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Summary

A key question for the implementation of marker-assisted selection (MAS) using markers in linkage
disequilibrium with quantitative trait loci (QTLs) is how many markers surrounding each QTL
should be used to ensure the marker or marker haplotypes are in sufficient linkage disequilibrium
(LD) with the QTL. In this paper we compare the accuracy of MAS using either single markers or
marker haplotypes in an Angus cattle data set consisting of 9323 genome-wide single nucleotide
polymorphisms (SNPs) genotyped in 379 Angus cattle. The extent of LD in the data set was such
that the average marker–marker r2 was 0.2 at 200 kb. The accuracy of MAS increased as the number
of markers in the haplotype surrounding the QTL increased, although only when the number of
markers in the haplotype was 4 or greater did the accuracy exceed that achieved when the SNP in
the highest LD with the QTL was used. A large number of phenotypic records (>1000) were
required to accurately estimate the effects of the haplotypes.

1. Introduction

Marker-assisted selection (MAS) can be based on
molecular markers in linkage equilibrium with quan-
titative trait loci (QTLs) (LE-MAS), molecular
markers in linkage disequilibrium with QTL (LD-
MAS), or on selection of the actual mutations causing
the QTL effect (Gene-MAS). All three types of MAS
are currently being used in the livestock industries
(Dekkers, 2004). For example, Plastow et al. (2003)
reported the use of LD-MAS and Gene-MAS for
reproduction, feed intake, growth, body composition
and meat quality in commercial lines of pigs, and
national genetic evaluation programmes based on
LE-MAS are available to dairy breeding organiz-
ations in both France (Boichard et al., 2002) and
Germany (Bennewitz et al., 2003).

Following the sequencing of the bovine genome,
thousands of single nucleotide polymorphism (SNP)
markers are now available, creating the possibility of

implementing LD-MAS directly using significant
SNPs from genome-wide association studies. A key
question for the implementation of LD-MAS in this
way is how many markers surrounding each QTL
should be used in marker haplotypes so that the
marker haplotypes are in sufficient LD with the QTL
to accurately predict the QTL effects. Grapes et al.
(2004) compared the accuracy of fine mapping QTLs
with single markers and marker haplotypes. While
the accuracies of MAS and of fine mapping are not
equivalent, they are determined by similar par-
ameters, including the level of linkage disequilibrium
between markers or marker haplotypes, and the
number of phenotypic records per marker allele or
per haplotype. Grapes et al. (2004) concluded that
using haplotypes rather than single markers gave
only limited extra accuracy of fine mapping QTLs in
previously defined QTL regions in simulated data.
This result would be appealing if the same were true
for the accuracy of MAS, as the implementation of
MAS would be considerably simplified if haplotyping
is not required. However, the generality of the result
is likely to depend on population parameters such
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as the density of markers and extent of LD in the
population. Furthermore Grapes et al. (2004) as-
sumed that a requirement of haplotype analysis would
be the collection of additional marker genotypes
on relatives, to allow haplotype construction. They
therefore compared results from single-marker
analysis with twice as many markers as used in the
haplotype analysis. Extra genotyping is not necessary
when dense markers are available : provided the mar-
ker map is sufficiently dense, haplotypes can be con-
structed with a very high level of accuracy even in the
absence of family information (Stephens et al., 2001).

With the aim of determining whether haplotyping
prior to marker-assisted selection is worthwhile in
cattle with currently available marker maps, we used
the extent of LD in an Angus cattle data set, con-
sisting of 9323 genome-wide SNPs genotyped in 379
Angus cattle, to predict the accuracy of MAS that
could be achieved in the same population from either
single markers or marker haplotypes. The data were
used to simulate the LD between markers and a QTL
by randomly selecting one SNP to act as a surrogate
QTL, and then calculating the proportion of variance
at the surrogate QTL that was explained by the
other markers. This proportion of variance explained
is used in an analytical formula to give the accuracy of
MASwith any number of phenotypic records from the
same population. This approach allowed us to assess
the advantage of haplotyping given the actual extent
and pattern of LD in our population, avoiding the
need to simulate data with assumptions about past
population size and other parameters that drive LD.

