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ON THE RETURN TIME FOR A REFLECTED
FRACTIONAL BROWNIAN MOTION PROCESS
ON THE POSITIVE ORTHANT

CHIHOON LEE,∗ Colorado State University

Abstract

We consider a d-dimensional reflected fractional Brownian motion (RFBM) process on
the positive orthant S = R

d+, with drift r0 ∈ R
d and Hurst parameterH ∈ ( 1

2 , 1). Under
a natural stability condition on the drift vector r0 and reflection directions, we establish a
return time result for the RFBM processZ; that is, for some δ, κ > 0, supx∈B Ex [τB(δ)] <
∞, where B = {x ∈ S : |x| ≤ κ} and τB(δ) = inf{t ≥ δ : Z(t) ∈ B}. Similar results are
known for reflected processes driven by standard Brownian motions, and our result can
be viewed as their FBM counterpart. Our motivation for this study is that RFBM appears
as a limiting workload process for fluid queueing network models fed by a large number
of heavy-tailed ON/OFF sources in heavy traffic.
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1. Introduction

This paper is devoted to the study of a multidimensional reflected fractional Brownian
motion (RFBM) process on the positive orthant S := R

d+, with drift r0 ∈ R
d and Hurst

parameterH ∈ ( 1
2 , 1). Recently, Delgado [5] showed that the workload process of multistation

fluid queueing network models with feedback and a nondeterministic arrival process, generated
by a large number of heavy-tailed ON/OFF sources, can be approximated under suitable heavy
traffic conditions by a multidimensional RFBM with Hurst parameter H ∈ ( 1

2 , 1). This model
was further studied in subsequent papers [6], [7]. Besides [5], the multidimensional RFBM
process has also been obtained as an approximating model in [15], in which a single-class
queueing network with long-range dependent arrival and service processes was considered.
It was shown therein that the normalized queue length process converges to a d-dimensional
RFBM, with d being the number of nodes or servers. Long time asymptotics and stability
analysis of such a class of models are of fundamental interest. However, since an FBM is
neither a semimartingale nor a Markov process, many techniques from the classical theory of
stochastic calculus are inapplicable to its analysis.

In this work we establish a uniform moment estimate on expected return times of the RFBM
process {Z(t) : t ≥ 0} to a compact set; that is, we show that, for some δ, κ ∈ (0,∞),

sup
x∈B

Ex[τB(δ)] < ∞, (1.1)

where B = {x ∈ S : |x| ≤ κ}, τB(δ) = inf{t ≥ δ : Z(t) ∈ B}, and Ex denotes the expectation
conditional on the process Z starting from x ∈ S. This result is reminiscent of a necessary
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and sufficient condition for the positive Harris recurrence of Harris recurrent Markov processes
(see, e.g. [16, Theorem 4.4], [17, Theorem 4.1] and [19, Chapter 11]). More precisely, for a
wide class of Markov processes, condition (1.1), combined with a petite set requirement for B,
implies the positive Harris recurrence of the process. Similar results as in (1.1) are known for
reflected processes driven by standard Brownian motions; indeed, the positive Harris recurrence
result of [11] (see also [14]), together with Theorem 4.4 of [16], implies (1.1) for semimartingale
reflecting Brownian motions. We also refer the reader to Theorem 4.7 and Corollary 4.14 of [3]
for more refined results. In this regard, results in this paper can be viewed as a significant step
towards the further analysis of RFBM with the aim of establishing similar recurrent properties
for reflected processes driven by non-Markovian processes.

The organization of the paper is as follows. In Section 2 we carefully describe our model in
Definition 2.1 and make a standard assumption on the reflection matrix (see assumption (HR)
in Section 2), which is used for invoking a functional central limit theorem in the heavy traffic
analysis of [5] and [6]. In addition, similar to [14], we assume a natural stability condition
(see condition (S) in Section 2) on the RFBM process. Our proof is based on uniform stability
estimates (see the proof of Theorem 3.1, in particular (3.4)) on a family of certain deterministic
dynamical systems obtained from a fluid limit analysis of the underlying RFBM process. This
result, together with a maximal inequality for FBM with H ∈ ( 1

2 , 1), leads to uniform time
estimates (Theorem 3.1) on the pth (p ≥ 1) moment of the process in terms of its initial
condition. In order to connect this result with moments of return times to a compact set, we
deduce a drift inequality (see (3.11)), leading to the control of the expected overall hitting time,
and establish the main result in Theorem 3.2.

