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Abstract

We define a class of stochastic processes, denoted as marked rational arrival processes
(MRAPs), which is an extension of matrix exponential distributions and rational arrival
processes. Continuous-time Markov processes with labeled transitions are a subclass of
this more general model class. New equivalence relations between processes are defined,
and it is shown that these equivalence relations are natural extensions of strong and
weak lumpability and the corresponding bisimulation relations that have been defined for
Markov processes. If a general rational process is equivalent to a Markov process, it can
be used in numerical analysis techniques instead of the Markov process. This observation
allows one to apply MRAPs like Markov processes and since the new equivalence relations
are more general than lumpability and bisimulation, it is sometimes possible to find
smaller representations of given processes. Finally, we show that the equivalence is
preserved by the composition of MRAPs and can therefore be exploited in compositional
modeling.
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1. Introduction

Markov processes in continuous time have been successfully applied for a long time in
performance and dependability analysis [24]. In the last two decades compositional analysis
approaches and equivalence relations based on different versions of lumpability have been
proposed for Markov processes with marked transitions [5], [15], [16]. Several model classes
which differ in detail but follow the same philosophies of composing communicating processes
have been proposed and successfully applied.

The major advantages of Markov models are their intuitive stochastic interpretation, the
possibility to compute stationary and transient results with a high precision using numerical
techniques, and computable equivalence relations that allow for a reduction of the state space in
several models. If one drops the first aspect, namely the stochastic interpretation, it is possible to
define distributions and processes at a purely algebraic level. The first model of this kind is the
class of matrix exponential (ME) distributions [14], [19], which are an extension of phase-type
(PH) distributions. ME distributions have been extended to rational arrival processes (RAPs)
[2], [20], which are an extension of Markovian arrival processes (MAPs) [21]. Although it has
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Rational processes 41

been shown recently that ME/ME/· queues can be solved with matrix analytical methods [1],
[4] and some fitting approaches have been proposed for this class of processes [12], [25], the
usability of ME distributions is limited by the missing probabilistic interpretation and even more
by the lack of approaches to decide whether a vector matrix pair describes an ME distribution.

Recently, we developed an equivalence relation between PH and ME distributions and
showed in the setting of stochastic Petri nets (SPNs) that PH distributions can be substituted
by equivalent ME distributions without altering marginal probabilities of the stochastic process
[9]. A similar result has been proposed in [10] for MAPs and RAPs. In this paper we extend the
mentioned results to a general class of stochastic processes which will be denoted as MRAPs.
We formally define the class and show that it contains Markov processes with labeled transitions.
Then we define two equivalence relations for MRAPs and prove that these equivalence relations
are extensions of ordinary and weak lumpability or bisimulation. We can additionally prove that
equivalent processes behave identically in the sense that we can substitute the matrices of one
process with the matrices of another equivalent process without changing the joint densities of
observing sequences of events. Consequently, if an arbitrary MRAP is equivalent to a Markov
process, it can be used in stochastic models that are solved with numerical methods. This
is especially attractive if MRAPs with a smaller state space that are equivalent to Markov
processes can be found. It is well known that lumpability, or better bisimulation, is preserved
by composition via synchronized transitions [7], [15], [16]. We show that similar results hold
for our more general equivalence relations.

The paper is structured as follows. In Section 2 MRAPs are defined and their relation to ME
distributions and Markov processes with marked transitions is outlined. In Section 3 the new
equivalence relations are introduced; we show that they extend ordinary and weak lumpability
and prove that equivalent processes can be analyzed with almost the same numerical methods.
In Section 4 the composition of MRAPs is defined and we show that equivalence is preserved
after composition. The paper ends with the conclusions.

2. Rational arrival processes with multiple event types

We begin with the definition of ME distributions and RAPs. In the following S = {0, . . . ,

n − 1} denotes the set of states. Let G0 ∈ R
n,n be an n × n matrix whose eigenvalues have

negative real parts, which implies that G0 is nonsingular [19]. Furthermore, π ∈ R
n is a vector

with π1 = 1. Then (π , G0) is an ME distribution if and only if

F(π ,G0)(t) = 1 − πeG0t1 (1)

is a valid distribution function, where 1 is a column vector of appropriate size with all elements
equal to 1. Depending on the context, we occasionally explicitly show the sizes of the vectors,
e.g. in this case 1n. We assume that F(0) = 0, which follows from π1 = 1. If the nondiagonal
elements of G0 and the vector π are nonnegative, then (1) always describes a valid distribution
and we obtain a PH distribution. For n = 2, the classes of ME and PH distributions coincide,
but, for larger dimensions, the class of ME distributions is larger [17]. On the other hand,
it is known that every ME distribution with a strictly positive density on (0, ∞) has a PH
representation of a possibly larger size [3]. Consequently, only ME distributions with a density
that becomes 0 in (0, ∞) cannot be represented as PH distributions of a finite dimension. As
shown in [9], ME distributions can be used like PH distributions in stochastic models, such as
SPNs, and most numerical analysis techniques are still applicable.
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42 P. BUCHHOLZ AND M. TELEK

We now continue with RAPs as a natural extension of ME distributions to processes. Instead
of the usual definition focusing only on the stationary behavior, we define the process together
with an initial vector to describe its transient behavior.

Definition 1. An initial vector and a pair of matrices (π , G0, G1) define a rational arrival
process if

1. π1 = 1,

2. (G0 + G1)1 = 0,

3. all eigenvalues of G0 have a negative real part, which implies that the matrix is non-
singular [19],

4. f(π ,G0,G1)(t1, . . . , tj ) = πeG0t1G1eG0t2G1 · · · eG0tj G11 is a valid joint density for all
ti ≥ 0 (i = 1, . . . , j ). That is,

f(π ,G0,G1)(t1, . . . , tj ) ≥ 0 and
∫

t1

· · ·
∫

tj

f(π ,G0,G1)(t1, . . . , tj ) dtj · · · dt1 = 1.

If π ≥ 0, G1 ≥ 0, and all nondiagonal elements of G0 are nonnegative, then the RAP is a
MAP which always describes a valid density. In contrast to MAPs, RAPs have no probabilistic
interpretation at the state level. However, we can interpret the matrix G0 of a RAP as the origin
of internal state changes and the matrix G1 as the origin of events or points generated by the
stochastic process. The vector π can be interpreted as the initial vector of the RAP over a set of
states at time 0. For a MAP, π is a valid distribution; in the general case π may contain negative
elements as well. The interarrival time distribution of a RAP is an ME distribution. MAPs and
RAPs can be used to model processes with a single type of event. It is natural to extend MAPs
to generate multiple event types. This resulted in the definition of MMAPs [13], which can be
interpreted in a more general setting as Markov processes with marked transitions. This class
will be slightly extended in Section 4 to allow composition.

Similar to the extension from a MAP to an MMAP, we define a marked rational arrival
process (MRAP) with K event types.

