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ON THE DETERMINISTIC AND ASYMPTOTIC 
a-ALGEBRAS OF A MARKOV OPERATOR 

BY 

ULRICH KRENGEL AND MICHAEL LIN 

ABSTRACT. Let P be a Markov operator on Loo(X, S , m) which does 
not disappear (i.e., P\& = 0 => 1^ = 0 ) . We study the relationship 
between the cr-algebras 

OO 

în(P) = {Aeï :3Bn with Pn\A == \Bn}^d(P) = f i ln(P) 

(the deterministic cr-algebra), and the asymptotic a-algebra 

MP) = {A e 2 : V«30 £fn£l with Pnfn = 1^}. 

When m is a cr-finite invariant measure,/ G Lp(m)(\ = p < oo) is Xn(P) 
measurable iff p*npnf = / , and also iff P71/ has the same distribution 
as / . The case of a convolution operator on a locally compact group is 
considered. 

0. Introduction. Let (X,2,m) be a cr-finite measure space, and P a Markov-
operator in Loo(X, X, ra), i.e., a linear operator in L^ of norm ^ 1 (called a contrac­
tion), which satisfies: 

(i) 0 ^ / G L o o ^ O ^ / y ; 
(ii) P\ = 1 
(iii) 0 g /„ ^ 1 in Loo and/, [ 0 => /% | 0. 
The measure m is called invariant if JPf dm = Jf dm holds for a l l / . In that case, 

P is also a contraction in L\(m), and therefore in all spaces Lp(ra), 1 ^ /? ^ oo; see 
e.g. [K, p.65]. 

If/ is any function and we write/ = 1#, we assert the existence of a set B with 
/ = lfl. We do not distinguish measurable functions or sets from their equivalence 
classes mod nullsets. 

The deterministic a-algebra S^ = {A : P"\A = 1B„VAZ} was introduced for the study 
of limit theorems of Pnf, when m is invariant for P. We quote the general results, 
proved in [Fl]: 

THEOREM A. / = {/ G L2(m) : \\Pnf\\2 = \\f\\2Vn} = {/ G L2(m) : />*"/>" = 
/Vfi}=L2(X,2d(P),w) 

THEOREM B. (i) / is invariant for P', Û/IÛ? F|/ w a« isometry. 
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ALGEBRAS OF A MARKOV OPERATOR 65 

(ii) / / / -Li , then Pnf -> 0 weakly in L2(m). 

Using this approach, Foguel [Fl] (p.96-98) succeeded in obtaining a proof of the 
Jamison-Orey theorem: If 2 j is trivial for an aperiodic Harris operator with finite 
invariant measure, and/ G L\ satifies Jf dm = 0, then ||/>,I/lli ~~y 0-

M. Rosenblatt [R, p.113-115] showed that in general we cannot have strong con­
vergence in Theorem B(ii), even if the invariant measure is finite, and 2 j is trivial. A 
different example was recently given in [AB]. 

In [LI] it is shown that for the predual T of P, acting in Li(ra), we have (without 
requiring an invariant measure) 

/

oo 

ugdm = 0 V g e f l P ^ / G L o o i O ^ / ^ l } . 
n=\ 

(see also [D] for more discussion). 
Hence, it is a natural question to ask if it is enough to check only against ge2, = 

Xt(P), the set of indicator functions in the above intersection, (as is suggested by the 
result for P obtained from a non-singular point transformation). 

If m is a a-finite invariant measure for T, theorem 2.1 below asserts 2</(i) — ^t(P)-
Together with Rosenblatt's example, this implies that the answer to the above question 
is negative even for P with an invariant probability. 

We also study 2„(i) = {AeX : 3Bn with Tn\A = lBn}. E.g., we show that / is 
2„(i)-measurable i f f / , 7 / , . . . , i n / have the same distribution with respect to the 
a-finite invariant measure m. 

In the particular case of irreducible convolution operators on a locally compact 
group we identify Xd — 2*. 

P is called non-disappearing if P\A = 0 implies I A = 0. (Equivalently,/ ^ 0 , / / = 
0 => / = 0). Clearly, Markovian operators having a cr-finite invariant measure and 
conservative operators are non-disappearing. 

The following lemma is included here since the reference may not be readily 
accessible: 

LEMMA 0 [F2]. (i) IfP is Markovian, PIB] = U, andP\Bl = U2, then P(lBlUBl) — 
U,U42-

(ii) If, in addition, P is non-disappearing, then Pg = I A with 0 ^ g ^ 1 implies 
the existence of a unique BeX with g = \B. 

