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Abstract. We prove that, given any covering of any infinite-dimensional Hilbert space H by count-
ably many closed balls, some point exists in H which belongs to infinitely many balls. We do that by
characterizing isomorphically polyhedral separable Banach spaces as those whose unit sphere admits
a point-finite covering by the union of countably many slices of the unit ball.

1 Introduction

A famous theorem by H. H. Corson [Co] states that no covering of any infinite-
dimensional reflexive space X by closed bounded convex sets can be locally finite, i.e.,
for any such covering τ there exists a compact subset of X that meets infinitely many
members of τ . Such a theorem has been improved in several directions, weakening
the assumption both of reflexivity of X (see [Fo2]) and of convexity of the members
of the covering (see [FZ1]).

A further subject of investigation was suggested by Corson himself: when is it
possible to guarantee that even a (algebraically) finite-dimensional compact set ex-
ists that meets infinitely members of the covering? This question has been recently
answered in [FZ2], where we show that this is the case provided that X contains some
infinite-dimensional separable dual space and τ is a covering of X by closed bounded
convex sets with nonempty interior (“bodies” in the sequel).

So it was natural to inquire about the lowest dimension of the compact sets above:
in [FZ3] in particular we show that, when X contains some infinite-dimensional sep-
arable dual space and τ is a covering of X by smooth or rotund bodies, then there is
a segment in X that meets infinitely many members of τ .

Clearly we are led to the following question: under which assumptions on the
space X and on the members of the covering τ we can guarantee that some point
exists that meets infinitely many members of τ , i.e., that τ is not point-finite? Now,
even considering coverings by bodies, the answer is different: in [MZ] it is proved
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by the Ministero dell’Università e della Ricerca Scientifica e Tecnologica of Italy and by the Center for
Advanced Studies in Mathematics at the Ben-Gurion University of the Negev, Beer-Sheva, Israel.

AMS subject classification: 46B20, 46C05, 52C17.
Keywords: point finite coverings, slices, polyhedral spaces, Hilbert spaces.

42

https://doi.org/10.4153/CMB-2012-027-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2012-027-7


Covering the Unit Sphere 43

that any real Banach space X can be covered by bodies in such a way that no point
of X belongs to more than two of them. The general construction provided there
leads to bodies that are very far from being balls in the original norm of X, so the
following final very natural question arises:

Which infinite-dimensional Banach spaces admit a point-finite covering by
closed balls (each of positive radius)?

Some classical Banach spaces do. For instance, it is easy to check that the covering
of c0 that can be obtained by translating the unit ball without overlapping interiors
is even locally finite. V. Klee proved in [Kl2] that the space l1(Γ) for suitable (un-
countable) Γ can be covered by translates of its unit ball without overlapping them
at all.

In this paper we show (Section 3) that no infinite-dimensional Hilbert space can
be covered by countably many closed balls in a point-finite way. To do that, we char-
acterize isomorphically polyhedral Banach spaces among the separable ones as those
whose unit sphere admits point-finite countable coverings by slices. Our argument
requires some preparatory work (Section 2) that can be of some interest by itself.

Throughout the paper we use standard notation for the Geometry of Banach
spaces as in [JL] (in particular, the balls we consider are closed balls).

All the normed spaces we are dealing with in the present paper are considered as
real spaces.

2 Auxiliary Result

We recall that a slice of a ball B in a normed space X is the intersection (when
nonempty) of B with some closed half-space of X.

Proposition 2.1 Let X be a separable Banach space, { fi}∞i=1 a sequence of norm-one
linear functionals on X and {αi}∞i=1 a sequence of nonnegative numbers converging to 1.
Then the sequence {Si}∞i=1 of slices of BX defined by

Si = S( fi , αi) = {x ∈ BX : fi(x) ≥ 1− αi}, i = 1, 2, . . .

is not point-finite.

Proof Since X is separable, BX∗ is sequentially compact in the w∗-topology, so there
exist a sequence {ik}∞k=1 of integers and f ∈ BX∗ such that

fik

w∗

→ f .

