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Pancreatic b-cells and skeletal muscle act in a synergic way in the control of systemic glucose homeostasis. Several pyruvate-dependent and

-independent shuttles enhance tricarboxylic acid cycle intermediate (TACI) anaplerosis and increase b-cell ATP:ADP ratio, triggering insulin

exocytotic mechanisms. In addition, mitochondrial TACI cataplerosis gives rise to the so-called metabolic coupling factors, which are also related

to insulin release. Peripheral insulin resistance seems to be related to skeletal muscle fatty acid (FA) accumulation and oxidation imbalance. In this

sense, exercise has been shown to enhance skeletal muscle TACI anaplerosis, increasing FA oxidation and by this manner restores insulin

sensitivity. Protein malnutrition reduces b-cell insulin synthesis, release and peripheral sensitivity. Despite little available data concerning

mitochondrial metabolism under protein malnutrition, evidence points towards reduced b-cell and skeletal muscle mitochondrial capacity. The

observed decrease in insulin synthesis and release may reflect reduced anaplerotic and cataplerotic capacity. Furthermore, insulin release is tightly

coupled to ATP:ADP rise which in turn is related to TACI anaplerosis. The effect of protein malnutrition upon peripheral insulin resistance is

time-dependent and directly related to FA oxidation capacity. In contrast to b-cells, TACI anaplerosis and cataplerosis pathways in skeletal

muscle seem to control FA oxidation and regulate insulin resistance.

Mitochondrial metabolism: Skeletal muscle: Pancreatic islets

In pancreatic islet b-cells, ATP acts on ATP-dependent Kþ

channels leading to membrane depolarisation, opening of
voltage-sensitive Ca2þ channels, increasing cytosolic Ca2þ

concentration and stimulating insulin exocytosis(1). Under
physiological conditions mitochondrial glucose metabolism
provides most of the ATP required during insulin secretion(2).
Glucose metabolism leads to the enhancement of net tri-
carboxylic acid cycle (TAC) intermediates (TACI) including
citrate, malate, oxaloacetate, a-ketoglutarate and succinate, a
process known as anaplerosis(3,4). The b-cell elevated TACI
concentration has been associated with augmented oxidative
energy production and insulin release(5,6). Despite the essential
role of ATP, insulin release signalling by other metabolic
coupling factors including malonyl-CoA, NADPH, leucine,
glutamate and diacylglycerol has also been demonstrated,

which suggests the existence of a complex process of
insulin release regulation(4,7). Metabolic coupling factors are
generally derived from TACI extramitochondrial metabolism
after their exit from the mitochondria, a process known as
cataplerosis(4). The TACI anaplerosis:cataplerosis ratio,
therefore, plays a signalling role during insulin release in
addition to contributing to enhanced ATP concentration.

Previous studies have demonstrated that pyruvate carboxylase
(PC) activity and glucose-induced insulin secretion (GIIS)
are strictly coupled, suggesting that an elevated anaplerosis–
cataplerosis cycle is of substantial importance for insulin
release(8). In 832/13 insulinoma cells treated with high
concentrations of NEFA, GIIS is significantly reduced in
association with a decreased mitochondrial anaplerosis–
cataplerosis cycle(9).
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Peripheral tissues with insulin resistance are expected to
exhibit an impaired mitochondrial oxidative capacity followed
by an elevated intracellular lipid content(10 – 13). Kelley
et al. (10) examined the respiratory quotient in diabetic,
obese and lean subjects. It was observed that in contrast to
lean subjects, diabetic and obese patients were unable to
switch from lipid to carbohydrate metabolism after 8 h follow-
ing an insulin-stimulated glucose loading. Paradoxically,
diabetic and obese individuals preferentially oxidised carbo-
hydrate, demonstrating a poor capacity for lipid oxidation.
These findings are in agreement with the proposition that
insulin-resistant subjects exhibit impaired mitochondrial
capacity and reduced fatty acid (FA) b-oxidation(11,14). In
addition, insulin-resistant subjects are expected to express
elevated uncoupling protein-3 content, demonstrating a low
mitochondrial capacity(15,16). In contrast, endurance-trained
subjects exhibit elevated substrate consumption at rest and a
high anaplerotic–cataplerotic capacity(17). Chronic and acute
exercise has also been shown to reduce insulin resist-
ance(18 – 20). Under this condition, TACI anaplerosis is
postulated to be required for adequate skeletal muscle
contraction(21). Conversely, absence of an adequate TACI
concentration leads to reduced muscle contraction tolerance,
probably by a reduced mitochondrial oxidative flux(22,23).

Intra-uterine and early postnatal protein malnutrition results
in decreased insulin release(24 – 26) and pancreatic b-cell
altered glucose metabolism(27,28). Our group has provided
evidence that protein restriction reduces insulin secretion
stimulated by glucose, amino acids, Kþ and other secretago-
gues(29 – 32). This decreased capacity is related to alterations
in gene expression, including mitogen-activated protein
kinases, voltage-gated Kþ channel and glucose transpor-
ters(31 – 33). Adult offspring of pregnancy and early postnatal
malnutrition develop peripheral insulin resistance(27,28,34)

followed by reduced muscle contraction capacity(35), altera-
tions that are closely related to type 2 diabetes development.
Thus, there seems to be a narrow concert governed by
mitochondrial function between b-cell insulin release and
peripheral tissue metabolism.

