
BULL. AUSTRAL. MATH. SOC. 90C48, 49T35 , 90D65

VOL. 54 (1996) [5-25]

GENERIC WELL POSEDNESS OF SUPINF PROBLEMS

P.S. KENDEROV AND R.E. LUCCHETTI

We consider two notions of well posedness for problems of the type supinf f(x, y)
X Y

and give conditions under which the majority (in Baire category sense) of bounded
functions / defined in X X Y give rise to problems which are well posed. As
a corollary we get that the problem sup/(a;) is well posed for the majority of

x
bounded lsc real valued functions / if, and only if, X contains a dense completely
metrisable subset.

1. INTRODUCTION AND PRELIMINARY REMARKS

Let X, Y be topological spaces and K : X —> Y a set—valued mapping with
Kx / 0 for all x £ X. Denote by B(X X Y) the space of all bounded real-valued
functions f(x,y) defined in X X Y. Every / £ B(X X Y) generates the problem

{Pf) sup inf f(x,y).

This problem arises, for instance, in connection with the following two players
game. The first player (sometimes called the "leading player") selects points x £ X
and wants to maximise the profit function f{x,y). The latter function depends also
on the choices y of the second player. Once the leading player selects some x' £ X
the "move" of the second player is to select some y in the set of all admissible choices:
y £ Kx' C Y. Then the value Vf := sup inf f(x,y) shows the maximal profit that

x K
can be guaranteed for the leading player even if the second player behaves in the "most
unfriendly way" by always selecting y' £ Kx' so that f(x',y') = inf f(x',y).

EK'
In the case when, for every x', the set Kx' is determined by some optimisation

problem, for instance as Kx' := < y* £ Y : g(x',y*) = inf g{x',y) \ where g is a given
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6 P.S. Kenderov and R.E. Lucchetti [2]

function from B(X x Y), the problem (Pf) is known as the "two level optimisation

problem" or "Stackelberg problem" (for more information in this direction see [24, 1,

17, 15]).

In the partial case when Kx = Y for all x E X the problem (Pf) is still interesting,

at least in connection with the study of saddle points for the function f(x,y).

The point (xo,yo) £ X xY is called a solution to (Pf) if f(xo,yo) = inf f(x<>,y)
y£Kx0

— Vf . The set of all such solutions will be denoted in this paper by S(f). The set S(f)

may be empty for some / E B(X x Y).

From the point of view of the first player in the above game a solution to (Pf) is
any point xg E X for which inf f(xg,y) — Vf. To underline the difference between

yEKx0

these two notions we say that the point XQ E X is a "sup-solution" of (Pf) if Wf(xo) =
supti)f(i), where Wf(x) := inf f(x,y). The set of all such "sup-solutions" to (Pf)
x y^Kx

will be denoted by M(f). Clearly, if (xo,yo) E S(f), then xo E M(f). It may however
happen that M(f) ^ 0 but S(f) = 0 .

The sequence (zi)i>i C X is called maximising for (Pf) if lim wf(xi) = Vf.
^ i—»oo

The problem (Pf) will be called sup-well-posed (sup-WP) if every maximising
sequence converges to some sup-solution of (Pf) (in this case (Pf) has a unique sup-
solution). That is, (Pf) is sup-WP if and only if the function Wf(x) is Tykhonov well
posed (T-WP) (see [9, 25]).

The sequence (»i,2/i)i>i Q X x Y is called optimising for (Pf) if

(i) yiEKxi for i=l,2,3, . . . ;
(ii) lim Wf(xi) = Vf (that is, (xi)i:>1 is maximising for (Pf));

i—>oo **

(iii) lim f(xi,yi) = vf.

The problem (Pf) is called well posed (WP) if every optimising sequence (x{, yi)i>1

converges to some solution (xo,J/o) of (Pf). (In this case (Pf) has a unique solution.)

If (Pf) is WP, then it is also sup-WP. Simple examples show that (Pf) may be

sup-WP without being WP.

Let E be a closed subset of (B(X x Y), \\-\\), where | |/ | | = sup | / (x,y) | | . Then
XxY

E is a complete metric space and the following definition makes sense.

DEFINITION 1.1: We say that E is generically sup-WP (generically WP) if there
is a dense Gg subset G C E such that the problem (Pf) is sup-WP (WP) for every
fEG.