Definition 2. An initial vector and a set of K + 1 matrices (π , G0, . . . , GK) define a marked
rational arrival process if

1. π1 = 1,

2. (G0 +∑K
k=1 Gk)1 = 0,

3. all eigenvalues of G0 have a negative real part, which implies that the matrix is non-
singular [19],

4.
f(π ,G0,...,GK)(t1, k1, . . . , tj , kj ) = πeG0t1Gk1 eG0t2Gk2 · · · eG0tj Gkj

1 (2)

is a valid joint density for all ti ≥ 0 and ki ∈ {1, . . . , K} (i = 1, . . . , j ). That is,

f(π ,G0,...,GK)(t1, k1, . . . , tj , kj ) ≥ 0

and ∑
k1

· · ·
∑
kj

∫
t1

· · ·
∫

tj

f(π ,G0,...,GK)(t1, k1, . . . , tj , kj ) dtj · · · dt1 = 1.
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As mentioned before, in these definitions the initial vector is included in the definition of
MRAPs for general transient analysis. Alternatively, we can assume that the initial vector
equals the embedded stationary vector ν and is not part of the definition. In this case, the
following condition on the matrices becomes necessary to obtain a unique stationary vector and
substitutes the first condition above.

1. P = −G−1
0 (

∑K
k=1 Gk) has a unique eigenvalue 1 such that the solution νP = ν, ν1 = 1,

is unique.

Observe that the stationary vector as well as the initial vector of an MRAP may contain negative
elements. The size of an MRAP equals the dimension of the vector and the matrices.

The class of MRAPs of a given size contains MMAPs of the same size since an MRAP
is an MMAP if π ≥ 0, Gk ≥ 0 for k = 1, . . . , K , and all nondiagonal elements of G0 are
nonnegative. MRAPs are structurally identical to BRAPs that have been defined recently in
[4] to describe batch arrivals where the interarrival time process is realized by a RAP. The only
difference is the interpretation of events which are not necessarily batch arrivals for MRAPs.

In general, we have to distinguish between the stochastic process and its representation.
A stochastic process considered in this paper has infinitely many representations. These
representations can have identical or different sizes. If we speak of an MRAP or MMAP,
we always mean a representation including the vector and the set of matrices. Consequently,
(π , G0, . . . ,GK) is an MRAP if it satifies the conditions given in Definition 2. If we mean the
stochastic process then we speak of the stochastic process described by (π , G0, . . . ,GK). We
say that a stochastic process is an MRAP process if an MRAP representation (π , G0, . . . ,GK)

exists that describes the process. Similarly, a stochastic process is an MMAP process if it can
be described by an MMAP (representation).

Consequently, in the sequel, MRAP and MMAP mean representations and if explicit refer-
ence to processes is needed, they are referred to as MRAP and MMAP processes. Implicitly,
MRAP and MMAP (representations) also mean processes. Note that an MMAP process can also
be described by MRAP representations. This way an MMAP representation always describes an
MMAP process, but an MRAP representation can describe both MRAP and MMAP processes.

Another issue is the size of the representation. It might happen that an MMAP process has
an MRAP representation of size n and its smallest MMAP representation is of size m > n.

Example 1. The following vector and matrices represent an MMAP with two classes:

π = (0.5, 0, 0, 0.5), G0 =

⎛
⎜⎜⎝

−1 1 0 0
0 −2 2 0
0 0 −3 3
0 0 0 −4

⎞
⎟⎟⎠ ,

G1 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0

1.5 0 0 1.5

⎞
⎟⎟⎠ , and G2 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0

0.5 0 0 0.5

⎞
⎟⎟⎠ .

The following vector and matrices represent an MRAP:

φ = (0, 0, 1), H0 =
⎛
⎝−1.363 64 4.133 65 −6.657 77

−1.149 92 −1.463 76 4.024 89
0 1.1726 −3.1726

⎞
⎠ ,

https://doi.org/10.1239/jap/1331216833 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1331216833


44 P. BUCHHOLZ AND M. TELEK

H1 =
⎛
⎝0 0 2.915 82

0 0 −1.058 41
0 0 1.5

⎞
⎠ , and H2 =

⎛
⎝0 0 0.971 94

0 0 −0.3528
0 0 0.5

⎞
⎠ .

It contains negative elements outside the diagonal of H0 and, therefore, is not an MMAP.
We will later prove that these general matrices indeed define a valid stochastic process and,
even more, that the MMAP and the MRAP are different representations of the same stochastic
process, and, consequently an MMAP process.

3. Equivalence relations for MRAPs

For continuous-time Markov chains (CTMCs) with marked transitions, the concept of ordi-
nary and exact lumpability [6], [18] provides the basis for introducing stochastic bisimulation
[7], [16] that defines a concept of equivalence between different processes. CTMCs with marked
transitions can be seen as a generalization of MMAPs such that lumpability and bisimulation
can also be used to define equivalence between MMAPs. Bisimulation has not yet been formally
defined for RAPs or MRAPs, but, as shown recently in [8], bisimulation can be extended to
transitions with labels taken from an arbitrary semiring and the general proofs can be easily
transferred to the specific case of RAPs showing the exact aggregation property, which means
that the RAP resulting from aggregation is equivalent to the original one. Here we show
that lumpability and bisimulation are special cases of a more general concept of computing
equivalent representations of a minimal size. Lumpability and stochastic bisimulation are
two closely related concepts. Lumpability [18] has been defined for Markov chains without
marked transitions. The term bisimulation was originally used for automata models without
any stochasticity [22], and has been extended to stochastic process algebras [16] and stochastic
automata [7] which can be interpreted as Markov chains with marked transitions. It turns out
that stochastic bisimulation is a natural extension of ordinary lumpability [6] by applying the
conditions to more than one matrix. The situation is different for weak lumpability [18], [23],
for which no corresponding bisimulation relation has yet been defined. In the sequel, we also
mainly use the term lumpability, instead of bisimulation, for the equivalence between MRAPs.
However, (ordinary) lumpability and (stochastic) bisimulation can be taken as equivalent for
MMAPs and MRAPs.

We first consider lumpability and then extend it to a more general relation between processes.
We then do the same for weak lumpability. Lumpability is based on a mapping between sets
of states. Let S = {0, . . . , m − 1} be the set of states of an MRAP (π , G0, . . . ,GK), and let
Ŝ = {0, . . . , n − 1}, m > n, be another set which defines a set of equivalence classes that
partition S into disjoint subsets. We denote by [h] ⊆ S the states belonging to equivalence
class h ∈ Ŝ, and assume that all equivalence classes are nonempty. The mapping of states to
equivalence classes can be defined by an m × n matrix V such that V (i, h) = 1 if i ∈ [h] and
0 otherwise. The matrix V contains one element equal to 1 in each row (i.e. 1m = V 1n, where
1m is a column vector of 1s of length m) and at least one element equal to 1 in each column.
The matrix V describes a lumpable partition if and only if, for all h ∈ Ŝ and all i, j ∈ [h],
(C1) eiGkV = ejGkV for all k ∈ {0, . . . , K}, where ei is a row vector with 1 in position i

and 0 elsewhere.

