of two congruent uniform pyramids such

that are mirror images of each other with respect to their common basis.

Thus conv(E ∪ E△) is a uniform bipyramid. Consider now the polytope

conv(D ∪ D △). We shall denote it by D♦. We establish its facet structure.

Theorem 4.2 The facets of the polytope D♦ are uniform bipyramids over the ridges of

duplex type of D and uniform pyramids over the ridges of non-duplex type of D.

Proof The uniform bipyramids considered above form just one type of the facets;
thus it remains to show that the only other facets are uniform pyramids. Choose a

facet F of D and consider the apex A which the bipyramids in D♦ have in common

whose bases are ridges of duplex type of F. Clearly A = F△ and, as such, for symme-
try reasons, it lies on the line connecting the origin with the centroid CF of F. For any

ridge E ⊂ F of non-duplex type the convex hull conv(E ∪ A) is obviously a pyramid.
Consider now the affine hull aff E of such a ridge E ⊂ F. Take the plane P pass-

ing through the centroid of CE of E such that aff E and P form a pair of orthogonal

complementary affine subspaces. The symmetry properties of D imply that P con-
tains both CF and the origin. It is also a consequence of symmetry that the pyramid

conv(E ∪CF) is a uniform pyramid. Now since A is on the line connecting the origin

with CF , A lies in P. It follows that conv(E∪A) is also a uniform pyramid. (One could
think of the pyramid conv(E ∪ CF) being transformed to conv(E ∪ A) by a rotation

about the hyperline aff E and by an elongation while preserving its symmetry.)
Let F ′ be another facet of D such that it is adjacent to F at the ridge E. Then A ′ is

the other apex of the bipyramid over E whose one apex is A. We show that conv(E∪A)

and conv(E ∪ A ′) together cannot form a bipyramidal facet of D♦. To see this, first
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observe that the union (conv(E ∪ A)) ∪ (conv(E ∪ A ′)) must be invariant under the
action of Stab(E), the subgroup of the symmetry group of D stabilizing the ridge

E. We denote this figure by U . It follows that if U were a bipyramid, it would be a
uniform bipyramid. In fact, E is a ridge of non-duplex type, thus, by Observation 2.5,

F and F ′ originate from one and the same simplex. Hence they are mirror images of

each other with respect to the hyperplane aff(E ∪ O), where O is the origin (a well-
known property of regular polytopes, in particular, simplices). If U were a uniform

bipyramid, then its apices A and A ′ would be collinear with CE, by definition. But

these points cannot be collinear. For, if they were, CE would be at the same distance
from the origin as the centroids of the ridges of duplex type. This is impossible, by

Corollary 2.4. Thus U cannot form a bipyramidal facet of D♦. Actually, the corollary
says that CE is farther then the apices; this implies just that the set U decomposes to

two pyramidal facets (in the converse case U would decompose to a larger number

of facets, which would even be of other type).

Since the set of ridges of D consists of two orbits under the action of the symmetry

group of D, so does the set of facets of D♦. Thus we have found all the facets of D♦.

Now our next step is to radially project the polytope D♦ onto S
d−1. The spherical

image of the boundary complex of D♦ then forms a CG sphere, which we shall denote

by
⌢
D♦. Finally, in

⌢
D♦, for each pair of the pyramids with common basis we take their

union to form a figure that is combinatorially equivalent to a bipyramid. This yields

E(D), as desired.

5 Non-Realizability of the Symmetries of E(D)

The sphere E(D) obtained in the previous section is clearly a CG sphere. We pose the
following problem.

Problem 5.1 Decide the polytopality of the CG sphere E(D) constructed above.

That is, for each d ≥ 4, decide the existence of a d-polytope such that its bound-
ary complex is combinatorially equivalent to the CG sphere E(D) obtained in our

construction from a d-dimensional uniform duplex D.

Investigation of this problem is beyond the scope of the present paper. Instead,

we focus on a particular aspect of it. Namely, we show that E(D) cannot be polytopal

with full symmetry. To this end, first we establish the perfectness of the polytope D♦

constructed in the previous section.

Theorem 5.2 D♦ is perfect.

Proof D is perfect, by Theorem 3.4. Furthermore, D △ is nodal, as we have shown
just in the proof of Theorem 3.4. It follows that if we fix the vertices of D♦ originating

from D, then there is only one possibility to displace those originating from D △

without changing the action of the symmetry group. This is nothing else than shifting

them in radial direction (all to the same extent). However, this is also impossible. For,

in doing that, it would take the apices opposite to each other of each bipyramidal facet
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to a position such that they would not be collinear with the centroid of the basis of
the bipyramid; thus, again, the symmetry of the whole figure would change.

Now we are ready to prove our main result. With the notation introduced in
Section 1, we have the following.

Theorem 5.3 For each d ≥ 4, there is no d-polytope P such that L(E(D)) ∼= L(P) and

A(E(D)) ∼= G(P).

Proof First we note that it is sufficient to work with G(E(D)), the (geometric) sym-
metry group of E(D) (it can be shown, however, that the isomorphism A(E(D)) ∼=
G(E(D)) holds). The group G(E(D)) can just as well be defined as the symmetry
group of a polytope, since E(D) is the cellulation of a geometric sphere. Clearly

G(E(D)) = G
(⌢

D♦
)

= G
(
D♦

)
.

Assume now the contrary of the statement, i.e., there exists a polytope P satisfying the

conditions. Since in
⌢
D♦ all the vertices, which are the same as those of E(D), coincide

with nodes, the vertices of P must lie on the radial lines connecting the centre of

S
d−1 with the vertices of D♦. Moreover, P must possess facets which are uniform

bipyramids with basis of duplex type. Since D♦ is perfect, it is the only polytope with

these properties (up to similarity). But its other type of facets are pyramids, contrary

to what is desired.
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