PROOF, (i) P(lBiUB2) = P(\BX + bfna2) = PIB{ + />lsfnfi2 = PUX V/M^us, (since 
P\Bc = \Ac) ^ P\Bx \/PlBl. The reverse inequality is clear. 

(ii) P(l-g) = ly and hence P(g A(l -g)) ^ 1A A lA< = 0. Hence gA(l-g) = 0 
and g = \B. If also P\c = lA, then P(\B A l c 0 ^ PIB APla = UA U = 0. Hence 
B CC, and by symmetry B = C. • 

1. The deterministic and asymptotic a-algebras. Let 2„ = {A G 2 : / ^ I A = 
lfl}. Then, since Pn is a Markov operator, Lemma 0 easily yields that Xn is a a-
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algebra, and that Sn+i C Sn if P is non-disappearing. We shall assume throughout 
that P is non-disappearing. Then 

oo 

2rf := p| S„ 

is the determinisitic a-algebra. 

THEOREM 1.1./ G L^S») ^ / " ( f t ) - (Pnf)(Png)Vg € L*,. 

PROOF. We may assume « = 1. 

Let L = {/ G Loo : ^(/g) = (Pf)(Pg)Vg G Loo}. It is easy to check that L is an 
algebra, and w*-closed. Let S — {A € S : U G L}. It was proved in [L3] that S is a 
a-algebra, and that L = L^X^S^m). For A G S we have PCU) = (Pl/O2, so A G Si. 
Thus 5 c S i . 

Let A G Si. Then P\A = 1B. For 0 ^ g G Loo we have />(Ug) S I^ IU^U = 
||g||oolfl. Hence P(IAg) — Oa.e. on Bc. Hence, applying the argument to Ac,P(\Acg) = 
0 a.e. on B. Hence \BPg = [ P ( l ^ ) + / > ( l ^ ) ] l n = I J ^ O A S ) . 

Since P(lAg) = 0 on # f , P (Ug) = lflPg = (/M^XPg). It follows easily that 
A G S. Hence 5 = Si. D 

COROLLARY 1.2./ G £«,(2,,) «* />"(/#) = (Pnf)(Png)Vg G Loo, VAZ. 

COROLLARY 1.3. F mops Loo(S^) mto Loo(Sj). 7Vie restriction of P to Loo(Sj) /s 
multiplicative and induces a homomorphism of^d-

This result corresponds to theorem A in the introduction, without assuming the 
existence of an invariant measure. 

DEFINITION S, = {A G S : for \/n there is 0 fkfn è 1 with Pnfn = lA}. 

PROPOSITION 1.4. Let P be non-disappearing. If A G Sr, then each 0 ^ fn ^ 1 
satisfying Pnfn — \A is uniquely determined, fn = 1A„,AW G S/, <3«<i PIA„+] — IA„-

PROOF. AS Pn is non-disappearing, the uniqueness and fn = lAn follow from 
Lemma 0. Moreover, \A = PnPm\An+m and \A = Pn\An yield PmlAn+m = W As m 
was arbitrary A„ G S*. • 

THEOREM 1.5. S, /s a a-algebra. 

PROOF. Let A,5 G S,. Then P " ^ = \A,Pn\Bn = 1*, with An,Bn G S,. Hence, 
adding 

Pn(lAnnB0 S />"U„ AP f l l a î = U A be = W 

and 

we have P^ l^ = 1A- Since /"MA,, = ^A->Pn{^AnnBn) — UnB-Hence S, is closed under 
intersections and complements. 
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The above also shows that A C B => An C Bn for every n. Hence, if Bk Î A, 
Bk G 2r, then the Bnk which satisfy Pnlbnk — ^Bk will satisfy Bnk C Bn^+\. Let 

oo 

Then / ^ l ^ = l im*/"1!^ = lim* lfl/t = 1̂  and A G 2*. Thus 2, is an a-algebra. • 

REMARK. 2f is called the asymptotic cr-algebra. When Pf(x) = f(6x) for some 
nonsingular 0, 

oo 

2, = f|0-"2. 

In that case 2* is also called ta//-<r-algebra. 