2. Materials and methods

The animals were selected from a research project
based at Trangie Agricultural Research Centre in
NSW, Australia. All animals were of Angus breed
with sire and dam pedigree records. Animals born
from 1993 to 2000 were selected for high or low
post-weaning residual feed intake, a measure of
feed efficiency. The original project design has been
reported by Arthur et al. (2001). Approximately equal
numbers of the extreme high and low residual feed
intake animals were selected for SNP genotyping.
Care was then taken to ensure that, where possible,
animals were in half-sib groups of 2 or more and not
exceeding 10. Not more than 3 animals were selected
from each sire group for further analysis to avoid
over-representation of sire haplotypes, leaving 249
animals. The animals were genotyped for 9323 SNP
markers, using the Parallele technology. These SNPs
were largely discovered as a result of the bovine gen-
ome sequencing project (http://www.ncbi.nlm.nih.
gov/projects/genome/guide/cow/) ; other SNPs were
discovered as the result of assembly of expressed se-
quence tags (Hawken et al., 2004). Distances between

SNPs were estimated by mapping the SNPs to the
human genome (Goddard et al., 2006). The SNPs
were not spaced evenly across the genome (Goddard
et al., 2006). In particular, there were often multiple
SNPs within the same sequence read (e.g. the se-
quence produced from a sequencing machine, usually
of approximately 700 bp) followed by large gaps.

The extent of marker–marker LD in the data was
used as an indication of the extent of marker–QTL LD
we could expect in the data set. The parameter r2 is a
measure of LD that describes the proportion of QTL
variance that would be explained by a marker if one of
the markers were actually a QTL (Hill & Robertson,
1968). To determine the extent of LD in the Angus
population, r2 was calculated for all possible syntenic
marker pairs and plotted against distance.

The accuracy of LD-MAS using marker haplotypes
depends on: (1) the extent of LD between the marker
haplotypes and the QTL, (2) the number of haplo-
types in the population, (3) the number of individuals
that are phenotyped for the trait and genotyped
for the markers, and (4) the accuracy with which
haplotypes can be predicted for individuals (which
depends on SNP density and availability of genotypes
on relatives). Points 2, 3 and 4 together determine
the accuracy with which the mean of each marker
haplotype is estimated.

We attempted to determine the additional genetic
variance, if any, captured by using marker haplotypes
rather than single markers. A SNP was randomly
selected from the 9323 SNPs to act as a surrogate
QTL. The 1, 2, 4 or 6 of the closest markers sur-
rounding this ‘QTL’ were identified. Haplotype
frequencies of the 2, 4 or 6 marker haplotypes were
estimated using PHASE (Stephens et al., 2001). The
single marker giving the highest r2 value (calculated
following Hill & Robertson, 1968) to the surrogate
QTL was also selected, and called the best marker.
The closest single marker was called the nearest
marker. SNPs in the same sequence read as the ‘QTL’
SNP were discarded, as such SNPs are unlikely to be
representative of the distribution of distances between
SNPs and QTL.

Zhao et al. (2005) give an expression for the pro-
portion of QTL variance explained by a multi-allelic
marker :

r2=
g
n

i=1
P(Ai)[P(QjAi)xP(Q)]2

P(Q)[1xP(Q)]
, (1)

where P(Ai) is the frequency of allele Ai, P(Q) is the
frequency of the first QTL allele, and P(Q/Ai) is the
frequency of the first QTL allele given the Ai allele at
the marker is observed, and the marker has n alleles. If
we assume that the haplotypes are derived without
error, then this equation can also be used to calculate
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the proportion of QTL variance explained by marker
haplotypes, r2(h, q), considering that haplotypes of
multiple markers are equivalent to a single multiple
allelic marker. The validity of the assumption that
haplotypes can be derived without error is addressed
in Section 3. Then n is the number of unique haplo-
types observed in the population, Ai is the frequency
of the ith haplotype, and P(Q/Ai) is the frequency
of the first QTL allele given haplotype Ai is observed.
In our data, we observe, for example, the proportion
of haplotype Ai that carry the Q allele at the QTL
allele, e.g. P(Q and Ai), rather than the conditional
probabilities P(Q/Ai). If we substitute