Protein malnutrition has been reported to induce similar
effects to obesity. Mitochondrial metabolism in pancreatic
b-cells as well as peripheral tissues under this situation has
been poorly investigated. We propose that protein malnutrition
induces an imbalanced anaplerosis:cataplerosis ratio due to the
reduced amino acid pool. So, the withdrawal of TACI would
increase intracellular amino acid availability for protein syn-
thesis, reducing TAC flux and consequently decreasing insulin
release and sensitivity. The purpose of the present review is to
report evidence of anaplerotic mechanisms involved with
the regulation of insulin secretion, peripheral resistance and
muscle contraction metabolism under ordinary situations
and under protein malnutrition, suggesting future directions
for research in this field.

Anaplerosis and insulin release

An increased blood glucose concentration stimulates pancrea-
tic b-cells to secrete insulin but the molecular aspects con-
cerning GIIS are not completely understood. Recent findings
have proposed an oscillatory pattern of downstream events,
leading to an increase of cytoplasmic Ca2þ levels, insulin

granule docking and fusion with the plasma membrane,
enhanced cyclic AMP production, amplified Ca signalling
and activation of secretory mechanisms by Ca2þ ions(2,36–38).
Several mechanisms have been proposed involving the KATP-
and Ca2þ-dependent pathway, the Kþ

ATP-independent and
Ca2þ-dependent pathway, and possibly a Kþ

ATP- and Ca2þ-
independent pathway(39–43). However, little is known about
the metabolic regulation associated with these pathways.

Improved TACI anaplerosis–cataplerosis flux is needed to
enhance intracellular ATP content(4,5,44). Although the mech-
anism involved remains unknown, a strong correlation has
been documented between PC activity and GIIS(44,45). This
enzyme, located in the mitochondrial matrix, catalyses the
ATP-dependent carboxylation of pyruvate to form oxaloace-
tate(46). PC is highly expressed in the liver and kidney,
and participates with phosphoenolpyruvate carboxykinase,
fructose-1,6-bisphosphatase and glucose-6-phosphatase of
gluconeogenesis(44,47,48). The lack of phosphoenolpyruvate
carboxykinase activity and relatively low lipogenic capacity
suggest an important role of PC in b-cells during oxidative
energy metabolism. A proportion of about 40–50 % pyruvate
enters b-cells during mitochondrial metabolism through PC
reactions at stimulating glucose concentrations, a very high
flux for a non-gluconeogenic tissue. The anaplerosis of
glucose carbons, therefore, highly correlates with GIIS
by b-cells(4,48). In INS cells (from the insulinoma cell line),
anaplerosis was reported to be increased followed by a high
basal insulin secretion after exposure to glucose. However, at
a low glucose concentration, PC expression was demonstrated
to be markedly decreased(8,49). Farfari et al. (50) demonstrated
that phenylacetic acid, a PC inhibitor, reduced GIIS in INS
cells and pancreatic islets, an effect that was associated with
reduced citrate accumulation. Similarly, Fransson et al. (5),
examining the phenylacetic acid-induced effect on PC during
insulin release in rat islets, demonstrated that anaplerosis via
PC is required for an appropriated rise in the ATP:ADP ratio
and insulin secretion. However, caution must be taken from
the above studies once phenylacetic acid specificity is limited
toward PC(44). Very recently, Hasan et al. (51), testing the
hypothesis that anaplerosis via PC is important for GIIS in cell
lines, verified that reduced expression of this enzyme using
transfection of short hairpin RNA was associated with reduced
PC activity and insulin release in response to glucose and
other secretagogues. Although the mechanism remains to be
elucidated, the influx of carbon intermediates into the TAC is
critical for appropriate ATP generation in b-cells(45).
The proposed mechanisms have been extensively studied and
supported by different metabolic pathways in which
pyruvate is metabolised and/or recycled(44,49,50,52,53). As in
most mammalian tissues, pyruvate may follow two different
routes, feeding the TAC with acetyl-CoA via pyruvate dehydro-
genase and oxaloacetate via PC in pancreatic b-cells(45).

Pyruvate dehydrogenase contributes with the TAC by the
production of acetyl-CoA. In this reaction, one carbon from
pyruvate is lost as CO2 and two are converted in the acetyl-
CoA molecule, which will condensate with oxaloacetate to
form citrate by citrate synthase (CS)(52). The oxaloacetate
molecule is regenerated with the TACI, remaining constant
at the expense of acetyl-CoA. Although much attention has
been given to PC, the flux of pyruvate decarboxylation
through pyruvate dehydrogenase in b-cells is estimated to be
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similar to that observed during pyruvate carboxylation by
PC(53). Sustained glucose supply raises the intracellular citrate
content in b-cells, suggesting an association between PC and
pyruvate dehydrogenase during the anaplerosis process(48).
However, the high Km of the CS for acetyl-CoA compared
with oxaloacetate suggests that the flux of oxaloacetate from
pyruvate via PC is greatly favoured, increasing the content
of intermediates in the second span of TAC(54). Moreover,
acetyl-CoA is a well known allosteric activator of PC, favour-
ing the anaplerosis process and consequently the rate of intra-
cellular ATP production(55). However, the elevated TACI
content exerts an inhibitory effect on most of the regulatory
sites from the TAC(4,55,56), which will further allow the
TACI export from the mitochondria to the cytosol. Once accu-
mulated, TACI not only provide ATP through the mitochon-
drial electron transport chain but also are exported
(cataplerosis) to the cytosol(4). In this latter process, carbon
derived from pyruvate carboxylation exits from the mitochon-
dria to the cytosol, primarily as malate(4,53). In the cytosol,

malate is converted to pyruvate in a NADPH generation reac-
tion catalysed by cytosolic malic enzyme (MEc), which can be
transported back to the mitochondria(4). This cycle, also
known as the pyruvate–malate shuttle, occurs inside the mito-
chondrial matrix and exerts a critical role in b-cells during
both the anaplerosis and cataplerosis processes by recycling
pyruvate and NADPH production, a potent metabolic coupling
factor(52,53) (Fig. 1). Evidence of pyruvate–malate shuttle
activity was recently demonstrated during GIIS in INS cells.
The inhibition of the malate dicarboxylate transporter by
pharmacological inhibition and/or by RNA interference
(RNAi) markedly reduced the GIIS(53).