We use the following notation. The set of positive integers is denoted by N, the set of real
numbers by R, and the set of nonnegative real numbers by R+. Let R

d be the d-dimensional
Euclidean space and, for x ∈ R

d , the L1 norm of x, i.e.
∑d
i=1 |xi |, will be denoted by |x|.

Let R
d×m be the space of real (d ×m)-matrices with the norm ||A|| = max1≤j≤m

∑d
i=1 |aij |

for A ∈ R
d×m. For a given matrix M , denote by M� its transpose and by Mi the ith row

of M . Let I = Id×d denote the identity matrix for some d. When it is clear from the context,
we will omit the subscript. For a set A ⊆ R

d , denote its interior and boundary by A◦ and
∂A, respectively. For sets A,B ⊆ R

d , dist(A,B) will denote the distance between two sets,
i.e. inf{|x − y| : x ∈ A, y ∈ B}. Let C(X, Y ) denote the space of continuous functions from
X to Y , endowed with the topology of uniform convergence on compact intervals. Inequalities
for vectors are interpreted componentwise.

2. Model and assumptions

We begin with the definitions of multidimensional FBM and RFBM. Let d ∈ N. A stochastic
process BH = {BH(t) = (B

(1)
H (t), . . . , B

(d)
H (t))�, t ≥ 0}, defined on some filtered probability

space (�,F , (Ft )t≥0,P), is called a d-dimensional FBM of (Hurst) parameter H ∈ (0, 1),
starting from BH(0) ∈ R

d , with associated matrix �, if it is a continuous Gaussian process
with initial condition BH(0), P-almost surely (P-a.s.) and with covariance function given by

cov(BH (t), BH (s)) = E[(BH (t)− BH(0))(BH (s)− BH(0))
�] = �H(s, t)�

for any s, t ≥ 0, where � is a d × d positive definite matrix and

�H(s, t) = 1
2 (t

2H + s2H − |t − s|2H ).
Also, it is assumed that BH is adapted to the filtration (Ft )t≥0. We will say that BH is a
d-dimensional FBM with associated data (BH (0),H,�).
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Fix the column vectors r0, r1, . . . , rd ∈ R
d , and let R := [r1, . . . , rd ]d×d . We call the

quintuple (BH (0),H,�, r0, R) the data for an RFBM. The following definition is similar to
that of [5].

Definition 2.1. (RFBM.) For x ∈ S, an RFBM associated with the data (x,H,�, r0, R) is a
continuous d-dimensional processZ, defined on some probability space (�,F ,P), such that

(i) Z(t) = x + BH(t)+ r0t + RY(t) ∈ S for all t ≥ 0, P-a.s.,

(ii) BH is a d-dimensional FBM with data (0, H,�),

(iii) Y is a d-dimensional process such that Yi(0) = 0 for i = 1, . . . , d, P-a.s. For each
i = 1, . . . , d, Yi is continuous, nondecreasing, and can increase only when Z(·) is on the
face F i := {x ∈ S : xi = 0}, i.e.

∫ t
0 1{Zi(s)	=0} dYi(s) = 0 for all t ≥ 0.

For y ∈ ∂S, the set of directions of reflections is defined as

r(y) :=
{ d∑
i=1

qir
i :

d∑
i=1

qi = 1, qi ≥ 0, and qi > 0 only if yi = 0

}
.

To get an idea of the RFBM introduced in the above definition, we note that it behaves
like an FBM in the interior of the orthant S and is confined to the orthant by instantaneous
‘reflection’ at the boundary ∂S. For each i, the ith column of the reflection matrix R gives the
direction of the reflection on the ith face F i . Specifically, if the boundary F i is hit, it is Yi that
increases, the direction of displacement is given by ri , the ith column of R, and the magnitude
of the displacement is the minimal amount required to keepZi nonnegative. We refer the reader
to [22] and the references therein for the related definition and properties of semimartingale
reflecting Brownian motions in an orthant.

Remark 2.1. We call a square matrix R completely-S if, for every k × k principal submatrix
G of R, there is a k-dimensional vector vG such that vG ≥ 0 andGvG > 0. The completely-S
condition on the reflection matrix R ensures that, for every x ∈ ∂S, there exists a convex
combination of vectors in r(x) which points into S◦ from x. Also, the completely-S property
is sufficient to ensure the existence of a pair (Z, Y ) satisfying Definition 2.1(i) and (iii)
(cf. Theorem 2 of [2]). However, this property does not ensure the adaptness of the process Y
to a filtration to which BH is adapted. This problem is overcome under a stronger assumption
on R, which we state below (cf. Proposition 4.2 of [22] and Section 2 of [5]).