P(QjAi)=
P(Q and Ai)

P(Ai)

in (1) we get

r2(h, q)=
g
n

i=1
[P(Q and Ai)xP(Q)P(A)]2=P(Ai)

P(Q)[1xP(Q)]
: (2)

We also corrected the proportion of the QTL variance
explained by the haplotypes for the effect of sampling
a limited number of haplotypes as (following Hayes
et al., 2003) :

r2(h, q)=[r2calc(h, q)xn=N]=(1xn=N),

where n is number of unique haplotypes, and N is the
number of haplotypes (2 times the number of animals,
498) in the sample, and rcalc

2 is calculated from (1).
Phenotype data can be used to estimate the effect of

each haplotype using the model :

yij=hi+eij

where yij is the phenotype of animal j carrying hap-
lotype i, hi is the effect of haplotype i, and eij is a
random error term. The variance of eij was V (e)=Ise

2

and the variance of the haplotype effects was V
(h)=Ish

2. Then the accuracy of estimating the haplo-
type effects is given by

r(h, ĥ)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
n

i=1

P(A2
i )

P(Ai)+l=T

s
,

where l=se
2/sh

2 and there are T phenotypic records.
Note that r(h, ĥ) can be evaluated at any value of T,
not only the actual number of records in Angus data.
The variance sh

2 is equal to r2(h, q) sQ
2 , where sQ

2 is
variance explained by the QTL.

The accuracy of marker-assisted selection using
haplotypes is then the accuracy with which the hap-
lotypes estimate the QTL allele effects :

r(q, ĥ)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2(h, q) g

n

i=1

P(A2
i )

P(Ai)+l=T

s
:

As an example of the accuracy of MAS that could be
expected when a large population of animals are
genotyped, we calculated the accuracy of MAS with
500, 1000 or 2000 phenotypic records and a value of l
was chosen given the proportion of QTL variance
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Fig. 1. (A) Distribution of distances between adjacent
SNPs, including SNPs in the same sequence read. In the
analysis that follows, only one SNP per sequence read is
considered. (B) Distribution of r2 values between adjacent
SNP pairs and for the SNP pair for each SNP with the
highest r2. The values plotted are the proportion of SNP
pairs with r2 values in bins of 0.1. For example, the first
point is the proportion of SNP pairs with r2 values
between 0 and 0.1. (C) Decline of average r2 values for
SNP pairs within bins of distance between the SNPs where
the bins are multiples of 100 kb distance.
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accounted for by the haplotype effects and such that
each QTL accounted for 1.5% of the error variance.
Two hundred and fifty replicates were performed.
A replicate consists of randomly choosing a SNP
to be a surrogate QTL, selecting the 1 to 6 markers
surrounding the QTL, and evaluating the above
expression.

We also evaluated the accuracy of multiple re-
gression of multiple SNP genotypes to predict the
alleles of the SNP chosen to be the surrogate QTL. To
do this, we used the genotype of the surrogate QTL
as the y variable, and the genotypes at the 2, 4 or 6
surrounding SNPs as the x variables. In the X matrix,
there was a column for each SNP with the number of
2 alleles carried by each animal. The y variable
was then predicted based on the estimated effects
of the surrounding SNPs. A value for r2(g, q), where
g are the SNP genotypes, was calculated as
r2(g, q)=[corr(ŷ, y)]2.