This definition of lumpability is a natural generalization of the definition of lumpability for
Markov processes [18] and corresponds to bisimulation for Markov processes with labeled tran-
sitions [7], [16]. Observe that the matrix V has full column rank since in every column at least
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one nonzero element appears. We now extend this approach to MRAPs. Let (π , G0, . . . , GK)

be an MRAP with the set of states S, and let Ŝ be a set of equivalence classes with the matrix
V defining the mapping of states to equivalence classes. Assume that V describes a lumpable
partition. Then a vector and a set of matrices (φ, H0, . . . , HK) on the set of states Ŝ can be
defined as follows:

1. φ = πV ,

2. Hk(f, h) = ∑
j∈[h] Gk(i, j) for some i ∈ [f ], and, hence, all i ∈ [f ] by condition (C1),

and k ∈ {0, . . . , K}.
We denote the computation of (φ, H0, . . . ,HK) from (π , G0, . . . ,GK) as an aggregation. If
(π , G0, . . . ,GK) is an MMAP then (φ, H0, . . . ,HK) is also an MMAP [7], [16]. We now
show that the aggregation of an MRAP is an MRAP.

Theorem 1. Let (π , G0, . . . ,GK) be an MRAP with a set of states S, and let V be a matrix
describing a mapping from S into a set of equivalence classes Ŝ. If V describes a lumpable par-
tition (i.e. observes condition (C1)) then (φ, H0, . . . ,HK), which results from the aggregation
with matrix V , is an MRAP and we have GkV = V Hk for all k ∈ {0, . . . , K}.

Proof. We first prove that GkV = V Hk holds if condition (C1) holds. Here GkV and V Hk

are m × n matrices. Element (i, h) of GkV is
∑

j∈[h] Gk(i, j), which equals Hk(f, h) with
i ∈ [f ]. Since V (i, f ) = 1 and this is the only nonzero element in row i, element (i, h) is
identical in both matrices and this holds for all i ∈ S and h ∈ Ŝ.

To show that (φ, H0, . . . ,HK) is an MRAP, we have to show that the vector and matrices
satisfy the four conditions for MRAPs. First, we have φ1n = πV 1m = π1m = 1.

Then we have

0 =
K∑

k=0

Gk1m =
K∑

k=0

GkV 1n = V

( K∑
k=0

Hk

)
1n.

Since V has full column rank (because all equivalence classes are nonempty), the equation
implies that

∑K
k=0 Hk1n = 0. To prove the third condition, let λ be an eigenvalue of H0. Then

λx = H0x for some nonzero vector x, i.e. x is the right eigenvector belonging to eigenvalue λ.
Furthermore, we have

λx = H0x �⇒ V λx = V H0x ⇐⇒ λ(V x) = G0(V x),

where V x is nonzero due to the full column rank of V . This way λ is also an eigenvalue
of G0 and V x is the corresponding right eigenvector. Since all eigenvalues of G0 have a
negative real part, the same holds for λ and, thus, the eigenvalues of H0. It remains to show
that f(φ,H0,...,HK)(t1, k1, . . . , tj , kj ) is a valid density. This is done in a more general setting in
the proof of Theorem 2 below.

Theorem 1 extends lumpability and bisimulation to MRAPs. Consequently, we can speak of
an aggregated MRAP and the aggregation has a physical meaning, namely the representation
of a set of states by a single state. However, it is interesting to note that the proof of Theorem 1
exploits the relations GkV = V Hk and 1m = V 1n, and the property that V has full column
rank, but does not use the fact that V describes a proper mapping, which implies that elements
of V are from {0, 1}. If we skip this condition, we lose the physical meaning given by the
aggregation, but it is still possible to define an algebraic relation between matrices and vectors.
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This relation applied to MRAPs relates processes with an equivalent behavior as shown now.
The following definition is algebraic, it relates sets of matrices and vectors of different sizes.

Definition 3. Representation (π , G0, . . . ,GK) (composed of an initial vector and the set of
K + 1 matrices) with the set of states S = {0, . . . , m− 1} and representation (φ, H0, . . . ,HK)

with the set of states Ŝ = {0, . . . , n − 1}, n ≤ m, are ordinarily related if an m × n matrix V

of column rank n exists such that

1. 1m = V 1n,

2. πV = φ, and

3. GkV = V Hk for all k ∈ {0, . . . , K}.
Definition 3 extends lumpability since matrix V now contains arbitrary elements. Conse-

quently, V no longer defines a partition. Additionally, the above relation can relate Markov and
non-Markov representations when applied to stochastic processes, as shown by the examples
below. The condition that V of size m × n has full column rank can be relaxed according to
Theorem 7 in Appendix A. If the rank of V is r (r < n) then there exits a modified matrix V

of size m × r with full column rank and an equivalent representation of size r .

Definition 4. Representation (π , G0, . . . ,GK) and representation (φ, H0, . . . ,HK) are said
to be equivalent if and only if their respective functions f defined in (2) are identical, i.e.

f(π ,G0,...,GK)(t1, k1, . . . , tj , kj ) = f(φ,H0,...,HK)(t1, k1, . . . , tj , kj )

for all j ≥ 0, ti ≥ 0, and ki ∈ {1, . . . , K}, i = 1, . . . , j .

Definition 4 does not require that (π , G0, . . . , GK) defines a valid MRAP process, i.e. that
its f function is always nonnegative. An important consequence of this equivalence defini-
tion is the following. If (π , G0, . . . ,GK) and (φ, H0, . . . , HK) are equivalent, then either
(π , G0, . . . ,GK) and (φ, H0, . . . ,HK) both define the same stochastic process or neither of
the two representations defines a stochastic process.

Theorem 2. Representations (π , G0, . . . ,GK) and (φ, H0, . . . , HK) that are ordinarily re-
lated according to Definition 3 are equivalent.

Proof. We need to show that

πeG0t1Gk1 eG0t2Gk2 · · · eG0tj Gkj
1m = φeH0t1Hk1eH0t2Hk2 · · · eH0tj Hkj

1n

for all j ≥ 0, ti ≥ 0, and ki ∈ {1, . . . , K}, i = 1, . . . , j . We prove the theorem by induction.
By definition, we have, for j = 0, πV = φ such that π1m = πV 1n = φ1n = 1. Let

π (i) = πeG0t1Gk1 · · · eG0ti Gki
and φ(i) = φeH0t1Hk1 · · · eH0ti Hki

for i < j . Assume that π (i)V = φ(i). Then

φ(i+1) = φ(i)eH0ti Hki

= φ(i)
∞∑
l=0

(H0ti )
l

l! Hki

= π (i)V

∞∑
l=0

(H0ti )
l

l! Hki
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= π (i)
∞∑
l=0

(G0ti )
l

l! Gki
V

= π (i+1)V .