Although the export of citrate is not increased as much as
malate, during b-cell anaplerotic activity, citrate content has
also been shown to suffer a larger range of oscillation com-
pared with other TACI, an effect that was correlated with
ATP and NAD(P)H oscillations(56). Elevated malate and
citrate concentrations suggest that the Km of malate dehydro-
genase and CS for oxaloacetate must be of similar magnitude,
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Fig. 1. Anaplerosis and cataplerosis pathways during insulin secretion in b-cells. The pyruvate cycling is the main cytosolic site of NADPH production. NADPH is

one of the most import antioxidants in b-cells. This anaplerotic process includes the pyruvate–malate shuttle, pyruvate–citrate cycle and pyruvate–isocitrate–

a-ketoglutarate cycle. NADPHox, NADPH–oxidase enzymic complex; SOD, superoxide dismutase; O2
2z, superoxide anion; GSSG, oxidised glutathione; GPX,

glutathione peroxidase; GSH, glutathione; GR, glutathione reductase; cME, cytosolic malic enzyme; glucose 6-P, glucose 6-phosphate; MDH, malate dehydro-

genase; CPT, carnitine palmitoyltransferase; mME, mitochondrial malic enzyme; PDH, pyruvate dehydrogenase; PC, pyruvate carboxylase; ETC, electron
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favouring rapid TAC expansion(44,52,53). Similarly to malate,
citrate after exiting the mitochondria is converted by ATP–
citrate lyase to oxaloacetate and acetyl-CoA(44,53). Oxaloace-
tate in a sequence of two reactions is reduced to malate by
malate dehydrogenase, which will further be converted to pyr-
uvate by MEc. In this reaction, NADPþ is used as cofactor
favouring the rise of cytosolic NADPH:NADPþ and pyruvate
transport back to the mitochondria. This cycle is defined as the
pyruvate–citrate cycle(44,50,53) (Fig. 1). Recent studies have
demonstrated that oscillatory ATP production is strongly
associated with cytosolic citrate content(56). This relationship
suggests that citrate might be by itself coordinating the activi-
ties of TAC and anaerobic glycolysis. Inside the mitochondrial
matrix, citrate has been described as an important inhibitor of
CS(55). This effect will favour its mitochondrial accumulation
and consequently its exit toward the cytosol. Once
accumulated into the cytosol, citrate might inhibit glycolysis
via allosteric modulation of phosphofructokinase(55,57). This
mechanism, associated with elevated cytosolic NADPH:
NADPþ, could explain, at least in part, the oscillatory pattern
of insulin secretion in b-cells.

An increased NADPH:NADPþ inhibits the pentose phos-
phate pathway. Although this route is described as exhibiting
low activity in b-cells, inhibition of the pentose phosphate
pathway might exert a metabolic-saving effect, driving the
glucose-6-phosphate to glycolysis(50). On the other hand,
acetyl-CoA is converted to malonyl-CoA by acetyl-CoA
carboxylase, a well-known inhibitor of FA metabolism(58,59).
In a tissue with elevated anaplerosis capacity, the cytosolic
NADH:NADþ ratio is reduced, allowing sustained glyceralde-
hyde 3-phosphate dehydrogenase activity and glycolytic flux,
leading to an increase in the ATP:ADP ratio(4,55). In b-cells,
glucose oxidation provides a higher mitochondrial electroche-
mical gradient (Dc) and ATP:ADP ratio than FA(60), whereas
FA oxidation seems to induce mitochondrial uncoupling and
reduced ATP synthesis(61). There is strong evidence linking
PC activity and the pyruvate–citrate cycle with insulin
secretion(5,8,53,62). PC inhibition resulted in decreased GIIS,
which was positively correlated with citrate concen-
tration(50,51). Furthermore, impairment of mitochondria citrate
metabolism by either inhibition of mitochondrial di- and
tricarboxylate carriers or deletion of citrate lyase and MEc
genes leads to reduced GIIS, with no change in glucose
oxidation, probably by a reduction in malonyl-CoA and
NADPH synthesis(53).

The importance of the anaplerotic PC–pyruvate–citrate
cycle pathway was reinforced when b-cells were incubated
in the presence of weak insulin secretagogues including acet-
oacetate, b-hydroxybutyrate, monometyl succinate and lactate.
When incubated together, these metabolites increased acetyl-
CoA, oxaloacetate and consequently citrate concentrations,
that were able to enhance insulin release by 10- to 20-fold,
almost the same effect observed for GIIS(7). However, a
strong correlation between GIIS and a non-PC-derived ana-
plerosis pathway in insulinoma cell lines was observed,
suggesting that other pathways, probably aspartate amino-
transferase, act in combination with PC in TAC anaplerosis-
induced GIIS, enhancing oxaloacetate levels through aspartate
and a-ketoglutarate consumption, respectively(63). MacDonald
et al. (6) demonstrated that incorporation of carbon from pyru-
vate into lipids was not lowered in the citrate lyase-deficient

INS-1 cell line, suggesting that citrate is not the only cata-
plerotic carbon carrier from the mitochondria to cytosol.
Further studies are, therefore, needed to clarify other anaplero-
tic and cataplerotic pathways and substrates that regulate GIIS.