In what follows we present a general scheme which allows us to show that many
particular subsets E of B(X X Y) are generically sup-WP or generically WP. We
demonstrate this in the three (most important for us) cases when E coincides with the
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space C(X x Y) of all bounded continuous functions in X x Y or the space L{X x Y)
of all bounded lower semicontinuous functions in X x Y or the space U(X x Y) of all
bounded upper semicontinuous functions in X x Y.

In particular, we prove (see Theorem 3.7) that, if K : X —> Y is upper semicon-
tinuous (use) with compact images then the following assertions are equivalent:

(a) X contains a dense completely metrisable subset;
(b) C(X x Y) is generically sup-WP;
(c) L{X x Y) is generically sup-WP.

In the partial case when Y is a singleton the space C(X x Y) (the space
L(X x Y)) can be identified with the space C(X) (L(X)) of all bounded continu-
ous (lower semicontinuous) functions in X. Sup-well-posedness in this case is just the
Tykhonov well posedness of the corresponding function. We get from Theorem 3.7 in
this case that condition (a) is equivalent to each of the following two statements:

(b ' ) C{X) is generically Tykhonov WP;
(c ' ) L(X) is generically Tykhonov WP.

Thus our result contains as a partial case Theorem 3.5 from [6] where the equiv-
alence between (a) and (b ' ) was proved. (For compact spaces X this equivalence was
established in [4] and [5].)

For other classes of set-valued mappings K (not necessarily upper semicontinuous)
we show that, if K is lower semicontinuous and X is a complete metric space, then
C(X x Y) is generically sup-WP. (See Theorem 3.10 for a more general statement.)

Concerning generic well posedness the scheme we use allows us to show that, if
X contains a dense completely metrisable subset, Y is a complete metric space and
K : X —> Y is use and compact-valued, then both C(X x Y) and L{X x Y) are
generically WP (see Theorem 4.3).

The attempt to make this result symmetric with respect to the requirements im-
posed on X and Y fails. Simple examples (in which X is a singleton) show that the
result is not true for spaces Y which contain a dense completely metrisable subset.
This is actually not strange because the space Y enters into our problem only via the
mapping K and the latter may send the points of X into the "nonmetrisable part"
of Y. This suggests that the generic well posedness of (Pf) depends primarily on the
mapping K (on the topological structure of its graph). In this direction we have the fol-
lowing statement (see Theorem 4.4): Let K : X —> Y be lsc, use and compact-valued.
Then the following are equivalent

(d) C(X x Y) is generically WP;
(e) GrK := {{x,y) £ X xY : y £ Kx) contains a dense completely metris-

able subset.
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8 P.S. Kenderov and R.E. Lucchetti [4]

Note that condition (e) is satisfied if both X and Y contain dense completely metrisable

subsets and Kx = Y for every x 6 X. (In this case grK = X x Y.) In particular, one

derives that for the majority of functions / € C(X x Y) the problem

supinf/(x,y)
x Y

is well posed, provided Y is compact and both X and Y contain dense completely
metrisable subsets. This improves significantly the main result from [14].

The scheme we use to prove all these statements has its roots in the general ap-
proach developed in [4, 5, 6, 13] for the study of generic well-posedness of simple
(one level) optimisation problems generated by continuous functions. Following this
approach we present in the next section some general results concerning generic single—
valuedness and generic continuity of set-valued mappings. These results are then ap-
plied in Sections 3 and 4 to the mappings M and 5 in order to establish that, under
some conditions, these mappings are generically single-valued and use. It then remains
to observe that at the points where M and 5 are single-valued and use we have sup-
well-posedness and well posedness respectively.

An equivalent form of the well posedness of (Pf) was used in [17]. Close in spirit
to this definition are also the notions studied in [19, 26, 27]. There are many other
results concerning genericity of well posed (one-level) problems. Among them we recall
[2, 3, 7, 8, 10, 12, 18, 21, 22]. D

2. GENERIC PROPERTIES OF SET-VALUED MAPPINGS

In this section we present some properties of the set-valued mappings which are at
the base of our results concerning generic sup-well posedness (generic well posedness).

DEFINITION 2.1: [11] The topological space Z is said to be fragmented by the
metric d( 21,22) (which is defined on Z) if for every e > 0 and every nonempty set
A C Z there exists a nonempty set A' C A such that d-di&mA' $C e and A' is
relatively open in A (that is, there is some open set V C Z such that A' = V (1 A).