Let us consider two cases.
First case: f 6= 0. Let v ∈ BX be such that f (v) > 0. Since fik (v) → f (v) > 0

and αik → 1 as k→∞, for every k big enough we get fik (v) > 1− αik , so v ∈ Si for
infinitely many i’s.

Second case: f = 0. In this situation it is well known that, for some subsequence
{ikm}∞m=1 of {ik}, the sequence { fikm

}∞m=1 is a basic sequence in X∗. Let {um}∞m=1 be a
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bounded sequence in X∗∗ such that {( fikm
, um)}∞m=1 is a biorthogonal sequence (i.e.,

um( fikn
) = δm,n for any m, n in N).

Put C = supm ‖um‖ (of course C ≥ 1) and

(2.1) βm = 3C(1− αikm
), m ∈ N.

Passing to a subsequence if necessary, without loss of generality we may assume
that

(2.2)
∞∑

m=1

βm <
1

4C
.

In order to simplify notation, without loss of generality from now on we assume
that all the requirements the subsequence { fikm

}∞m=1 has been selected for are fulfilled
by the sequence { fi}∞i=1 itself.

Let v1 ∈ CBX be such that f1(v1) ≥ 3/4. If it happens that | fm(v1)| ≥ βm

for infinitely many m’s, then we are done (in fact for such m’s it must be true that
fm(v1/C) > 1−αm or fm(−v1/C) > 1−αm with±v1/C ∈ BX , so either v1/C ∈ Sm

or −v1/C ∈ Sm). Otherwise put m1 = 1 and let m2 ∈ N be such that | fm(v1)| < βm

for every m ≥ m2. Because of the w∗-density of BE into BE∗∗ for E = Ker fm1 (where
as usual, we identify E with its image in E∗∗ under the canonical map), there exists
v2 ∈ Ker fm1 ∩CBX such that fm2 (v2) ≥ 3/4. Let us argue as we have done for v1: if
| fm(v2)| ≥ βm for infinitely many m’s we are done; otherwise let us proceed induc-
tively in the following way. Having determined mi and vi for i ≥ 1, choose mi+1 > mi

such that

(2.3) fm(v j) < βm, m ≥ mi+1, j = 1, . . . , i

and choose vi+1 ∈
⋂

j=1,...,i Ker f j ∩CBX such that

fmi+1 (vi+1) ≥ 3/4.

If we can stop in a finite number of steps we are done, otherwise let us put

v =

∞∑
i=1

βmi vi .

Clearly ‖v‖ ≤ C
∑∞

i=1 βmi < 1/4 because of (2.2). We claim that

fmn (v) ≥ 1− αmn , n ∈ N,

so v ∈ Smn for any n ∈ N. In fact, according to our construction, for any n ∈ N,
taking into account (2.1), (2.2) and (2.3), we have

fmn (v) =

∞∑
i=1

βmi fmn (vi) =

n∑
i=1

βmi fmn (vi) = βmn fmn (vn) +
n−1∑
i=1

βmi fmn (vi)

≥ 3

4
βmn −

n−1∑
i=1

βmnβmi = βmn

( 3

4
−

n−1∑
i=1

βmi

)
>

3

2
C(1− αmn ) > 1− αmn .

The proof is complete.
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Remark 2.2 If a point z different from the origin belongs to some slice, clearly that
slice contains the point z/‖z‖ on the unit sphere. Hence we can actually guarantee
that, under the assumption of Proposition 2.1, some point exists in SX that belongs
to infinitely many slices.

The following immediate consequence of Proposition 2.1 may be of interest.

Corollary 2.3 Suppose that X is a separable Banach space and {Fi}∞i=1 is a sequence
of closed half-spaces of X. If for some point z ∈ X it happens that

z ∈ cl
∞⋃
i=1

Fi and z /∈
∞⋃
i=1

Fi ,

then there are points in X arbitrarily close to z that belong to Fi for infinitely many i’s.