Alternatively, pyruvate cycling during TACI expansion can
also occur via pyruvate, isocitrate and a-ketoglutarate(44).
Unlike the pyruvate–malate shuttle, oxaloacetate formed by
PC is converted to citrate and isocitrate, which then leave
the mitochondria forming oxaloacetate and acetyl-CoA
through citrate lyase or a-ketoglutarate through cytosolic
NADPþ-dependent isocitrate dehydrogenase (ICDc). The
pyruvate cycling can take place via conversion of oxaloacetate
to malate and further to pyruvate by malate dehydrogenase
and MEc, respectively(44,49,53). In addition, a-ketoglutarate
can re-enter the mitochondria forming malate by following
the TAC reactions, which will be converted to pyvurate via
MEc or mitochondrial malic enzyme with elevated NADPH
production (Fig. 1). Ronnebaum et al. (44), examining the role
of ICDc in control of GIIS in b-cells using ICDc iRNA,
observed that suppression of ICDc attenuated the glucose-
induced increment in pyruvate cycling and intracellular
NADPH content. These findings, therefore, suggest that the
pyruvate cycling pathway involving ICDc plays an important
role in the control of GIIS.

In addition to the pyruvate cycling shuttle enzymes, the role
of glutamate dehydrogenase (GDH) during anaplerosis-
induced insulin release has recently been reviewed(64). Mice
with overexpression of GDH had enhanced insulin release(65).
Carobbio et al. (66), using GDH knockout rats, showed a near
37 % reduction in GIIS. Studies using leucine, a GDH-positive
allosteric modulator, as an insulin secretagogue, showed
enhanced insulin release(32,67). To date, it is not known if
GDH acts as an anaplerotic enzyme producing a-ketoglutarate
or has a cataplerotic function generating glutamate at the
expense of a-ketoglutarate during insulin release. Accumu-
lated evidence has shown the link between GDH and
GIIS(64). In addition to the possible anaplerotic and cataplero-
tic role during insulin release, GDH produces NADPH,
another important metabolic coupling factor(4).

Anaplerosis, intracellular redox status and insulin release
in b-cells

Interestingly, most alterations in anaplerotic- and cataplerotic-
related mechanisms are involved with NADPH production
(Fig. 2). As first reported by MacDonald(52), the pyruvate
cycling may be the main cytosolic site of NADPH production
with much higher capacity than the pentose phosphate path-
way in b-cells. In this sense, the cataplerosis of malate and
citrate would increase NADPH production. The b-cells’
needs for this reducing agent are still not known. However,
NADPH is involved in FA synthesis and cellular redox modu-
lation. As b-cells exhibit a relatively low rate of FA syn-
thesis(68), the main NADPH function could be attributed to
the regulation of intracellular redox status. Also, one would
speculate that the low pentose phosphate pathway activity
must be of relevance for b-cells, as this pathway is highly
associated with lipid synthesis in different tissues. However,
a high intracellular lipid content might be potentially toxic
for b-cells, in which an elevated anaplerosis and cataplerosis
process is required during GIIS.

C. C. Zoppi et al.1240

B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n

https://doi.org/10.1017/S0007114509993060  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114509993060


Redox alteration of b-cells to a more reduced status is
needed for proper insulin secretion(69). The NADPþ:NADPH
ratio seems to play an important role in the redox modulation
of insulin release, since NADPH is the substrate for several
pro- and antioxidant enzymes(4). The expansion of TACI
during GIIS, therefore, seems to be important not only for
energy production but also to regulate the intracellular redox
balance.

During basal secretion, b-cells present a relatively low anti-
oxidant capacity(70), but acute glucose loading leads to a fast
induction of superoxide dismutase and glutathione peroxidase
(GPX) activities, indicating an elevated production of reactive
oxygen species (ROS)(71,72). Glutathione reductase and thiore-
doxin, two NADPH-consuming enzymes, together with glutar-
edoxin are highly expressed in pancreatic islets(73,74),
indicating the importance of reduced glutathione turnover in
these cells. These findings, therefore, suggest that NADPH
production during the export of TACI to the cytosol
modulates Ca2þ-dependent insulin secretion by regulating
the intracellular redox balance(74,75). Oliveira et al. (76) also
showed that b-cells express phagocyte-like NAD(P)H oxidase,
a NADPH-consuming enzyme, which is known to produce
ROS. Although the physiological role of b-cell NAD(P)H
oxidase remains unclear, its activity may play a role, as
demonstrated in other cell types, during Ca2þ release and
consequently insulin secretion(77). Indeed, Morgan et al. (78)

provided primary evidence for b-cell NAD(P)H oxidase-
induced ROS production regulation of glucose flux and
oxidation as well as Ca2þ intracellular response.

Robertson & Harmon(79) described the importance of GPX
for the control of b-cell redox status. This enzyme acts in
combination with glutathione reductase. Under low NADPH
content, GPX has its ROS detoxification capacity markedly
compromised. NO has also been proposed to have a protective
effect upon the endoplasmic reticulum under ROS-induced
stress(80). In addition, NO has been reported to stimulate

insulin gene transcription(81). NO is synthesised by NO
synthase, which also uses NADPH as a substrate. The redox
imbalance leading to b-cell oxidative stress has been impli-
cated in several dysfunctions including low insulin release,
cell proliferation and death, which are directly related to
type 2 diabetes development(70).