Throughout this paper, we will impose the following assumption on the matrix R.

(HR) (i) The reflection matrix R can be expressed as I +�, where � is a d × d matrix such
that |�|, that is, the matrix obtained from � by replacing all the entries in � by their
absolute values, has spectral radius r(|�|) strictly less than 1.

(ii) Moreover, the matrix � = (θij ) satisfies θij ≤ 0 and θii = 0 for 1 ≤ i, j ≤ d.

Part (i) of (HR) implies that R is a completely-S matrix. Also, it can be shown (cf. [5]
and [22]) that if BH is adapted to some filtration {Ft : t ≥ 0} then (Z, Y ) is adapted to the
filtration {Gt : t ≥ 0}, with Gt = Ft ∨ N , where N denotes the collection of P-null sets
in F . Furthermore, part (i) of (HR) is a sufficient condition for strong pathwise uniqueness of
a solution of the Skorokhod problem described below. Henceforth, with an abuse of notation,
we will assume that (Z, Y ) is adapted to the filtration {Ft : t ≥ 0}.
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We also note that the spectral radius of −� in (HR) is strictly less than 1, since r(−�) =
r(�) ≤ r(|�|), where the inequality follows by Gelfand’s theorem on the spectral radius [12]
(that is, the spectral radius of a square matrix A is given by r(A) = limk→∞ ||Ak||1/k with
consistent matrix norm || · || on the space of matrices). Hence, I + (−�) + (−�)2 + · · · is
convergent and, therefore, part (i) of (HR) implies the existence of R−1. Part (ii) of (HR),
together with part (i), verifies the so-called Harrison–Reiman condition in [13]. Therefore,
assumption (HR) will imply that a solution to the Skorokhod problem exists, and, moreover,
the Skorokhod map is Lipschitz continuous in the sense of Proposition 2.1 below. (See also
[9, pp. 163–165] and [10, pp. 200–208] for the generalized Harrison–Reiman condition for
Lipschitz continuity of the Skorokhod map.)

Definition 2.2. (Skorokhod problem.) Let ψ ∈ C([0,∞),Rd) be given with ψ(0) ∈ S. Then
(φ, η) ∈ C([0,∞),Rd)×C([0,∞),Rd) solves the Skorokhod problem for ψ with respect to
S and R if and only if the following assertions hold:

(i) φ(t) = ψ(t)+ Rη(t) ∈ S for all t ≥ 0,

(ii) η satisfies, for 1 ≤ i ≤ d , (a) ηi(0) = 0, (b) ηi is nondecreasing, and (c) ηi can increase
only when φ is on the ith face of S, that is,

∫ ∞
0 1{φi(s)	=0} dηi(s) = 0.

Let
CS([0,∞),Rd) := {ψ ∈ C([0,∞),Rd) : ψ(0) ∈ S}.

On the domain D ⊂ CS([0,∞),Rd), on which there is a unique solution to the Skorokhod
problem, we define the Skorokhod map � as

�(ψ) := φ,

if (φ, R−1[φ−ψ]) is the unique solution of the Skorokhod problem posed byψ . An equivalent
form of the RFBM in Definition 2.1 in terms of the Skorokhod map can now be written:

Z = �(x + BH + r0ı), Z − (x + BH + r0ı) = RY.

Here ı : [0,∞) → [0,∞) is the identity map.
The following proposition gives the regularity of the Skorokhod map, which is a consequence

of assumption (HR). We refer the reader to the proof of Equation (10) of [13, p. 305] and the
arguments in [9, pp. 164–165] for its proof; although the Lipschitz continuity is not stated
explicitly in [13], it follows easily from the method used to prove the existence of solutions and
the continuity of the Skorokhod map (map φ(·) in [13]). See also [8], [9], and [10] for more
sufficient conditions under which this regularity property holds.

Proposition 2.1. The Skorokhod map is well defined on all of CS([0,∞),Rd), i.e. D =
CS([0,∞),Rd), and the Skorokhod map is Lipschitz continuous in the following sense. There
exists a constant L ∈ (1,∞) such that, for all ψ1, ψ2 ∈ CS([0,∞),Rd) and t ≥ 0,

sup
0≤s≤t

|�(ψ1)(s)− �(ψ2)(s)| < L sup
0≤s≤t

|ψ1(s)− ψ2(s)|.