DEFINITION For A G Sr, define ^(A) = Ai, which is well-defined by proposition 
1.4, and maps 2* into 2,. The proof of theorem 1.5 shows that ^ is a homomorphism 
of the o-algebra. We have "Vn(A) = An (when Pn\An — U)> and it is easily verified 

thatvnat) = ïtnîn. 
Remember that P induces a homomorphism of 2</, and denote P(A) — B when 

P\A = lB. Then Pn(A) = Bn. Pn(Zd) is a a-algebra, and Pn+l&d) C Pn(2d). 

THEOREM 1.6. 
OO OO 

«=0 AJ=0 

PROOF. The first equality follows from the above relations SPnÇ£t) = 2, Pi %„. 
Denote f l ^ o ^ " ^ ) by Sfl, so 2fl C 2 j . Let A G 2fl. Then there exist An G 2 j with 
Pn\An = lA. Hence 2fl C 2, H 2 j . 

Let A G 2/ H Srf. A G 2 j =» FWU = 1#„. A G 2/ implies that there are Ak G 2„ 
with PlAk+l = lAk,A0 = A. Then, for A: > n we have P*1A|| = Pk~n\A = 1^_„. Since 
PM^ = 1 ^ for /: ^ AZ, we have that A„ G 2<*, and 1̂  G Pn(£d) for every AT. Hence 
2, H 2 j C 2 a , and equality holds. • 

REMARK. P and ^ are automorphisms of 2 a , with P~l — W. 2 a is called the 
automorphic a-algebra [F2]. 

It was proved in [L3, lemma C] that if P is conservative and ergodic, the eigen-
functions corresponding to unimodular eigenvalues are 2a-measurable. 

2. Results for P having a a-finite invariant measure. If m is invariant for P, 
then P is also a contraction of L\(m) which preserves integrals. Hence P* is also a 
Markov operator in Loo(m), P*l = 1 (since P preserves integrals), and m is invariant 
for P*. (See [Fl] or [F2] for more details on the dual Markov operator.) We denote 
. Jfg dm by (f,g), for \fg\ e Li(m). 
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THEOREM 2.1. Let m be a a-finite invariant measure for P, and P* the dual Markov 
operator. Then %d(P) = 2,(P*). 

PROOF. Let A E £</(/>). Then Pn\A = lBn. Fix n, and let £* | ££ with ra(£*) < oo. 
Then 

(U,P*nlEk) = (PnlA,lEk) = (lBH,lEk) = 0, 

and P * " ^ ^ lAc Letting ^ o o w e obtain P*nlBc ^ lAc. Hence also P*n\Bn ^ 1A, 
and equality must hold. Hence A E 2f(P*). 

For the converse, let A E 2,(P*). Then there are A„ G £,(/>*) with P*"1A„ = U-
We prove P"1A = U„ using the technique above. D 

REMARK. 2 J ( P ) may be different from Xd(P*) — %(P). 

COROLLARY 2.2. Under the above assumptions (i) A E £«(/*) & P*nPnlA = 1^. 
(ii) P\A = lA & P*nlA = 1A. (Note that m(A) may be infinite.) 

PROOF, (i) If P*nPnlA = lA, then Pn\A is an indicator function by lemma 0. If 
A E ^n(P),Pn\A = lA = \Bn implies by the previous proof P*nPnlA = P*n\Bn = \A. 

(ii) Bn = A in the above shows Pjj[ = U if P\A — \A. D 

REMARKS. 1. If m is finite, then p*npn has m as a finite invariant measure, and 
for / E Li(X,2,m) we have p*"/>"/ =f&fe Lx(Xn(P),m), becasue P^P11 is 
conservative [K, lemma 3.3.3]. 

2. If m is infinite, we have for 1 ^ p < oo that In,P(P) = {/ E LpÇZ,m) : 
p*«p«f =f} satisfies: 

( i ) / e / ^ ( P ) = » | / | E / ^ ( P ) . 
(ii) / , £ G M / * ) =>/ V g , / A# E / ^ ( P ) 
(iii) / E /njP, a > 0 =>/ A a E /„,P(P). 
For the proof of (iii) we proceed as in [Fl]; (p = 2 was not used): Let h = / A a. 

Then P**P"/z ^ p*«py Aa = h. Hence P*nPn(f - /z) ^ / - /z ^ 0, and since P*"P" 
is a contraction of Lp, equality holds, and /z E In,P(P)-

It follows that if/ GLJ is in 7„,P(P), then l{f>a} = Hm* * ( / - tf)+ A 1 E In.p(P). 
Thus, / ^ ( P ) = Lp(Xn(P\m) for 1 â p < oo. 