Since the relation holds for i = 0, it holds for all i and ti ≥ 0. Furthermore, φ(i)1n =
π (i)V 1n = π (i)1m.

Theorem 2 relates different representations and, of course, these representations can also
be MMAP and MRAP representations. Consequently, Theorem 2 can be used to prove that
(φ, H0, . . . ,HK) is a valid MRAP using the following corollary. This is particularly useful if
MMAPs and MRAPs are related since an MMAP is per se a stochastic process, whereas, for
general matrices, it has to be explicitly proved that the density remains nonnegative.

Corollary 1. If (π , G0, . . . ,GK) is an MRAP with m states, and (φ, H0, . . . ,HK) is a vector
and a set of matrices of dimension n (≤ m) which is ordinarily related to (π , G0, . . . ,GK)

using matrix V with rank(V ) = n, then (φ, H0, . . . ,HK) and (π , G0, . . . , GK) are equivalent
processes.

The relation between ordinarily related MRAPs goes beyond the equivalence of the joint
densities. As shown in the proof of Theorem 2, the conditional distribution after a sequence
of events of the MRAP with the larger set of states determines the conditional distribution of
the MRAP with the smaller set of states (π (i)V = φ(i)), but not vice versa (since V is not
invertible).

Apart from ordinary lumpability, weak lumpability has also been defined [18, Chapter 6.4]
for Markov processes. Like ordinary lumpability, it is based on a partition of the state space,
but, in contrast to ordinary lumpability, it depends on the initial vector. We first define weak
lumpability for MMAPs and MRAPs, which to the best of the authors’ knowledge has not
yet been done. Only a restricted form of weak lumpability has been defined for stochastic
automata [7].

Let (π , G0, . . . ,GK) be an MRAP, and let V be an m × n (m > n) partition matrix.
According to [18, Chapter 6.3] we define an n × m matrix

W = (diag((diag(π)V )
1m))−1(diag(π)V )
, (3)

where diag(π) is a diagonal matrix with π(i) in position (i, i) such that

W (h, i) = V (i, h)
π(i)∑

l∈[h] π(l)
.

We assume that
∑

l∈[h] π(l) �= 0 for all h ∈ Ŝ to obtain a valid matrix W . The matrix W has
row sum 1, one nonzero element in every column, and full row rank. Furthermore, WV = In.
Let Hk = WGkV for k = 0, . . . , K . A necessary condition for weak lumpability is

HkHl = WGkGlV (4)

for all k, l ∈ {0, . . . , K} [18, p. 135]. Relation (4) holds if V is a partition matrix of an ordinarily
lumpable partition since then GkV = V Hk for all k ∈ {0, . . . , K} and

WGkGlV = WGkV Hl = HkHl .
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In this case, the initial vector π is not needed for (4), since the initial vector of the MRAP with
the smaller state space can always be computed as φ = πV and W can be computed from V

as in (3) using an arbitrary vector η > 0.
A second relation for which (4) holds is WGk = HkW for all k ∈ {1, . . . , K}, which is

defined as weak lumpability. In this case the equivalence depends on W and, therefore, also
on π . Before we prove the equivalence of weakly lumpable MRAPs, we extend the equivalence
as we did for ordinary lumpability and begin again with an algebraic relation between sets of
matrices and vectors.

Definition 5. Representation (π , G0, . . . ,GK) with the set of states S = {0, . . . , m − 1} and
representation (φ, H0, . . . ,HK) with the set of states Ŝ = {0, . . . , n − 1}, n ≤ m, are weakly
related if an n × m matrix W of full row rank exists such that

1. 1n = W1m,

2. π = φW , and

3. WGk = HkW for all k ∈ {0, . . . , K}.
In contrast to weak lumpability, more general matrices W are now allowed that may contain

negative elements or more than one nonzero element per column, since π needs not be non-
negative and V needs not be a partition matrix. Again, the condition on the full row rank can
be relaxed according to Theorem 8 in Appendix B.

Theorem 3. Representations (π , G0, . . . ,GK) and (φ, H0, . . . ,HK) that are weakly related
according to Definition 5 are equivalent.

Proof. We need to show that

πeG0t1Gk1 eG0t2Gk2 · · · eG0tj Gkj
1m = φeH0t1Hk1eH0t2Hk2 · · · eH0tj Hkj

1n

for all j ≥ 0, ki ∈ {1, . . . , K}, and ti ≥ 0, 0 < i ≤ j . We prove the theorem by induction.
By definition, we have, for j = 0, π = φW such that φ1n = φW1m = π1m = 1. Define π (i)

and φ(i) as in the proof of Theorem 2, and assume that π (i) = φ(i)W . Then

π (i+1) = π (i)
∞∑
l=0

(G0ti )
l

l! Gki

= φ(i)W

∞∑
l=0

(G0ti )
l

l! Gki

= φ(i)
∞∑
l=0

(H0ti )
l

l! Hki
W

= φ(i+1)W .

Since the relation holds for i = 0, it holds for all i, ki ∈ {1, . . . , K}, and ti ≥ 0. Furthermore,
π (i)1m = φ(i)W1m = φ(i)1n.

Theorem 3 shows that an MRAP can be substituted by a smaller weakly equivalent rep-
resentation since both represent the same stochastic process. The relation between weakly
equivalent MRAPs goes beyond the equivalence of the joint densities, since the vector after
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observing i events in the process with the smaller state space can be used to recreate the vector
in the process with the larger state space. Again, the corollary below shows how to use the
equivalence to prove that a representation describes a valid MRAP.

Corollary 2. If (π , G0, . . . ,GK) is an MRAP with m states, and (φ, H0, . . . ,HK) is a vector
and a set of matrices of dimension n (≤ m) which is weakly related to (π , G0, . . . , GK)

using matrix W (rank(W ) = n), then (φ, H0, . . . , HK) and (π , G0, . . . , GK) are equivalent
processes.

In the following we give a few examples of equivalent processes. In general, for an MRAP,
it is possible to compute (π , G0, . . . ,GK) ordinarily or weakly equivalent representations with
a minimal number of states. A preliminary version of such a reduction algorithm is presented
in [10], where results from the computation of minimal representations in linear system theory
[11] were used. However, a detailed description of the algorithmic reduction is beyond the
scope of this paper, and so we instead consider in the following section the relation between
the equivalence and composition of MRAPs.

Example 2. We consider the following MMAP of size 4:

η = (0.5, 0.25, 0.1, 0.15), D0 =

⎛
⎜⎜⎝

−6 1.123 611 1 0.392 260 9 0.119 047 6
0 −5 1.190 476 2 0.761 904 8
0 3.111 111 1 −6.00 0
0 1.847 221 1 1.375 −5

⎞
⎟⎟⎠ ,

D1 =

⎛
⎜⎜⎝

0 0 0.2 0.8
0 0 0.2 0.8
0 0 0.2 0.8
0 0 0.2 0.8

⎞
⎟⎟⎠ , and D2 =

⎛
⎜⎜⎝

0 0 0.7 2.665 079 4
0 0 0.28 1.767 619 1
0 0 0.68 1.208 888 9
0 0 0.08 0.697 777 8

⎞
⎟⎟⎠ .