Finally, we introduce the following condition on the drift vector r0 and the matrix R that
will be assumed throughout this paper.

(S) There exists a θ > 0 such that sup1≤i≤d [R−1r0]i < −θ .
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Remark 2.2. For a model driven by regular Brownian motion (i.e. H = 1
2 ), condition (S)

is known as a necessary and sufficient condition for the existence of a unique stationary
distribution. See [14] and the references therein for the related asymptotic stability conditions
of reflected Brownian motions on a positive orthant.

3. Main results

LetZx be defined as in Definition 2.1, withZx(0) = x ∈ S and Hurst parameterH ∈ ( 1
2 , 1).

In what follows, note that E |Zx(t)| can be alternatively written as Ex |Z(t)|. The following
moment stability properties are key ingredients in the proofs.

Theorem 3.1. There exists a δ ∈ (0,∞) such that, for all p ≥ 1,

lim|x|→∞
1

|x|p E[|Zx(δ|x|)|p] = 0. (3.1)

Proof. Fix x ∈ S and p ≥ 1. We write the RFBM Z in Definition 2.1 as

Zx(t) = �(x + r0ı + BH(·))(t), t ≥ 0,

where ı : [0,∞) → [0,∞) is the identity map. Define the deterministic trajectory

zx(t) = �(x + r0ı)(t), t ≥ 0.

Using the Lipschitz property of � (Proposition 2.1), we have

|Zx(t)− zx(t)| ≤ L sup
0≤s≤t

|BH(s)| for all t ≥ 0. (3.2)

Next, defining C := {v ∈ R
d : R−1v ≤ 0} we see from condition (S) that there exists a

β ∈ (0,∞) satisfying

dist(r0, ∂C) = inf{|r0 − v| : R−1v = 0, v ∈ R
d}

≥ 1

||R−1|| inf{|R−1r0 − R−1v| : R−1v = 0, v ∈ R
d}

= 1

||R−1|| |R
−1r0|

≥ 1

||R−1||θd
=: β
> 0, (3.3)

where θ ∈ (0,∞) is a constant, as in condition (S), and the first inequality is due to the fact
that |Ax| ≤ ||A|||x| for a matrix Ad×d and a vector xd×1. Thus,

r0 ∈ Cβ := {v ∈ C : dist(v, ∂C) ≥ β}.
For x0 ∈ S, denote by K(x0) the collection of all trajectories ψ : [0,∞) → S of the form

ψ(t) = �(x0 +�ı)(t), t ≥ 0,
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where � ranges over all of Cβ . Define the ‘hitting time to the origin’ function as

T (x0) := sup
ψ∈K(x0)

inf{t ∈ [0,∞) : ψ(t) = 0}.

Then, owing to Lemma 3.1 of [1] we have

T (x0) ≤ 4L2

β
|x0|, and, for all ψ ∈ K(x0), ψ(t) = 0 for all t ≥ T (x0). (3.4)

Combining this observation with (3.3), we now have zx(t) = 0 for all t ≥ δ0|x|, where
δ0 := 4L2/β. Using this in (3.2), we now see that

|Zx(t |x|)| ≤ L sup
0≤s≤t |x|

|BH(s)| (3.5)

for all t ≥ δ0 and all initial conditions x. Next we obtain an estimate on the pth moment of
the right-hand side of (3.5). For H ∈ ( 1

2 , 1), it is known from Theorem 1.2 of [20] (see also
Example 5.1.5 of [21]) that

E
(

sup
0≤s≤t

|B(i)H (s)|
)p ≤ C(p,H)tpH ,

where i = 1, . . . , d and C(p,H) ∈ (0,∞) is a constant which depends only on p and H .
Applying this estimate in (3.5), we now have, for all t ≥ δ0 and x ∈ S,

E |Zx(t |x|)|p ≤ C(t |x|)pH (3.6)

for some constant C ∈ (0,∞), which depends only on p and H . The result now follows on
choosing any δ ≥ δ0 since H < 1.

Remark 3.1. We note that (3.1) with p = 1 was established in [4] for a wide class of Markov
processes. Combined with a certain petite set requirement, it was shown in [4] that (3.1) with
p = 1 implies the positive Harris recurrence of underlying Markov processes.