3 Main Results

In order to prove our main results we need some notions the reader might not be
familiar with, so a short introduction is needed.

According to Klee [Kl1], we say that a Banach space is isomorphically polyhedral
whenever it admits an equivalent norm under which any finite-dimensional section
of the unit ball is a polytope (i.e., the convex hull of finitely many points). It is known
that any such space contains some isomorphic copy of the space c0 (in fact it is c0-
saturated; see [Fo1]), so that it cannot be reflexive.

Let U be a body in a Banach space X. A subset U of SX∗ is said to be a boundary
for U if, for every point x ∈ ∂U , there is fx ∈ U such that

fx(x) = sup
z∈U

fx(z).

Clearly, by the Hahn–Banach theorem, any body U has some nonempty boundary
and SX∗ always is a boundary for BX . We pay special attention to the class of sep-
arable Banach spaces X such that BX has a countable boundary; in fact, by Theo-
rem 1 in [Fo1], this is exactly the class of isomorphically polyhedral separable Banach
spaces.

We start with the following characterization of polyhedrality via slices in the con-
text of separable Banach spaces.

Theorem 3.1 For a separable Banach space Y the following conditions are equivalent.

(a) There exists a renorming X of Y under which SX admits a point-finite covering by
countably many slices

Si = S( fi , αi) = {x ∈ BX : fi(x) ≥ 1− αi}, fi ∈ SX∗ , 0 ≤ αi < 1, i = 1, 2, . . . .

(b) Y is isomorphically polyhedral.

https://doi.org/10.4153/CMB-2012-027-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2012-027-7


46 V. P. Fonf and C. Zanco

Proof (a)⇒ (b). Since the family of slices {Si} is point-finite, Proposition 2.1 ap-
plied to the space X implies supi αi < 1. Put

U =
∞⋂
i=1
{x ∈ X : fi(x) ≤ 1− αi}.

We claim that U ⊂ BX . In fact, if x /∈ BX , then there exists i0 such that x/‖x‖ ∈
S( fi0 , αi0 ), i.e., fi0 (x/‖x‖) ≥ 1− αi0 that implies fi0 (x) > 1− αi0 , so x /∈ U .

Clearly U is closed and (since supi αi < 1) contains the origin as an interior point.
We claim that the sequence { fi}∞i=1 is a (countable) boundary for U , i.e., that for

every x ∈ ∂U there exists an index ix such that fix (x) = 1− αix (= maxz∈U fix (z)).
Assume first that ‖x‖ = 1. Since SX is covered by

⋃
Si , there is an index ix such

that fix (x) ≥ 1 − αix . On the other hand, we have fi(x) ≤ 1 − αi for every i, since
x ∈ U ; it follows that fix (x) = 1− αix = supz∈U fix (z), so we are done.

Assume now that ‖x‖ < 1. Since ‖ fi‖ = 1 for every i and x is not an interior
point of U , it is clear that

sup
i
{ fi(x)/(1− αi)} = 1.

We just need to show that such a supremum is attained. Since x/‖x‖ ∈ Si for only
finitely many i’s, there exists ix such that x/‖x‖ ∈ Six and x/‖x‖ /∈ Si for i > ix, i.e.,

fi(x/‖x‖) < 1− αi , i > ix,

that implies
fi(x)/(1− αi) < ‖x‖ < 1, i > ix.

Hence again we have fi(x)/(1− ai) = 1 for some i ≤ ix.
Now consider the centrally symmetric set V = U ∩−U . Since any of its boundary

points must be a boundary point of U or of−U , it follows that V too has a countable
boundary. Let us pass to the renorming of X under which V is the unit ball. It is clear
that V still has a countable boundary in the new norm, so that from [Fo1, Theorem 1]
we get that X, so Y too, is isomorphically polyhedral.