With

W =
⎛
⎝1 0.5 0 −0.5

0 0.7 0.3 0
0 0 0.2 0.8

⎞
⎠

we obtain the MMAP

π = (0.5, 0, 0.5), G0 =
⎛
⎝−6 1 0

0 −3.666 67 0.666 67
0 3 −5

⎞
⎠ ,

G1 =
⎛
⎝0 0 1

0 0 1
0 0 1

⎞
⎠ , and G2 =

⎛
⎝0 0 4

0 0 2
0 0 1

⎞
⎠

such that η = πW and WDi = GiW , i = 0, 1, 2, which implies that they are equivalent
processes according to Theorem 3. Now define

V =
⎛
⎝ 1 0

0.333 33 0.666 67
0 1

⎞
⎠ .
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Then

φ = (0.5, 0.5), H0 =
(−5.666 67 0.666 67

1 −3

)
,

H1 =
(

0 1
0 1

)
, and H2 =

(
0 4
0 1

)

are such that πV = φ and GiV = V Hi , i = 0, 1, 2, which implies that they are equivalent
processes. Observe that neither V nor W describe a (weakly) lumpable partition.

In the example above, the two MMAPs and the final MRAP are related. It is also possible
and often necessary to leave the restricted class of MMAPs to find an equivalent representation
with less states. The MMAP and the MRAP shown in Example 1 are weakly related by the
matrix

W =
⎛
⎝1.376 46 −0.606 78 −0.741 62 0.971 94

0.9264 0.4264 0 −0.3528
0.5 0 0 0.5

⎞
⎠

and are therefore equivalent processes.

4. Composition of MRAPs

MRAPs as introduced in the previous sections generate events of different types; to make
them compositional, these events have to be accepted by other MRAPs, which requires an
extension of the model class. We consider here asynchronous composition, which implies that
we distinguish between outgoing (active) events and incoming (passive) events. This viewpoint
corresponds to queueing networks without blocking [5] or probabilistic I/O automata [26]. We
consider the composition of two MRAPs, and define a symmetric composition, which means that
each of the MRAPs is able to send events to the other one. This is a general interpretation of an
MRAP which goes beyond the interpretation as a traffic source. An MRAP is seen as a stochastic
process that interacts with its environment by sending and receiving events. In this way MRAPs
can be used to model interacting systems, such as processes of a distributed system that exchange
messages or multiclass queueing networks where customers travel between subsystems, each
described as an MRAP.

As an extension of MRAPs, we define an extended marked rational arrival process (EMRAP)
with K outgoing and L incoming event types by an initial vector π and a set of K + L + 1
matrices (π , G0, . . . ,GK, U1, . . . ,UL) such that

1. (π , G0, . . . ,GK) is an MRAP,

2. Ul1 = 1 for l = 1, . . . , L, and

3. g(π ,G0,...,GK,U1,...,UL)(t1, k1, . . . , tj , kj ) = νeG0t1Xk1 eG0t2Xk2 · · · eG0tj Xkj
1 ≥ 0 for all

j ≥ 0, ti ≥ 0, and Xki
∈ {G1, . . . ,GK, U1, . . . ,UL}, i = 1, . . . , j .

We use a general function g rather than a probability density function f because incoming
events are included and these events are triggered by some other process. Therefore, g is in
general not a density, but it has to be nonnegative. If (π , G0, . . . ,GK) is an MMAP and Ul ≥ 0,
then the resulting process is Markovian and the third condition is always observed.

The composition of two EMRAPs, (π (1), G
(1)
0 , . . . ,G

(1)
K , U

(1)
1 , . . . ,U

(1)
L ) of dimension n1

and (π (2), G
(2)
0 , . . . ,G

(2)
L , U

(2)
1 , . . . ,U

(2)
K ) of dimension n2, is defined by the following vector
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and matrices:

π (0) = π (1) ⊗ π (2),

G
(0)
0 = G

(1)
0 ⊕ G

(2)
0 = G

(1)
0 ⊗ In2 + In1 ⊗ G

(2)
0 ,

G
(0)
k =

{
G

(1)
k ⊗ U

(2)
k if 1 ≤ k ≤ K ,

U
(1)
k−K ⊗ G

(2)
k−K if K < k ≤ K + L.

Theorem 4. (π (0), G
(0)
0 , . . . ,G

(0)
K+L) is an MRAP.

Proof. Let n0 = n1n2. We have

π (0)1 = (π (1) ⊗ π (2))1 = π (1)1 · π (2)1 = 1

and (
G

(0)
0 +

K+L∑
k=1

G
(0)
k

)
1 =

(
G

(1)
0 ⊗ In2 + In1 ⊗ G

(2)
0 +

K∑
k=1

G
(1)
k ⊗ U

(2)
k

+
L∑

l=1

U
(1)
l ⊗ G

(2)
l

)
1

=
K∑

k=0

G
(1)
k 1n1 ⊗ 1n2 + 1n1 ⊗

L∑
l=0

G
(2)
l 1n2

= 0.

Furthermore, if µ1 and µ2 are eigenvalues of G
(1)
0 and G

(2)
0 , then µ1 + µ2 is an eigenvalue of

G
(0)
0 , which implies that all eigenvalues of G

(0)
0 have a negative real part. It remains to show

that f
(π (0),G

(0)
0 ,...,G

(0)
K+L)

(t1, k1, . . . , tj , kj ) is a valid density. We have

eG
(0)
0 t = eG

(1)
0 ⊕G

(2)
0 t = eG

(1)
0 t ⊗ eG

(2)
0 t ,

since

eG
(1)
0 ⊕G

(2)
0 t =

∞∑
h=0

((G
(1)
0 ⊕ G

(2)
0 )t)h

h!

=
∞∑

h=0

((G
(1)
0 ⊗ In2 + In2 ⊗ G

(2)
0 )t)h

h!

=
∞∑

h=0

1

h!
h∑

i=0

(
h

i

)
(tG

(1)
0 )i ⊗ (tG

(2)
0 )h−i

=
∞∑

h=0

(tG
(1)
0 )h

h! ⊗
∞∑
i=0

(tG
(1)
0 )i

i!
= eG

(1)
0 t ⊗ eG

(2)
0 t .