Protein malnutrition, b-cell molecular alterations and
insulin release

Protein-deficient diets lead to impaired insulin secretion in
response to oral or intravenous glucose infusion and to other
secretagogues(24 – 26,29 – 32,82 – 85). Under such conditions, the
expression of pancreatic and duodenal homeobox-1, a
transcription factor that plays a role in the maintenance
of b-cell homeostasis, is markedly reduced in association
with reduced pancreatic islet area and insulin release(86).
Expression of signalling proteins, such as protein kinase A
and protein kinase C, is also reduced during protein mal-
nutrition(87,88). Several genes involved in insulin production
and secretion mechanisms also have their expression
altered(33). Recently, it was demonstrated that Ca2þ uptake
and insulin mRNA content were also reduced in under-
nourished rats, leading to reduced insulin release in response
to glucose(89,90). These outcomes might in part be attributed
to the reduced expression of both constitutive and inducible
NO synthase isozymes under protein malnutrition(91).
NO has been demonstrated to protect against endoplasmic
reticulum stress and has a stimulating effect upon insulin
gene transcription under regular fed state(80,81). In addition,
b-cells from rats fed with a protein-deficient diet have
decreased expression of protein kinase B (PKB or Akt),
mammalian target of rapamycin (mTOR) and p70s6k(32).

Although substrate availability might be reduced, capacity
for oxidative ATP synthesis seems to be enhanced in protein
deficiency. This statement is based on the findings of an
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almost threefold increase in ATP-synthase F1 complex
expression, whereas GLUT-2 expression in b-cells was
decreased(33). The rise in ATP synthase gene expression
may reflect an adaptation to low substrate availability, reduced
mitochondrial metabolism and anaplerotic capacity. In con-
trast, the content of b-cell GLUT-1 and GLUT-2, intracellular
glucose availability and glycolytic flux in fetuses from under-
nourished rats and adult undernourished rats were not different
from control. However, mitochondrial glucose oxidation was
found to be directly related to pancreatic and duodenal homeo-
box-1 expression and insulin secretion in undernourished rats,
providing a possible link between metabolic and molecular
mechanisms of insulin production and secretion in protein
malnutrition(92).

Protein malnutrition, anaplerosis and insulin release

Concerning metabolic aspects of protein malnutrition-induced
reduction in insulin release, Sener et al. (93) have shown that
low-protein-fed rats have reduced glucose oxidation as demon-
strated by a decreased metabolite flux through the glycerol
phosphate shuttle in b-cells from malnourished rats, probably
by a low mitochondrial FAD-linked glycerophosphate dehy-
drogenase activity(94). In addition, at high glucose concen-
tration, low-protein-fed rats showed an elevated glycolytic
flux. However, leucine transamination to a-ketoisocaproic
acid and further production of a-ketoglutarate was signifi-
cantly reduced, indicating a poor anaplerotic capacity(93).

The impaired insulin release in malnourished rats might be,
therefore, related to the lower mitochondrial oxidative and
anaplerotic capacity (Fig. 3). The reduced b-cell anaplerosis
in malnutrition is supported by findings that insulin synthesis
is also regulated by succinate and/or succinyl-CoA cataplero-
sis(95,96). This finding is in accordance with reduced b-cell
insulin mRNA levels in undernourished rats(90,92). Moreover,
malonyl-CoA content, another insulin release signalling

molecule, has been shown to be reduced under protein malnu-
trition(90). Malonyl-CoA is produced through mitochondrial
citrate cataplerosis, and one of its actions is to limit FA
oxidation, stimulating GIIS(4). There seems to be a pyru-
vate–citrate cycle impairment under protein malnutrition,
since intracellular malonyl-CoA content is very low. Thus,
PC expression might be altered under this situation and the
reasons are still unknown. Aspartate aminotransferase is ident-
ified as another main anaplerotic pathway under physiological
conditions(63). However, it has not been investigated in protein
restriction conditions. Under physiological conditions, gluta-
mate is described as a non-essential anaplerotic substrate(63)

but, under protein malnutrition, this amino acid may exert
a role during anaplerosis. The hypothesis for a main
glutamate anaplerotic route is based on the higher activity of
glutamate–pyruvate transaminase shown in undernourished
rats(94). In this condition, an increased insulin release is
observed in response to leucine stimulation, a positive GDH
allosteric modulator(32). One possible reason could be an
alternative pathway for pyruvate, a-ketoglutarate and
NADPH synthesis. In agreement, we have recently demon-
strated that GDH protein expression is reduced in rats sub-
mitted to protein undernourishment. However, leucine
supplementation restored GDH expression as well as GIIS to
control levels(97), probably by enhanced a-ketoglutarate and
NADPH production.

Reusens et al. (98), examining the effect of a low-protein diet
in pregnant rats, demonstrated that the gene expression of
most TAC proteins was substantially up-regulated, an effect
that was accompanied by a reduced expression of superoxide
dismutase and heat shock protein-1, -1a and -1b. However,
cytochrome c oxidase activity and ATP production were
markedly reduced. Preliminary data from our laboratory pro-
vided evidence for a reduction of catalase activity, but GPX
activity remained unchanged (APG Cappelli, CC Zoppi,
A Trevisan, TM Batista, PMR da Silva and EM Carneiro,
unpublished results). It seems reasonable, therefore, that
during protein deficiency anaplerosis might be compromised,
leading to reduced NADH:NADþ and NADPH:NADPþ

ratios and insulin synthesis and release. Further studies are
needed to investigate the expression and content of anaplerotic
enzymes as well as their substrate oscillations during insulin
release events in undernourished b-cells.

Anaplerosis and peripheral insulin resistance

Skeletal muscle operates in a coordinated way with pancreatic
islets in the control of glucose levels(13). The binding of
insulin to its receptor induces insulin receptor tyrosine
kinase activity. Tyrosine phosphorylation of insulin receptor
substrate (IRS)-1 results in activation of the p85 regulatory
subunit of phosphatidylinositol 3,4,5-trisphosphate (PI3)
kinase and activates the p110 catalytic subunit, which
increases phosphoinositides such as PI3. This leads to
activation of phosphoinositide-dependent protein kinase and
downstream PKB (Akt) and/or atypical protein kinase C(99).
Phosphorylation of Akt substrate 160 (AS160), which has a
GTPase-activating domain (Rab4), facilitates translocation of
GLUT-4 to the sarcolemma, favouring glucose uptake(100).