DEFINITION 77Z£ distribution of f E Lp(m), 1 ^ p < oo, is defined (when m is 
a-finite) by m{f > t} for t > 0, m{ / < r} /or r < 0 (which are finite since f E Lp.) 

THEOREM 2.3. Let m be a a-finite invariant measure for P, andf E Lp(m), 1 ^ /? < 
oo. 77z£« the following are equivalent: 

(i) P*nPnf =f 
( i i ) / eL„ (2 (P) ,m) 
(iii) Pw/ /zas z7ze same distribution as f. 
(iv) / , P / , . . . ,PW/ /zave the same distribution. 

PROOF. The equivalence of (i) and (ii) is discussed above. 
(ii) =>(iv). Since S„(P) C 2w_i(P). . . C Si(P), it is enough to prove (iii) for 

n = 1, then apply it to P 2 , P 3 , . . . 7P". 
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Le t / G Lp(ï<i(P),m) be a simple function:/ = S^/IA, with At disjoint in ^\(P), 
and m(Ai) < oo. Passing to complements in lemma 0 (i) yields 0 = Pl^nA — 
P\Ai APIAJ for / ^ j and A/,Ay G Si. Hence, if lBi = ^ IA , , we have f/ = 2tf/l#( 

with disjoint sets Bt. Since m(Bi) = m(Ai) < oo, Pf has the distribution of/. 
Let now/ = / + —/~ be in Lp(Xi(P),m),(l ^ p < oo). Let 0 Ik fk,gk be simple 

functions in LP&{(P)) with 0 £ / * T/ + ,0 ^ ^ î / ~ . Then Pfk ] Pf\Pgk ] Pf. By 
theorem 1.1 we have 0 - P(fkgk) = (Pfk)(Pgk) — (Pf+)(PD. 

k—xx> 

Hence (/>/)+ = Pf+, (/>/)" = **/". Thus, for t > 0, we obtain, by the beginning of 
the proof, 

m{Pf >t} = m{Pf+ >t} = lim m{Pfk > t} = \im m{fk > t} = m{f > t}. 
k k 

Similarly, m{Pf < t} = m{f < t} for t < 0, and Pf and / have the same 
distribution. 

(iv) =$> (iii) is obvious. 
(iii) => (ii) It is enoguh to prove only the case n = 1. We note that for any 

g G Lp, we have (Pg)+ ^ Pg+. This applies also to g G Loo, and, more generally, 
to any g with Pg± well defined. Thus, if a ^ 0 a n d / G Lp, since PI = 1, we 
have (Pf - a)+ = [P(f - a)]+ ^ P(f - a)+. Since 0 ^ ( / - a)+ ^ / + , we have 
( / — a)+ G Lp. We now assume that / and Pf have the same distribution, i.e., the 
measures on R /z/(J5) = m{x : Pf(x) G # } and /x(Z?) = m{x :f(x) G # } are equal. 
Since P is a contraction in Z^, using the change of variable formula we obtain 

J[P(f - off dm > J{[P(f - a)TYdm = J [(Pf - off dm 

= j[(t - affd^(t) = J[(t - a)+fdfi(t) = J[(f - aTfdm 

= \\(f-a)TP^\\P(f-a)Tp. 

Hence [P(f ~ a)]+ = P(f - a)+, for a ^ 0. Now 

Pl{f>a}= KmP[k(f-a)+A\] 

^ lim [ifcP(/ - a)+] A 1 

= \jm[k(Pf-a)+]Al = \{pf>a}. 

For a > 0, m{f > a} and m{Pf > a} are finite and equal. Hence 

/ P\{f>a}dm = / l{/>a}^m = / \{Pf>a}dm 

shows that F l { / > a } = l{Pf>a}, and l{/>fl} G Si. 
For a < 0, we apply the above to —/. Hence/ is Si- measurable. • 
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COROLLARY 2.4. / / / G Lp(m), 1 ^ p < oo, then f G Lp(Zd(P),m) & {Pnf}Zo is 

identically distributed. 

REMARKS. 1. The above corollary is another justification for the term "determin­
istic". 