Define π
(i)
0 = π (i), i ∈ {0, 1, 2}, as the initial vector of the three processes. Then π

(0)
0 =

π
(1)
0 ⊗ π

(2)
0 and, for some sequence, (t1, k1, t2, k2, . . . , tj , kj ), π

(i)
j = π

(i)
j−1eG

(i)
0 tj X

(i)
kj

.
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Now assume that π
(0)
j−1 = π

(1)
j−1 ⊗ π

(2)
j−1. Then it follows by induction that, for all j > 0,

π
(0)
j = (π

(1)
j−1 ⊗ π

(2)
j−1)(e

G
(1)
0 tj ⊗ eG

(2)
0 tj )(X

(1)
kj

⊗ X
(2)
kj

)

= (π
(1)
j−1eG

(1)
0 tj X

(1)
kj

) ⊗ (π
(2)
j−1eG

(2)
0 tj X

(2)
kj

)

= π
(1)
j ⊗ π

(2)
j ,

where X
(1)
k = G

(1)
k for k ≤ K and U

(1)
k−K otherwise, X

(2)
k = U

(2)
k for k ≤ K and G

(2)
k−K

otherwise, and X
(0)
k = G

(0)
k . Furthermore, π

(l)
j 1 = π (l)eG

(l)
0 t1X

(l)
k1

· · · eG
(l)
0 tj X

(l)
kj

1 ≥ 0 for

l = 1, 2 and Xl
ki

as above since (π (l), G
(l)
0 , . . . ,G

(l)
K , U

(l)
1 , . . . , U

(l)
L ) is an EMRAP with a

nonnegative function g. This implies that π
(0)
j 1 = π

(1)
j 1 ·π (2)

j 1 ≥ 0 for all t . Then f is a valid
density if and only if ∫ ∞

t=0

K+L∑
k=1

π
(0)
j−1eG

(0)
0 tG

(0)
k 1 dt = π

(0)
j 1.

We have G
(0)
0 1 = −∑K+L

k=1 G
(0)
k 1 and limt→∞ eG

(0)
0 t = 0 since all eigenvalues of G

(0)
0 have a

negative real part such that

∫ ∞

t=0

K+L∑
k=1

π
(0)
j eG

(0)
0 tG

(0)
k 1 dt = π

(0)
j

∫ ∞

t=0
eG

(0)
0 t dt

K+L∑
k=1

G
(0)
k 1

= π
(0)
j (G

(0)
0 )−1(0 − I )(−G

(0)
0 )1

= π
(0)
j 1.

It is easy to show that the composition of two EMRAPs which are Markovian results in an
MMAP.

5. Preservation of equivalence after composition

We now show that equivalence is preserved by composition such that equivalent EMRAPs
can be substituted into a composition and the result is an equivalent composed MRAP. Before
this can be shown, equivalence has to be defined for EMRAPs by extending the definitions for
MRAPs.

Definition 6. Two EMRAPs, (π , G0, . . . ,GK, U1, . . . ,UL) of size m and (φ, H0, . . . ,HK ,
T1, . . . ,TL) of size n (≤ m), are ordinarily related if an m × n matrix V exists such that

1. 1m = V 1n,

2. πV = φ,

3. GkV = V Hk, k = 0, . . . , K , and UlV = V Tl , l = 1, . . . , L.

Definition 7. Two EMRAPs, (π , G0, . . . ,GK, U1, . . . ,UL) of size m and (φ, H0, . . . ,HK ,
T1, . . . ,TL) of size n (≤ m), are weakly related if an n × m matrix W exists such that

1. 1n = W1m,

2. π = φW ,

3. WGk = HkW , k = 0, . . . , K , and WUl = TlW , l = 1, . . . , L.
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The following two theorems show the preservation of the relations by composition.

Theorem 5. Let (π (1), G
(1)
0 , . . . ,G

(1)
K , U

(1)
1 , . . . , U

(1)
L ) of size m1 and (φ(1), H

(1)
0 , . . . ,H

(1)
K ,

T
(1)

1 , . . . ,T
(1)
L ) of size n1 (< m1) be two EMRAPs that are ordinarily related with matrix V , and

let (π (2), G
(2)
0 , . . . ,G

(2)
L , U

(2)
1 , . . . ,U

(2)
K ) of size n2 be another EMRAP. Let (π (0), G

(0)
0 , . . . ,

G
(0)
K+L) and (φ(0), H

(0)
0 , . . . ,H

(0)
K+L) be the MRAPs resulting from the composition of (π (1),

G
(1)
0 , . . . ,G

(1)
K , U

(1)
1 , . . . ,U

(1)
L ) with (π (2), G

(2)
0 , . . . ,G

(2)
L , U

(2)
1 , . . . ,U

(2)
K ) and (φ(1), H

(1)
0 ,

. . . ,H
(1)
K , T

(1)
1 , . . . ,T

(1)
L ) with (π (2), G

(2)
0 , . . . , G

(2)
L , U

(2)
1 , . . . , U

(2)
K ), respectively. Then

(π (0), G
(0)
0 , . . . ,G

(0)
K+L)and (φ(0), H

(0)
0 , . . . , H

(0)
K+L)are ordinarily related with matrixV (0) =

V ⊗ In2 .

Proof. We have to prove that the three conditions given in Definition 3 hold. The first
holds since (V ⊗ In2)1n1n2 = V 1n1 ⊗ In2 1n2 = 1m1 ⊗ 1n2 = 1m1n2 . Observe that V (0) is an
m1n2 × n1n2 matrix. For the second condition, we have

π (0)V (0) = (π (1) ⊗ π (2))(V ⊗ In2) = π (1)V ⊗ π (2) = φ(1) ⊗ π (2) = φ(0).

Finally, we have
G

(0)
0 V (0) = (G

(1)
0 ⊗ In2 + Im1 ⊗ G

(2)
0 )(V ⊗ In2)

= G
(1)
0 V ⊗ In2 + V ⊗ G

(2)
0

= V H
(1)
0 ⊗ In2 + V ⊗ G

(2)
0

= (V ⊗ In2)(H
(1)
0 ⊗ In2 + In1 ⊗ G

(2)
0 )

= V (0)H
(0)
0 ,

G
(0)
k V (0) = (G

(1)
k ⊗ U

(2)
k )(V ⊗ In2)

= G
(1)
k V ⊗ U

(2)
k

= V H
(1)
k ⊗ U

(2)
k

= V (0)G
(0)
k if 1 ≤ k ≤ K,

G
(0)
k V (0) = (U

(1)
k−K ⊗ G

(2)
k−K)(V ⊗ In2)

= U
(1)
k−KV ⊗ G

(2)
k−K

= V T
(1)
k−K ⊗ G

(2)
k−K

= V (0)G
(0)
k if K < k ≤ K + L.

It is easy to show that the relation also holds if we exchange the indices 1 and 2. In this case,
V (0) = I ⊗ V .