(b) ⇒ (a). Trivially, any finite-dimensional Banach space Y satisfies (a), so we
assume that Y is infinite-dimensional. By [Fo2, Theorem A], there is a (polyhedral)
renorming X of Y such that the union of countably many faces

{x ∈ SX : fi(x) = 1, fi ∈ SX∗}∞i=0

covers SX and, for any x ∈ SX , there exists εx > 0 such that for only finitely many i’s
it happens that fi(x) > 1− εx. Let {αi}∞i=1 be a null positive sequence. Of course the
union of the slices {x ∈ BX : fi(x) ≥ 1 − αi}∞i=1 also covers SX and turns out to be
point-finite (even locally finite).

The proof is complete.

We pass now to the theorem that is in fact the main goal of the paper.
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Theorem 3.2 Let the union of countably many balls cover the infinite-dimensional
Hilbert space H. Then there is a point in H that belongs to infinitely many balls.

Proof Let {Bi}∞i=1 be a sequence of closed balls whose union covers H. Let H ′ be an
infinite-dimensional separable closed subspace of H. Because of the inner product
structure, when Bi ∩ H ′ is nonempty, it is a closed ball in H ′ (we are allowed to
consider also balls of radius 0). So, without loss of generality, we may assume that H
itself is separable.

We start by observing that, for any ρ > 0, when

(3.1) ρSH 6⊂ Bi and ρSH ∩ Bi 6= ∅,

the set ρSH∩Bi determines in a natural way a slice of ρBH . In fact, it is an easy exercise
to verify that the intersection among two spheres in any Hilbert space lies in some
hyperplane. For any index i and ρ as in (3.1), let Fi be the hyperplane containing
ρSH ∩ ∂Bi : consider the slice of ρBH determined by Fi that is contained in Bi . Clearly
ρSH is covered by the union of such slices.

Now assume that the origin of H belongs to Bi for only finitely many i’s (other-
wise we are done). Then there exist ρ > 0 and an index i0 such that ρSH is covered by⋃∞

i=i0
Bi , which union does not cover the origin. In the present situation, infinitely

many balls are needed in order to cover ρSH (in fact the complement of the union of
finitely many balls, not containing the origin, always contains a weak neighborhood
of the origin), so countably many slices of ρBH are determined whose union covers
ρSH . Without loss of generality we may assume that ρ = 1: we are done by The-
orem 3.1, (a) ⇒ (b), since no infinite-dimensional Hilbert space is isomorphically
polyhedral.

It is a trivial fact that, if a separable normed space X is covered by the union of
uncountably many balls, each of positive radius, such a covering cannot be point-
finite. (In fact, let {xn} be any sequence dense in X. Since each ball has nonempty
interior, for some n0 it must happen that xn0 belongs to uncountably many balls.)
Hence, as a consequence of Theorem 3.2 we get the following corollary.

Corollary 3.3 No covering of the infinite-dimensional separable Hilbert space by
closed balls, each of positive radius, can be point-finite.

Remark 3.4 It is worthwhile to notice that the special case of Theorem 3.2 when H
is separable and the balls Bi have the same positive radius can be handled in a much
simpler way. In fact, if no point of H were to belong to Bi for infinitely many i’s, then
the set of the centers of such balls would provide a countable proximinal subset Γ
of H with uniformly bounded distances from h to Γ when h ranges in H. It is known
(see [FL, Proposition 2.1]) that H contains no such countable proximinal subset.

In the framework of covering sets by balls, part of the literature is devoted to the
study of coverings of the unit sphere of a Banach space X by balls that do not cover the
origin. This topic has a wide interest even in the finite-dimensional setting. We refer
to [Pa] also an exhaustive list of references; see also [FR] and [FZ4]. The following
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theorem states a further result in that direction. Its proof can be carried on like the
proof of Theorem 3.2, taking into account Remark 2.2.

Theorem 3.5 Let H be an infinite-dimensional Hilbert space and {Bi}∞i=1 be a se-
quence of balls in H whose union covers SH without covering the origin. Then there is
some point in SH that belongs to Bi for infinitely many i’s.