2. Although {Pnf} converges in distribution ([AB], [KL, theorem 3.3]), the exam­
ple in [R] has a finite invariant measure ra, 2^(P) trivial, and / G L2 such that Pnf 
converges in distribution to a non-constant function. Thus, the limiting distribution 
need not be that of a 2d-measurable function. 

3. For p = 2, the proof of (iii) => (ii) is greatly simplified by the fact that \\Pf W2 = 
||/112» a property which is equivalent to P*Pf = / . For p — 1 such a characterisation 
is false. 

4. If m is not finite, m need not be cr-finite on 2 j . We then define X\ = £ss sup{A G 
X^ : m(/4) < 00}, and m on SjHXi is a-finite. Our results then concern/ G /^(S^nXi). 
(since 2 j is a algebra, Xi G 2j). 

3. The deterministic a-algebras of convolutions. In this section we discuss 
convolution operators in locally compact <r-compact groups. We collect the known 
results in theorems 3.1 and 3.2. They were part of the motivation for this re­
search. Let 2 be the Baire a-algebra of a locally compact cr-compact topological 
group G, and let m be the right Haar measure. If /x is a regular probability on 
2 , we define the transition probability P(x,A) = n{x~~xA) and the Markov opera­
tor Pf{x) — Jf(y)P(x,dy) — Jf(xy)dfi(y) = [i */(x). Then m is a cr-finite invariant 
measure for P. It is finite if and only if G is compact. We denote by T(x) the translation 
operator (by x). 

THEOREM 3.1. Let G be compact. 

(i) / / / G L2(m), then \\P"(f - E(f\Xd(P))h — 0 
(ii) 2 j is the a-algebra generated by {g G C(G) : Pg — Xg1 \X\ = 1}. 

PROOF, (i) The translation operators [T(y)f](x) =/(xy) yield a strongly continuous 
representation of G in L2(m), i.e., y —•* T(y)f is a continuous map from G to L2(m). 
Hence {T(y)f : y G G} is strongly compact. By a theorem of Mazur, cô{T(y)f : 
y G G} is also strongly compact. Since Pnf G cô{T(y)f : j G G}, {Pnf} is strongly 
sequentially compact. By theorem B(ii), if/i_L2(2^(/>),m),JPy —• 0 weakly. Since it 
is strongly sequentially compact H/"1/!^ —• 0. 

(ii) We managed to prove (i) without using the Jacobs-Deleeuw-Glicksberg de­
composition [K]. We now use it in C(G). The map y —> T(y)f is continuous from 
G into C(G) when / G C(G). Hence, as above, {Pnf} is strongly sequentially 
compact. By the decomposition theorem, C(G) = CQ 0 C J , where Ci is generated 
by {g G C(G) : Pg = \g, |A| = 1}, and, for/ G C0(G), | | P y IU - , 0. By (i) we have 
Ci C L2(Xd(P)) and Co-LZ^fë^P)). Some approximation arguments yield the 
result. D 

THEOREM 3.2. Let G be Abelian. 
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(i) / / / G Lx{m) with JAfdm = Ofor VA G ïd then \\Pnf\\i -+ 0. 
(ii) 2d is the a-algebra generated by the continuous characters {Y G G : |/x(Y)| = 

!}• 
This is the result of [DL]. (The details of the proof of (ii) appear in [L4]. It is also 

shown there that 

oo 

f]P*"{0 Zf ^ 1} = {0 £f ^ 1 : P*Pf = / } , 
n=l 

and that this set is contained in Loo(S^).) 

We note that when G is Abelian, P and P* commute. Hence P*nPn = (P*P)n 

converges strongly (to a projection on the fixed points of P*P). Thus, for f-L{g G 
L2 : P*Pg = g} we have P*nPnf -+ 0, hence \\Pnf\\2 -> 0. 

EXAMPLE. Bougerol [B] constructed an example of G (non-Abelian, of course), 
[i non-singular on G adapted (i.e., such that the support S of /x generates G as a 
topological group), S is not contained in a class of any compact normal subgroup, but 
for some 0 ^ / continuous with compact support lim ||PY||oo > 0. It can be proved 
that necessarily limn H^Yl^ > 0. 