Theorem 6. Let (π (1), G
(1)
0 , . . . ,G

(1)
K , U

(1)
1 , . . . , U

(1)
L ) of size m1 and (φ(1), H

(1)
0 , . . . ,H

(1)
K ,

T
(1)

1 , . . . ,T
(1)
L ) of size n1 (< m1) be two EMRAPs that are weakly related with matrix W , and

let (π (2), G
(2)
0 , . . . ,G

(2)
L , U

(2)
1 , . . . ,U

(2)
K ) of size n2 be another EMRAP. Let (π (0), G

(0)
0 , . . . ,

G
(0)
K+L) and (φ(0), H

(0)
0 , . . . ,H

(0)
K+L) be the MRAPs resulting from the composition of (π (1),

G
(1)
0 , . . . ,G

(1)
K , U

(1)
1 , . . . ,U

(1)
L ) with (π (2), G

(2)
0 , . . . ,G

(2)
L , U

(2)
1 , . . . ,U

(2)
K ) and (φ(1), H

(1)
0 ,

. . . ,H
(1)
K , T

(1)
1 , . . . ,T

(1)
L ) with (π (2), G

(2)
0 , . . . , G

(2)
L , U

(2)
1 , . . . , U

(2)
K ), respectively. Then

(π (0), G
(0)
0 , . . . ,G

(0)
K+L) and (φ(0), H

(0)
0 , . . . , H

(0)
K+L) are weakly related with matrix W (0) =

W ⊗ In2 .

https://doi.org/10.1239/jap/1331216833 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1331216833


54 P. BUCHHOLZ AND M. TELEK

Proof. The proof follows the proof of Theorem 5.

Again, the result holds if we exchange the indices 1 and 2 such that the composed processes
are weakly related with W (0) = I ⊗ W .

If the representations are ordinarily or weakly related they are equivalent processes and
can be substituted without changing the joint densities. The following corollary combines the
results of the previous theorems and shows that the result allows compositional modeling by
first finding smaller ordinarily/weakly related representations which are then composed with
other processes, resulting in a valid MRAP.

Corollary 3. Let (π (1), G
(1)
0 , . . . ,G

(1)
K , U

(1)
1 , . . . ,U

(1)
L ) of size m1 and (φ(1), H

(1)
0 , . . . ,H

(1)
K ,

T
(1)

1 , . . . ,T
(1)
L ) of size n1 (< m1) be two EMRAPs that are ordinarily or weakly related. Let

(π (2), G
(2)
0 , . . . ,G

(2)
L , U

(2)
1 , . . . ,U

(2)
K ) of size m2 and (φ(2), H

(2)
0 , . . . , H

(2)
L , T

(2)
1 , . . . ,T

(2)
K )

of size n2 (≤ m2) be two EMRAPs which are ordinarily or weakly related. Let (π (0), G
(0)
0 , . . . ,

G
(0)
K+L) be the MRAP resulting from the composition of (π (1), G

(1)
0 , . . . , G

(1)
K , U

(1)
1 , . . . , U

(1)
L )

and (π (2), G
(2)
0 , . . . ,G

(2)
L , U

(2)
1 , . . . ,U

(2)
K ), and let (φ(0), H

(0)
0 , . . . , H

(0)
K+L) be the MRAP

resulting from the composition of (φ(1), H
(1)
0 , . . . , H

(1)
K , T

(1)
1 , . . . ,T

(1)
L ) and (φ(2), H

(2)
0 , . . . ,

H
(2)
L , T

(2)
1 , . . . ,T

(2)
K ). Then (π (0), G

(0)
0 , . . . , G

(0)
K+L) and (φ(0), H

(0)
0 , . . . , H

(0)
K+L) are equiv-

alent.

Proof. We assume that (π (1), G
(1)
0 , . . . ,G

(1)
K , U

(1)
1 , . . . ,U

(1)
L ) and (φ(1), H

(1)
0 , . . . , H

(1)
K ,

T
(1)

1 , . . . ,T
(1)
L ) are ordinarily related, and that (π (2), G

(2)
0 , . . . ,G

(2)
L , U

(2)
1 , . . . , U

(2)
K ) and (φ(2),

H
(2)
0 , . . . ,H

(2)
L , T

(2)
1 , . . . ,T

(2)
K ) are weakly related. The other cases are proved similarly.

First, we consider the EMRAP (η(0), F
(0)
0 , . . . , F(0)

(K+L) which results from the composition

of (φ(1), H
(1)
0 , . . . ,H

(1)
K , T

(1)
1 , . . . ,T

(1)
L ) and (π (2), G

(2)
0 , . . . ,G

(2)
L , U

(2)
1 , . . . , U

(2)
K ). Accord-

ing to Theorem 5, this MRAP is equivalent to (π (0), G
(0)
0 , . . . , G

(0)
K+L).

Then we can start with (η(0), F
(0)
0 , . . . , F(0)

(K+L) and, according to Theorem 6, this EMRAP is

equivalent to (φ(0), H
(0)
0 , . . . ,H

(0)
K+L). Since equivalence of MRAPs is transitive, the corollary

follows.

Example 3. We consider the following two EMRAPs which are both Markovian:

π (1) = (0.563 484, 0.380 168, 0.012 697, 0.043 652),

G
(1)
0 =

⎛
⎜⎜⎝

−1 1 0 0
0 −1 1 0
0 0 −1 1
0 0 0 −2.290 867

⎞
⎟⎟⎠ ,

G
(1)
1 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0

1.290 867 1 0 0

⎞
⎟⎟⎠ ,

U
(1)
1 =

⎛
⎜⎜⎝

0.825 445 0.174 555 0 0
0.225 327 0.774 673 0 0

1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ ,
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and

π (2) = (0.1, 0.9, 0, 0),

G
(2)
0 =

⎛
⎜⎜⎝

−0.835 56 0.426 67 0 0.088 89
0 −0.9775 0.67 0.2475

0.402 22 1.173 33 −2 0.244 44
0.291 11 1.306 67 0 −1.977 78

⎞
⎟⎟⎠ ,

G
(2)
1 =

⎛
⎜⎜⎝

0.035 56 0.198 33 0 0.086 11
0.006 67 0.045 0 0.008 33

0.02 0.1225 0 0.0375
0.042 22 0.268 33 0 0.069 44

⎞
⎟⎟⎠ ,

U
(2)
1 =

⎛
⎜⎜⎝

0 0.475 0 0.525
0.611 11 0.091 67 0 0.297 22
0.388 89 0.183 33 0 0.427 78
0.166 67 0.125 0 0.708 33

⎞
⎟⎟⎠ .

Composition of the two processes results in an MMAP (π (0), G
(0)
0 , G

(0)
1 , G

(0)
2 ) with 16

states. However, the first EMRAP is weakly related with matrix

W =
⎛
⎝0.563 484 0.436 516 0 0

0 0.563 484 0.436 516 0
0 0 0.563 484 0.436 516

⎞
⎠

to the EMRAP

φ(1) = (1, −0.1, 0.1), H
(1)
0 =

⎛
⎝−1 1 0

0 −1 1
0 0 −1

⎞
⎠ ,

H
(1)
1 =

⎛
⎝0 0 0

0 0 0
1 0 0

⎞
⎠ , T

(1)
1 =

⎛
⎝1 0 0

1 0 0
1 0 0

⎞
⎠ .