Intramuscular TAG (IMTG) accumulation leads to
an increased concentration of FA metabolites including

Glucose

Glycerol phosphate
dehydrogenase

Tricarboxylic acid
cycle

Glutamate
dehydrogenaseα-Ketoglutarate

NAD+/NADH

Pyruvate

Fig. 3. Effect of protein malnutrition on anaplerosis and cataplerosis path-

ways during insulin secretion in b-cells. The pyruvate cycling including the

pyruvate–malate shuttle, pyruvate–citrate cycle and pyruvate–isocitrate–

a-ketoglutarate cycle is severely affected. Glucose anaplerosis might be

affected by the decrease observed in FAD-linked glycerophosphate dehydro-

genase activity. This observed decrease might impair mitochondrial reoxida-

tion of cytosolic NADH, reducing glycolytic flux and pyruvate availability. The

amino acid anaplerotic route seems to be also decreased by the reduced

glutamate dehydrogenase expression which decreases a-ketoglutarate

enhancement. Reduced anaplerotic capacity will result in lowered ATP:ADP

and cataplerosis as well. Decreased cataplerosis flux would result in reduced

metabolic coupling factors, such as malonyl-CoA and NADPH production.

These metabolic alterations might impair insulin release.
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diacylglycerol, fatty acyl-CoA and ceramides that in turn
activate serine kinase leading to IRS-1 phosphorylation of
serine residues, and consequently inhibition of insulin down-
stream events(101). In addition, higher levels of IMTG may
increase ROS production and induce inflammation(100,102).

Abnormal mitochondrial metabolism has been described
in the insulin-resistant state(12,103 – 105). However, IMTG
accumulation with no mitochondrial dysfunction has also
been associated with the development of peripheral insulin
resistance(106 – 109). Therefore, whether mitochondrial dysfunc-
tion is a cause or consequence of peripheral insulin resistance
development is still unknown(13).

Interestingly, when sedentary obese insulin-resistant
subjects were submitted to a moderate exercise training
programme, insulin sensitivity was increased despite enhanced
IMTG stores. However, this effect was associated with a
reduction in diacylglycerol and ceramide content followed
by an increased mitochondrial oxidative capacity(18). Similar
results have been obtained in obese Zucker rats submitted to
acute exercise. Despite an unchanged or increased concen-
tration of intramuscular diacylglycerol and long-chain acyl-
CoA, acute exercise improved insulin sensitivity, probably
by the enhanced phosphorylation of AS160(23). Skeletal
muscle contraction is a well-known stimulus to increase
GLUT-4 translocation by an insulin-independent mechan-
ism(110). Although the full mechanisms involved in contrac-
tion-induced GLUT-4 translocation are still unclear,
sarcoplasmic Ca2þ efflux and the AS160 phosphorylation
by the Akt–AMP-activated kinase pathway seem to play a
pivotal role also in glucose uptake(111).

If mitochondrial dysfunction is not the main cause of insulin
resistance, it can, at least in part, contribute to the development
of this condition. A conciliatory hypothesis has been proposed
that the link between mitochondrial metabolism and IMTG
lipotoxicity-induced insulin resistance would be confined to
the level of IMTG turnover inside muscle fibres. Thus, a
mismatch between IMTG hydrolysis (lipolysis) and mitochon-
drial b-oxidation increases the intracellular lipid content with
detrimental effects on insulin signalling and glucose metab-
olism. So, regular physical exercise plays a key role to protect
against IMTG accumulation-induced insulin resistance(112).

The endproduct of FA b-oxidation is acetyl-CoA, and the
further oxidation of this compound occurs inside the TAC. How-
ever, the first TAC reaction catalysed by CS is the condensation
of acetyl-CoA with oxaloacetate, giving rise to citrate. Thus for
a complete oxidation of FA molecules, a regular production
of oxaloacetate is needed(113). Muoio & Koves(114) reviewed
the molecular mechanism-induced mitochondrial metabolism
dysfunction and proposed several mechanisms that may be
involved in peripheral insulin resistance, including a reduced
TAC flux. Indeed, type 2 diabetic patients have reduced TAC
flux and consequently impaired complete FA oxidation(115). In
addition, reduced ADP phosphorylation in mitochondria from
type 2 diabetic patients might result from reduced TAC and
electron transport chain flux(116).

One possible mechanism to explain the reduced TAC flux is
an impaired anaplerotic capacity (Fig. 4). However, there are
scarce data regarding anaplerotic pathways in insulin-resistant
tissues. Befroy et al. (17) examined whether resting skeletal
muscle metabolism is altered in endurance-trained compared
with sedentary subjects. These authors reported that trained

subjects exhibit elevated substrate consumption at rest,
suggesting a high anaplerotic and cataplerotic capacity.
In contrast, elevated uncoupling protein-3 content has been
demonstrated in insulin-resistant subjects, indicating an
elevated IMTG content and consequently poor anaplerosis
and cataplerosis capacity(15,16,115).

Reduced TAC flux can also be impaired by oxidative stress
as previously reported in peripheral insulin resistance, a meta-
bolic state which stimulates ROS production(59,117 – 119). In
fact, elevated concentrations of the superoxide anion might
inhibit aconitase activity(120). Likewise, high levels of H2O2

reduce the activity of a-ketoglutarate dehydrogenase, one far
from near-equilibrium regulatory enzyme of the TAC(121). In
contrast to what is observed for b-cells, reduction in FA oxi-
dation by malonyl-CoA is not desirable for skeletal muscle
fibres. Under conditions of increased ROS production, aconi-
tase inhibition may induce citrate accumulation and cataplero-
sis, resulting in decreased glycolytic flux and enhanced
malonyl-CoA synthesis, leading to reduced FA oxidation. In
agreement with this statement, malonyl-CoA synthesis has
been shown to be increased in the situations of diabetes and
insulin resistance(122). Acetyl-CoA carboxylase knockout
mice show enhanced insulin sensitivity and were prevented
from fat-rich diet-induced obesity(123).