4 More About Sequences of Balls in Hilbert Space

Our previous results do not allow us to establish at which points a sequence of balls
in a Hilbert space H can or cannot be point-finite. A partial answer to this question
is given by the following proposition and corollary.

Proposition 4.1 Let B(xn,Rn)∞n=1 any sequence of balls in H such that

(i) there exist two positive numbers α, β such that α < Rn < β for every n;
(ii) ‖xn‖ > Rn for every n;
(iii) ‖xn‖ − Rn converges to 0 when n goes to infinity (i.e., none of the balls B(xn,Rn)

contains the origin, but the balls approach the origin when n goes to infinity).

Then the following are equivalent:

(a) no point in H belongs to B(xn,Rn) for infinitely many n’s;
(b) the sequence {xn} of the centers of the balls converges weakly to the origin.

Proof (a)⇒ (b). Assume to the contrary that (a) holds and {xn} doesn’t converge
weakly to the origin. Then there exist f ∈ SH∗ , δ > 0 and a strictly increasing
sequence {nk}∞k=1 such that | f (xnk )| > δ for every k. Without loss of generality we
can assume that the sequence {Rnk}∞k=1 is convergent, say to R > 0. Put {y} =
f−1(1)∩ SH , L = ker( f ), l = span(y). Clearly H = L⊕2 l. Put xn = un + vn, un ∈ L,
vn = f (xn)y ∈ l. We have

‖unk‖ =
√
‖xnk‖2 − ‖vnk‖2 ≤

√
‖xnk‖2 − δ2.

Since ‖xn‖ → R, for some δ1 > 0 we have, for all k big enough, ‖unk‖ ≤ R − δ1.
Therefore, there is a positive γ such that, for all but finitely many k’s, the segment
B(xnk ,Rnk ) ∩ l has length bigger than γ. Since all such segments lie in a bounded
region of the line l, there must be a point that belongs to infinitely many of them,
contradicting (a).

(b)⇒ (a). Assume to the contrary that (b) holds and there is some point y that
belongs to B(xn,Rn) for infinitely many n’s. Of course, y is not the origin of H. With-
out loss of generality we can assume that y ∈

⋂∞
n=1 B(xn,Rn) and {Rn} is convergent,

say to R. Take the functional f ∈ SH∗ such that f (y) = ‖y‖. Borrowing our notation
from the proof of (a)⇒ (b), because of (b) we get that {vn = f (xn)y} converges to
the origin strongly, so that, since ‖xn‖ → R,

‖un‖ =
√
‖xn‖2 − ‖vn‖2 → R as n→∞.
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Therefore the lengths of the intervals B(xn,Rn) ∩ l go to 0. Since y is the common
point of all these intervals, it follows that the sequence {vn} converges strongly to y
that is different from the origin of H, a contradiction.

The following corollary gives a location for the w-limit of the sequence of centers
of any sequence of balls, whose radii are bounded away from above and from below,
provided the balls have a common point.

Corollary 4.2 Let α < β be two positive numbers and let {B(xn,Rn)}∞n=1 be a se-
quence of balls in H such that α < Rn < β for every n and

⋂∞
n=1 B(xn,Rn) 6= ∅. If the

sequence {xn} weakly converges to some point z, then z belongs to all but finitely many
balls.

Proof Assume to the contrary that, for some subsequence {xnk}∞k=1 of {xn}, it hap-
pens that

z /∈
∞⋃

k=1
B(xnk ,Rnk )

(i.e., ‖xnk − z‖ > Rnk for every k). Without loss of generality we may assume that
{‖xnk − z‖} is convergent, say to R. Take any sequence {rk}∞k=1 of positive numbers
such that ‖xnk − z‖ > rk > Rnk for every k and {rk} converges to R when k goes
to∞. Let y be any point common to all the balls B(xn,Rn); clearly the point y − z is
a common point of the balls B(xnk − z, rk). Since the sequence {xnk − z} converges
weakly to the origin and the sequence {‖xnk‖ − rk} converges to 0, part (b)⇒ (a) of
Proposition 4.1 is contradicted.
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