The second EMRAP is ordinarily related with matrix

V =

⎛
⎜⎜⎝

0.8 0.4 −0.2
−0.1 0.2 0.9
0.1 0.4 0.5

−0.1 1 0.1

⎞
⎟⎟⎠

to the EMRAP

φ(2) = (−0.01, 0.22, 0.79), H
(2)
0 =

⎛
⎝−1 0.8 0

0.2 −1.6 1
0 0.8 −0.8

⎞
⎠ ,

H
(2)
1 =

⎛
⎝0 0.1 0.1

0 0.15 0.25
0 0 0

⎞
⎠ , T

(2)
1 =

⎛
⎝ 0 0.5 0.5

0 0.8 0.2
0.5 0.5 0

⎞
⎠ .

It is interesting to note that in both cases only the initial vector prohibits the processes being
Markovian. Composition of the two processes results in an MRAP (φ(0), H

(0)
0 , H

(0)
1 , H

(2)
2 )
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with nine states characterized by the following vector and matrices:

φ(0) = (0.01, 0.22, 0.79, 0.001, −0.022, −0.079, −0.001, 0.022, 0.079),

H
(0)
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 0.8 0 1 0 0 0 0 0
0.2 −2.6 1 0 1 0 0 0 0
0 0.8 −1.8 0 0 1 0 0 0
0 0 0 −2 0.8 0 1 0 0
0 0 0 0.2 −2.6 1 0 1 0
0 0 0 0 0.8 −1.8 0 0 1
0 0 0 0 0 0 −2 0.8 0
0 0 0 0 0 0 0.2 −2.6 1
0 0 0 0 0 0 0 0.8 −1.8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

H
(0)
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0.5 0.5 0 0 0 0 0 0
0 0.8 0.2 0 0 0 0 0 0
0 0.5 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

H
(0)
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.1 0.1 0 0 0 0 0 0
0 0.15 0.25 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0.1 0.1 0 0 0 0 0 0
0 0.15 0.25 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0.1 0.1 0 0 0 0 0 0
0 0.15 0.25 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Both MRAPs (π (0), G
(0)
0 , G

(0)
1 , G

(0)
2 ) and (φ(0), H

(0)
0 , H

(0)
1 , H

(0)
2 ) are equivalent. The

former MRAP is an MMAP, the latter is not an MMAP since the initial vector contains negative
elements. The matrices are in both cases MMAP matrices. Furthermore, (G0)

−1∑K
k=1 Gk and

(H0)
−1∑K

k=1 Hk are irreducible stochastic matrices such that the embedded stationary vector
can in both cases be computed as the left eigenvector belonging to the unique eigenvalue 1 of the
above matrices. The resulting eigenvectors normalized to 1 describe a probability distribution.
This implies starting from the embedded stationary vector both MRAPs are MMAPs. However,
the initial vector φ(0) determined by π (0) is not a proper distribution.

6. Conclusions and future work

In this paper we defined a new class of stochastic processes, called marked rational
arrival processes (MRAPs), which are a natural extension of rational arrival processes (RAPs).
Furthermore, we introduced two equivalence relations for these processes which are general-
izations of ordinary and weak lumpability defined for Markov processes. We showed that the
equivalence relations allow us to relate Markovian and non-Markovian representations, and that
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the equivalence is preserved by asynchronous composition of MRAPs, which is also defined in
the paper.

The class of MRAPs offers interesting possibilities in stochastic modeling since processes
can be analyzed numerically even if they are not Markovian. MRAPs with finite state spaces are
more general than Markov models with finite state spaces, however, a complete characterization
of the relation between MRAPs and MMAPs is still missing. Additionally, the development of
algorithms to compute the proposed relations between different MRAPs is also an important
point. A first approach can be found in [10].

Appendix A. Ordinary relation with matrix V of reduced column rank

Theorem 7. Assume that MRAPs (π , G0, . . . , GK) of size m and (φ, H0, . . . , HK) of size n

(n ≤ m) are related as in Definition 3, but that rank(V ) = r < n. Then there exists an
m × r matrix U and an MRAP (η, F0, . . . , FK) of size r such that (π , G0, . . . ,GK) and
(η, F0, . . . ,FK) are ordinarily related by matrix U .

Proof. We show how to compute the matrix U and MRAP (η, F0, . . . , FK). Without loss
of generality, we assume that the first r columns of V are linearly independent such that
V = (V1V2) and V1 is an m × r matrix with rank(V1) = r . Since the columns of V1 spawn
the column space of V , an r × s (s = n − r) matrix A exists and V2 = V1A. Let

Hk =
(

H 1
k H 2

k

H 3
k H 4

k

)
,

where H 1
k is an r×r matrix. Here GkV = V Hk implies that GkV1 = V1(H

1
k + AH 3

k ). Define
D = Ir + diag(A1s), an r × r matrix, where diag(·) of a vector is a diagonal matrix with the
vector elements in the diagonal. If U = V1D then

U1r = V1D1r = V1(Ir + diag(A1s))1r = V1(Ir1r + A1s) = V11r + V21s = 1n.

The relation also implies that D cannot be 0 but may contain 0 diagonal elements. We first
assume that D is nonsingular, i.e. all diagonal elements are nonzero. Define the vector η = πU

and the matrices Fk = D−1(H 1
k + AH 3

k )D such that

UFk = V1DD−1(H 1
k + AH 3

k )D = V1(H
1
k + AH 3

k )D = GkV1D = GkU .

Since D has full rank, rank(V1D) = rank(V1) = r , which completes the proof for this case.
If D is singular, we assume without loss of generality that the first u > 0 diagonal elements

are nonzero such that

D =
(

D1 0
0 0

)
,

where D1, of size u × u, is a nonsingular diagonal matrix. We define

D̃ =
(

D1 0
−1ve0 Iv

)
.

Then

D̃−1 =
(

D−1
1 0

(1ve0)D
−1
1 Iv

)
,
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where v = r − u, Iv is the identity matrix of order v, and e0 is a row vector of length u (whose
elements are numbered from 0 to u − 1). The element 0 of e0 is 1 and all other elements are 0.
Define Ũ = V1D̃. Since D1r = D̃1r , we have Ũ1r = 1r . Now we can use D̃ and Ũ instead
of D and U and obtain, for Fk = D̃−1(H 1

k + AH 3
k )D̃,

ŨFk = V1D̃D̃−1(H 1
k + AH 3

k )D̃ = V1(H
1
k + AH 3

k )D̃ = GkV1D̃ = GkŨ ,

which completes the proof.

Appendix B. Weak relation with matrix W of reduced row rank

Theorem 8. Assume that the MRAPs (π , G0, . . . ,GK) of size m and (φ, H0, . . . , HK) of size
n (n ≤ m) are related as in Definition 5, but that rank(W ) = r < n. Then there exists
an r × m matrix T and an MRAP (η, F0, . . . , FK) of size r such that (π , G0, . . . ,GK) and
(η, F0, . . . ,FK) are weakly related by matrix T .

Proof. The proof follows the same lines as the proof of Theorem 7.
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