Chronic muscle contraction (i.e. exercise) remains as the
pivotal preventive therapy against peripheral insulin resistance
development. Voluntary exercise stimulates blood glucose
uptake, contributing to glucose homeostasis as well by a
non-insulin-dependent mechanism(110,124). In addition, exer-
cise raises the expression of several glycolytic and oxidative
enzymes involved in glucose and FA oxidation(125 – 127), con-
tributing to high exercise and resting FA oxidation by the
enhancement of TAC flux(17,128,129). In addition to the poten-
tial effect upon oxidative enzyme activities, exercise may con-
tribute to a high mitochondrial FA oxidation capacity by
regulating TAC flux and intermediate concentrations. Exercise
also improves skeletal muscle antioxidant capacity, reducing
the installation of oxidative stress-induced mitochondrial
impairment(130). During moderate- to high-intensity exercise,
TAC anaplerosis is increased and has a pivotal role in main-
taining muscle contraction efficiency(21,22). TAC anaplerosis
exerts an important role in regulating IMTG oxidation. The
failure of this regulation might be implicated in peripheral
insulin resistance development. In glycogen-depleted muscle,
TACI concentration is maintained at the same level as during
high glycogen store conditions during prolonged exercise(131).
Under muscle glycogen-depleted exercise, FA metabolism is
substantially favoured, suggesting a close relationship between
anaplerosis and FA oxidation. However, acute down-regulation
of TACI does not reduce oxidative ATP synthesis during exer-
cise(132). Therefore, the anaplerosis process may not be directly
associated with oxidative ATP production in muscle skeletal
cells. Further studies are required to investigate the meaning
of a possible link between anaplerosis, FA oxidation control
and insulin resistance in skeletal muscle.

Protein malnutrition and peripheral insulin resistance

Protein-deficient diets have been shown to markedly affect
skeletal muscle function. Several reports indicate that
undernourished rats present low muscle weight and impaired
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morphological, metabolic and functional develop-
ments(133 – 135). Moreover, offspring from protein-malnour-
ished dams also shows altered muscle structure and function
that can affect animal posture and locomotion(35). Lehnert
et al. (136), using complementary DNA microarrays, showed
a 2- to 6-fold reduction in the expression of several muscle
structural proteins and metabolic enzymes in cattle submitted
to severe undernutrition. Suppressed muscle growth in under-
nourished rats occurs probably due to a reduction in muscle
and blood insulin-like growth factor-I content(137). Based on
the aforementioned, one would expect that a protein
deficiency-induced decrease of muscle size and function
would result in reduced muscle glucose and FA metabolism
and predisposing to obesity and type 2 diabetes(138,139).

Protein malnutrition shows diverse effects during the life-
span concerning peripheral insulin resistance development.
Short-term protein undernutrition effects have been previously
demonstrated to enhance muscle insulin sensitivity(140). This
effect has been shown to occur by improvement in several
steps of the insulin cascade, such as increased p38 mitogen-
activated protein kinase-induced GLUT-4 translocation, high
levels of insulin receptor and IRS-1 tyrosine phosphorylation
as well as increased IRS-1–PI3 kinase p85 subunit association
and reduced IRS-1 serine phosphorylation(141 – 143).

Conversely, long-term protein undernutrition has the
opposite effect, mainly when higher amounts of the nutrient
become available(144). Adult rats submitted to protein restric-
tion in early life, or offspring from undernourished mothers,
develop hyperinsulinaemia, peripheral insulin resistance and
type 2 diabetes(27,145 – 147). These alterations have been demon-
strated to affect the second generation(148). Indeed, evidence
points to a positive correlation between reduced fetal
growth, a well-known protein-restriction feature, and periph-
eral insulin resistance development(34,149,150). In contrast to
short-term effects, insulin signalling seems to be compromised
in the adult stage of early protein undernourishment. Reduced
protein kinase C-z expression has been reported in rats and
young men. In addition, skeletal muscle PI3 kinase–Akt
insulin signalling steps have been demonstrated to be altered
in low-birth-weight men and rats(147,151,152).

Early protein restriction has been reported to programme
the appetite in late adult life(153), reducing serotonin inhibitory
action on food intake, and stimulating the preference for fat-
rich foods(154,155). Furthermore, early protein undernutrition
has also been shown to determine fat distribution and reduce
physical activity levels, contributing to body and skeletal
muscle fat storage in adult life(156). The observed differences
upon skeletal muscle glucose metabolism after early protein
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restriction might be associated with time- and diet-dependent
metabolic changes. However, data on the metabolic regulation
of protein malnutrition-induced peripheral insulin resistance
are scant. To date, most studies have focused on neuroendo-
crine aspects and some have attempted to investigate skeletal
muscle insulin signalling pathway changes. The effects of
IMTG stores, incomplete FA oxidation and accumulation of
metabolites leading to serine kinase activation and mitochon-
drial function are still unclear.