3. Results and discussion

The distance between adjacent SNPs was on average
300 kb; however, there were large numbers of SNPs
separated by much smaller distances (Fig. 1A). This
reflected the method of discovery of the SNP.
Subsequent results refer to SNPs not in the same se-
quence read (for details see Section 2). The average
value of r2 for adjacent markers was 0.10, and for best
SNP pair was 0.20. The distribution of r2 values
for adjacent markers and best SNP pairs is shown in
Fig. 1B. The average r2 declined rapidly with distance
(Fig. 1C).

The proportion of QTL variance explained in-
creased as the number of markers in the haplotype
increased (Table 1). The increase in the proportion of
QTL variance explained when moving from 2 marker
haplotypes to 4 marker haplotypes and from 4 marker
haplotypes to 6 marker haplotypes was substantial.
The best SNP explained a higher proportion of QTL
variance than the 2 marker haplotypes, but less than
the 4 marker haplotypes.

The proportion of QTL variance using multiple
regression of SNP genotypes was 0.09, 0.18 and 0.22

with 2, 4 and 6 SNP genotypes fitted, respectively.
These values are considerably lower than was achieved
using haplotypes with the same number of SNPs
(Table 1).

As the number of markers in the haplotypes in-
creased, the observed number of unique haplotypes in
the population also increased, indicating that a larger
number of phenotypic records would be required to
estimate the effect of each haplotype accurately. As
the number of phenotypic records increased, the
accuracy of estimating QTL effects from marker
haplotypes increased, up to 0.58 in the case of 6
marker haplotypes with 2000 phenotypic records
(Fig. 2). Although the proportion of QTL variance
explained by the marker haplotypes does increase
with an increasing number of markers, the number
of haplotype effects which must be estimated also
increases. In the case of the best marker, the pro-
portion of QTL variance explained is similar to that
from two marker haplotypes; however, only two
effects must be estimated. The result is an accuracy of
predicting QTL effects close to that achieved with 4
marker haplotypes.

We can gain some insight into the impact of un-
certainty of haplotype assignment on the accuracy of
MAS with marker haplotypes by comparing results
for the square of the regression of individual animal
haplotypes on the genotype of the surrogate SNP with

Table 1. Proportion of QTL variance explained by marker haplotypes and
observed number of unique haplotypes in the Angus data set

Proportion of
QTL variance
explained

Maximum no. of
haplotypes

Observed no. of
haplotypes

Nearest marker 0.10 2 2
Best marker 0.20 2 2
2 marker haplotypes 0.15 4 3.4
4 marker haplotypes 0.28 16 9.4
6 marker haplotypes 0.55 64 20.8
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Fig. 2. Accuracy of predicting haplotype effects with an
increasing number of markers in the haplotype and an
increasing number of phenotypic records.
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the proportion of QTL variance explained from (2),
which is derived assuming the haplotypes are assigned
without error. For 4 marker haplotypes, these were
0.25 and 0.28, respectively, indicating losses due to
inaccurate haplotype assignment were relatively small
in our data set. In general, the uncertainty of haplo-
type assignment and its effect will depend on the
structure of the data set used, so generalizing the ac-
curacy of haplotype assignment is difficult.

Our results suggest useful LD (e.g. r2>0.2) extends
on average only 50 kb in the Angus population.
This is a much shorter distance for the extent of useful
LD than has been proposed previously (Farnir
et al., 2000; Tenesa et al., 2003). However previous
estimates were based on Dk rather than r2, and Dk
overestimates the level of r2 (Zhao et al., 2005).
Secondly, our estimates are the average r2 within a
distance interval and do not display the maximum r2

within a given distance. Recent estimates on the
extent of LD in cattle based on r2 are in agreement
with our results (Goddard et al., 2006; Spelman &
Coppieters, 2006).