Inspecting the example, we find that the closed group H generated by S~lS is 
normal. Suppose 0 ^ g G L2(m) satisfies P*Pg = g. Without loss of generality, 
g ^ 0, and by regularization we may assume g continuous, vanishing at oo, and 
g(e) ^ 0 (where e is the unit in G). Then P*Pg = g implies g(xy) = g(x) for every 
y G S~lS (P* is given by JJL(A) = /x(A_1), and P*P by fi * /x, whose support is S~lS). 
Hence G\ = {y : g(xy) — g(x)Vx} is a closed subgroup containing S~lS, so it is 
not compact. But G\ C {y : g(y) = g(e) ^ 0}, which is compact - a contradiction. 
Hence P*Pg = g G L2 implies g = 0, and therefore the isometric part of P is trivial 
(£d contains only sets of measure zero or infinity. It is not trivial in this example). 
Since lim||/>,1/||2 > 0 this example shows that we do not necessarily have strong 
convergence in theorem B(ii) (quoted in the introduction) for convolution operators 
in general locally compact groups, although it holds in compact and Abelian groups. 

In contrast to the above example (in which P is transient), we have the following. 

THEOREM 3.3. Let [i be adapted on G non-compact. If P is recurrent, then 
\\Pnfh — 0 for every feL2. 

n—+oo 

PROOF. Derriennic [D] proved that Pnf{x) converges to zero everywhere, for / 
continuous with compact support. Since P is recurrent, we apply [L2] to complete the 
proof. • 

The main idea of [D] is to use the fact that a recurrent random walk is topologically 
irreducible (i.e., P has no closed sets which are absorbing). In terms of /x, this means 
that the closed semigroup generated by the support of /x is all of G. 
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PROPOSITION 3.4. Let fi be a probability on a locally compact group G. If P\A = 1# 
(in Loo(m)j, then T(y)ÏA = 1# for every y in the support of /x. 

PROOF. There is a set N with m(N) = 0 such that for x £ N we have 1#(JC) = 
PIA(X) — J \A(xy)du(y). Hence for x £ N we have 1,4(xy) = 1#(JC) for /x-a.e.y., or 
J | !*(*) - U(xy)|diiiy) = 0 for JC £ Af. Hence 

/ [ / \T(y)U(x) - lB(x)\dm(x)} dfi(y) = J I J \ lA(xy) - \B(y)W(y) dm(x) — 0. 

Hence T(y)\A = 1# (in Lœ) for /x-a.e.y. Since the representation by translations in 
L\ is continuous, the representation in L^ is weak* continuous. Hence T(J)IA = 1# 
for every y in the support of //. • 

LEMMA 3.5.[W] Let [i be irreducible with suppport S. Then H, the closed normal 
subgroup generated by SS~~l, equals the closed subgroup generated by (J^Li SnS~n, 
(and it also equals the closed subgroup generated by U^ii ^~nSn.) 

THEOREM 3.6. Let P be irreducible. Then 
(i) %(P) = Xd(P) = {A : T(y)lA = l^Vj G / / } 
(ii) 2</ w trivial & H = G. 

PROOF, (i) By the lemma, 700 U = UVy G / / implies P*nPnlA = U and 
PnP*n\A = 1A for every /i. Hence 2 ' = {A : T(y)U - \AVy G / / } C 2 j H 2,. 

If A G 2^, proposition 3.4 implies T(j)l^ = 1^ for y in S" and T(y)\A = U 
for j G S^S", and, by lemma 3.5, T(y)\A = lA for y G / / . Hence 2^ C 2 ' , and 
2^ = 2 ' . 

If A G 2/, then Pn\A„ — U implies by proposition 3.4 that T(y)\A = U for 
v G £"5-", hence, by lemma 3.5, for y G / / , and 2, = 2 ' . 

(ii) Let H ^ G. Since / / is a normal subgroup, G/// is a locally compact group, 
with Haar measure m. G JH ^ {e}, so there is B C G JH open which is m non trivial. 
Let 7T be the canonial map of G onto G/// . Define A = TT~1(B). Then w(̂ 4) ^ 0, 
ra(/4c) ^ 0, so A is non trivial. By the definition, i G / l ^ JC// C A,JC G ^4r => xH C 
Ac, so T(y)l^ = 1̂  for j G / / , and A G 2 j . Hence 2^ is not trivial. 

Let H = G. If A G 2^, then T(j)l^ = 1̂  for every j G G . Hence A is trivial. • 

COROLLARY 3.7. //"G w AIÔ  compact and P is irreducible, then for A G 2 j we /zav^ 
m(̂ 4) zero <?r infinity. 

PROOF. Derriennic [D] showed that H cannot be compact. 
We wish to thank the referee for his useful comments. 
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