Short- and long-term protein malnutrition, anaplerosis
and peripheral insulin resistance

Concerning metabolic aspects of short-term protein malnu-
trition, Fagundes et al. (157) reported that young adult rats
from low-protein-fed mothers showed low visceral and total
body fat content, probably caused by increased lipolysis or
decreased lipogenesis which might be related to the observed
high plasma catecholamine and low insulin levels compared
with control. Pups from low-protein-fed mothers showed
reduced serum NEFA and similar skeletal muscle acetyl-
CoA carboxylase, FA synthase and carnitine palmitoyl trans-
ferase-1 expression as compared with control(158). These
results are in line with those reported by Toyoshima
et al. (142). These latter authors reported decreased levels of
IRS-1 serine phosphorylation. The lower level of total body
and consequently skeletal muscle fat might reduce the acti-
vation of specific serine kinases that impair skeletal muscle
insulin downstream events. On the other hand, Gosby
et al. (159) provided clues for long-term protein restriction to
increase body fat content triggering peripheral insulin resist-
ance events. Zhu et al. (160) examined the long-term effects
of undernutrition on skeletal muscle of offspring pregnant
ewes and reported severe alterations in skeletal muscle metab-
olism. Despite an enhanced proportion of type 2 muscle fibres,
GLUT-4 concentration was decreased and IMTG content was
increased. In addition, a reduction in FA oxidation due to an
almost 25 % decrease in carnitine palmitoyl transferase-1
activity, as well as a reduced expression of ATP synthase
and antioxidant enzymes, probably by decreased mitochondria
density, was reported. In agreement, Park et al. (161) showed
reduced mitochondrial DNA content and cytochrome c
oxidase subunits I and III expression due to long-term effect
of protein malnutrition during gestation and lactation.

Selak et al. (162), using the bilateral uterine artery ligation
model in pregnant rats to induce intra-uterine growth
retardation, reported a decrease of 43 % in muscle glycogen
content compared with control. This effect was associated
with decreased mitochondrial ATP synthesis and reduced pyr-
uvate, a-ketoglutarate, glutamate and succinate oxidation in
isolated muscle mitochondria during respiratory state 3. Inter-
estingly, alterations in most of the respiratory chain-linked
electron transfer and energy coupling in muscle mitochondria
parameters between control and growth-retarded animals were
not observed. In this sense, a reduction in TAC flux and FA
oxidation would be expected, but unfortunately TACI content
was not measured. Evidence for a reduced TAC flux was pro-
vided by Lane et al. (163). These authors showed a decreased
NADþ:NADH in growth-retarded rats, despite unaltered
activities of mitochondrial isocitrate dehydrogenase and
malate dehydrogenase(164). As discussed earlier, under nutrient

deprivation, TAC flux and consequently mitochondrial
metabolism are altered. Mehta et al. (165) demonstrated
reduced oxidative enzyme activities in growing young
monkeys submitted to a low energy intake, being associated
with peripheral insulin resistance and type 2 diabetes.
However, as proposed for ordinary nutrition conditions,
TAC flux might be reduced by impaired specific TAC
enzyme activities or anaplerosis capacity, and so further
studies are needed to answer the remaining questions.

Elevated oxidative stress has also been reported after pro-
tein malnutrition in skeletal muscle. Despite conflicting
results, antioxidant enzyme activities vary according to diet
protein content, and lipid peroxidation was directly related
to their detoxifying capacity(161,166). Moreover, a twofold
reduction in glutathione-S-transferase expression and gluta-
thione content was observed in skeletal muscle from malnour-
ished rats(160). These effects were observed to be in concert
with reduced GPX scavenger capacity(167).

The long-term metabolic effects of protein undernutrition
seem, therefore, to reproduce the effects of obesity in regu-
lar-fed subjects and it is reasonable that peripheral insulin
resistance and type 2 diabetes in regular feeding and protein
undernutrition are induced by the same metabolic alterations.
However, earlier, chronic and acute exercise is a powerful tool
against peripheral insulin resistance, by its action upon restor-
ation of insulin sensitivity. Nevertheless, early protein under-
nutrition seems to compromise exercise tolerance in men and
rats(35,156,168).

During adult life, reduced exercise capacity after early pro-
tein undernourishment was demonstrated to be associated with
reduced intracellular levels of phosphocreatine and inorganic
phosphate(169). This effect was accompanied by a faster
depletion of muscle glycogen stores during exercise(170).

Conclusion

b-Cell elevated TACI concentration plays a key role for
oxidative energy production and insulin release. The mechan-
ism is supported by pyruvate metabolism (anaplerosis), mainly
involving the enzyme PC. The citrate, malate and isocitrate
produced exit the mitochondria to the cytosol (cataplerosis),
increasing the cytosolic pyruvate concentration followed by
elevated NADPH generation. Protein-deficient diets lead to
impaired insulin secretion which is related to the lower mito-
chondrial oxidative and anaplerotic capacity. It seems reason-
able, therefore, that in the protein-deficient state anaplerosis
might be compromised, leading to reduced NADH:NADþ

and NADPH:NADPþ ratios, and thus further investigation is
needed. In peripheral tissues, the mismatch between IMTG
hydrolysis and mitochondrial b-oxidation increases the intra-
cellular lipid content with detrimental effects on insulin sig-
nalling and glucose metabolism in normally fed and protein
malnutrition states. In contrast to b-cells, skeletal muscle
fibre TAC flux enhancement does not seem to be related to
ATP:ADP increase, but with FA oxidation regulation. Despite
no clear evidence of impaired anaplerotic and cataplerotic
reactions being available in protein undernourishment, it is
possible that peripheral insulin resistance could be triggered
by reduced anaplerotic replenishment of the TACI, leading
to inadequate FA oxidation. In addition, impaired TAC
could also be induced by oxidative stress, followed by citrate
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cataplerosis and consequent malonyl-CoA accumulation.
Therefore, based on the aforementioned data, future studies
are needed to better focus on the role played by anaplerosis
and cataplerosis reactions upon the control of b-cell insulin
release mechanisms and peripheral insulin resistance in
protein malnutrition states.
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