In our data set, gains in the accuracy of MAS
were achieved when haplotypes of markers were used
rather than single markers. These results concur
with those of Pe’er et al. (2006). They used empirical
genotype data from the human International Hap-
Map Project to evaluate the extent to which the sets of
SNPs contained on three whole-genome genotyping
arrays capture common SNPs across the genome.
They concluded that limited inclusion of specific
haplotype tests in association analysis can increase the
fraction of common variants captured (as evaluated
by r2 between haplotypes and the common variants)
by 25–100%. However, these specific haplotype tests
were based on pre-selection of ‘tagging SNPs’ which
capture 90% of the variation in SNP genotypes in a
defined chromosome region. Use of tagging SNPs
reduces the number of effects that need to be esti-
mated compared with haplotypes, increasing the
power of the test. De Bakker et al. (2005) compared
the power of exhaustive haplotype search and single
SNP analysis to detect a surrogate QTL (a randomly
chosen SNP from a panel of SNPs), where power was
a function of the r2 between the haplotypes or single
marker and the surrogate QTL. They found that the
use of haplotypes only increased power if the mini-
mum allele frequency of the surrogate QTL was less
than 5%; otherwise use of haplotypes actually de-
creased power. In the human data, however, the den-
sity of SNPs is very much higher than in our data.
Even accounting for the increased effective popu-
lation size of humans relative to QTLs, the average
level of LD between adjacent SNPs is very much
greater in the human data.

In our results, using the marker with the highest
LD with the surrogate QTL did give accuracies

almost as high as using 4 marker haplotypes. This
result is attractive because it does not assume that
the QTL position is known without error. Rather, it
applies to the situation where a genome scan has
been performed and the most significant SNP in a
region is subsequently used in MAS. Zhao et al.
(2007) found in simulated data that using the best
marker could do as well as or better than marker
haplotypes for QTL detection. They only observed
an advantage of haplotypes over marker genotypes
with large sample size (1000) and a relatively low
density of SNPs (e.g. 6 markers per 11 cM with
Ne=100). While the accuracy of MAS and the
power to detect QTLs in a genome-wide association
study is not equivalent due to the testing of multiple
markers in QTL mapping, both are driven by the
LD between markers and QTLs and the number of
phenotypic records available to estimate the QTL
effects. In our results we did see an increase in ac-
curacy above that achieved with the best marker if 6
marker haplotypes were used. Our marker density
(average marker spacing y1.5 Mb when markers in
the same read are removed) would be most similar
to the lowest density of markers that Zhao et al.
(2007) simulated. And as Zhao et al. (2007) also
observed, the advantage of haplotypes over marker
genotypes was larger when sample size was in-
creased (or the disadvantage was reduced).

Our results demonstrate that even with 6 marker
haplotypes, the accuracy of predicting QTL effects
was only 0.58. Both this result and the limited
extent of LD suggest the density of markers is not
sufficient to take the results directly to LD-MAS.
Either additional SNPs must be found in QTL
regions or denser maps in the order of 30 000
markers are required, extrapolating the levels of r2

we have observed. If the density of markers were
increased, both single markers or haplotypes would
account for a greater proportion of the QTL vari-
ance, and lead to increased accuracy of MAS. For
example, Hayes et al. (2001) found in simulations
that with the extent of LD similar to that observed
in the Angus data set and 2000 phenotypic records,
11 markers in 1 cM would result in haplotypes
explaining 98% of the QTL variance, and an ac-
curacy of estimating QTL effects from marker
haplotypes of 0.84. The results of Zhao et al. (2007)
suggest that as marker density is increased, the ad-
vantage of haplotypes over single markers will be
reduced. A large number of phenotypic records
(at least 2000) will be required to accurately esti-
mate the effects of the QTL before LD-MAS is
implemented.

The contribution by Paul Arthur, New South Wales
Department of Primary Industries and Meat and Livestock
Australia, to the generation of cattle and phenotypes is
gratefully acknowledged.
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