We now present the main result on return times to a compact set for the RFBM process.
Its proof follows along similar lines to the proofs presented in Theorem 3.1 of [4] and Theo-
rem 2.1(ii) of [18].

Theorem 3.2. Let B = {x ∈ S : |x| ≤ κ} for some κ ≥ 1. Then

sup
x∈B

Ex[τB(δ)] < ∞, (3.7)

where τB(δ) := inf{t ≥ δ : Z(t) ∈ B} with some δ > 0.

Proof. By Theorem 3.1 (with p = 1), there exists a κ ≥ 1 such that, with B = {x ∈
S : |x| ≤ κ},

E |Zx(δ|x|)| ≤ 1
2 |x| for all x ∈ Bc, (3.8)

where δ is as in Theorem 3.1. Analogously to (3.6), we have E |Zx(t)|p ≤ CtpH for any
t ≥ δ0|x| and some constant C > 0. Take δ = δ0κ (≥ δ0). Then, with p = 1 and t = δ

(≥ δ0|x| for x ∈ B), we have, for some constant b > 0,

E |Zx(δ)| ≤ b for all x ∈ B. (3.9)
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For x ∈ S, let

n(x) =
{
δ|x| if x ∈ Bc,

δ if x ∈ B.
(3.10)

Since κ ≥ 1, n(x) ≥ δ for all x ∈ S. It follows from (3.8) and (3.9) that

E |Zx(n(x))| ≤ 1

2
|x| + b 1B(x) ≤ |x| − 1

2δ
n(x)+ b̃ 1B(x) (3.11)

for some b̃ ≥ 1
2 + b > 0 and all x ∈ S.

In order to prove (3.7), we work with an ‘embedded’ process Z̆. Note that n(x) in (3.10) is
a (trivial) stopping time. For k ≥ 1, let s(k) denote its iterates; that is, along any sample paths,

s(0) = 0, s(1) = n(x), and s(k + 1) = s(k)+ n(Zx(s(k))).

Define

Z̆(k) := Zx(s(k)), F̆k := Fs(k), and τ̆B(δ) := inf{k ≥ δ : Z̆(k) ∈ B}.
Then s(τ̆B(δ)) denotes the time of the first return toB by the original process along an embedded
path; that is,

s(τ̆B(δ)) =
τ̆B (δ)−1∑
k=0

n(Z̆(k)), (3.12)

and so we have, a.s.,
s(τ̆B(δ)) ≥ τB(δ). (3.13)

We claim that

Ex

[τ̆B (δ)−1∑
k=0

n(Z̆(k))

]
≤ 2δ(|x| + b̃). (3.14)

Then, we have, for each x ∈ S, by adding the lengths of the embedded time n(x) along any
sample path, and from (3.12)–(3.14),

Ex[τB(δ)] ≤ Ex

[τ̆B (δ)−1∑
k=0

n(Z̆(k))

]
≤ 2δ(|x| + b̃).

Hence,

sup
x∈B

Ex[τB(δ)] ≤ 2δ
(

sup
x∈B

|x| + b̃
)

= 2δ(κ + b̃) < ∞.

Thus, it only remains to prove the claim in (3.14). For n ≥ 1, define

τn := min{n, τ̆B(δ), inf{k ≥ 0 : Z̆(k) ≥ n}}.
Note that, since {τn ≥ i} ∈ F̆i−1, we have

Ex[Z̆(τn)] = Ex[Z̆(0)] + Ex

[ τn∑
i=1

(Ex[Z̆(i) | F̆i−1] − Z̆(i − 1))

]
. (3.15)
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Fix N > 0. From (3.11) and (3.15), we see that

0 ≤ Ex[Z̆(τn)] ≤ |x| + Ex

[ τn∑
i=1

(
b̃ 1B(Z̆(i − 1))− 1

2δ
n(Z̆(i − 1)) ∧N

)]
. (3.16)

Hence, by adding a finite term to each side of (3.16), we get

Ex

[ τn∑
i=1

1

2δ
n(Z̆(i − 1)) ∧N

]
≤ |x| + Ex

[ τn∑
i=1

b̃ 1B(Z̆(i − 1))

]

≤ |x| + Ex

[τ̆B (δ)∑
i=1

b̃ 1B(Z̆(i − 1))

]

≤ |x| + b̃.

Letting n → ∞ and then N → ∞ gives the result by the monotone convergence theorem.
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