Of special interest for us will be spaces Z which are fragmented by a complete
metric d(-,-) which generates a metric topology stronger or equal to the topology of Z.

Important examples of fragmentable space are the spaces homeomorphic to a
weakly compact subset of a Banach space or to a weak* compact subset of a dual
Banach space with the Radon-Nikodym Property. In both cases the fragmenting met-
ric is generated by the corresponding norm (for more information see [20, 23]).

Let E and Z be topological spaces and F : E —» Z be a set-valued map. By
DomF we denote the set {x G E : Fx ^ 0 } .
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DEFINITION 2.2: [13] The mapping F is called minimal at some x0 £ E if for

every open V C Z with F(xo) D V ^ 0 there exists an open set U C E which contains

x0 in its closure U and is such that F(U) := \J{F(x) : x e U}- C V. F is called

minimal if it is minimal at each point of E.

The map F : E —* Z is minimal if and only if for every pair of open sets V\ C E,

V C Z with F ^ ) 0 V ^ 0 there is some open set U2 ^ 0 , U2 C J7i, such that

C V.

DEFINITION 2.3: F : E —> Z is called upper semicontinuous (use) at x0 £ E if for
every open V C Z with FXQ C V there exists some open U 3 x<> such that F({7) C V.
If F is use at each point of E, we shall simply say that F is use.

THEOREM 2 . 4 . Let E be a. complete metric space and let Z be fragmented by
some metric <£(•,-). Let F : E —> Z be a minimal mapping with DomF dense in
E. Then there exists a. dense Gg set G C E such that for every xo € G a sequence
(Un)n>1 of open sets Un 3 xo exists with

lim (diamtfi) = 0 and Urn (d - diamF(Ui)) = 0.
»oo

PROOF: For every positive integer n consider the open set Hn — \_}{U : U open
in E, diamt/ < 1/n and diam F(U) < 1/n}. We show that Hn is dense in E. Take
some open U C E, U ^ 0 . Since DomF is dense in E, the set A := F(U) ^ 0 .
Fragmentability of Z implies that there exists some open V C Z such that A1 : =
V D A ^ 0 and diam A' < 1/n. By minimality of F there exists some open U' / 0 ,
E/'Cf/, such that F(tf') C V. Then F(J7') c V n F(i7) = A'. Hence diamF(tf') <
1/n. Without loss of generality we can suppose that diamU' < 1/n. Therefore 0 7̂
t/' CHnHU.

The set G = P) i?n is dense Gg in F/. For every xo & G there is a sequence of

open sets Un 3 x0 such that diamJ7n ^ 1/n and diamF(Un) ^ 1/n. D

COROLLARY 2 . 5 . Under the hypotheses of Theorem 2.4 the map F is single-
valued and use at any point XQ G Dom F H G with respect to the topology generated
in Z by the metric d.

DEFINITION 2.6: The map F : E —» Z is called open if F(U) is an open subset
of Z whenever U is an open subset of E.

THEOREM 2 . 7 . Let E be a complete metric space and F : E —» Z an open and
minimal mapping of E onto Z for which DomF is dense in E and F(XQ) = |") F(Ui)

whenever U{, i = 1,2,3,. . . , are open subsets 0/ E such that lim diam Ui = 0 and
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{xo} = P| Ui. Then the following statements are equivalent:

(a) Z contains some dense completely metrisable subset Z\;
(b) There exists a dense Gs subset G C E such that F is single—valued and

use at every point x G G.

PROOF: TO show that (a) implies (b) we need the following lemma.

LEMMA 2 . 8 . Let a! = {U1} be a disjoint family of nonempty open subsets of E
and let 8 > 0. Then there is a system a" = {U"} of nonempty open sets U" C E such
that

(i) a" is a disjoint system which is inscribed in a ' , meaning that for every

U" G a" there is (a necessarily unique) U' G a' such that U" C U';
(ii) diamlf" < 8 for every U" G a";

(iii) for every U" G a" dia.m{F(U") n Zx) < 8 and c\F{U") C F{U'), where
U' is the only element of a' containing U";

(iv) \J{U" : U" € a"} is dense in \j{U' : U' G a ' } .

PROOF OF LEMMA 2.8: Systems a" satisfying (i), (ii) and (iii) do exist. For
instance, take some UQ £ a ' . F(Z7o) ^ 0 is an open set. Take some z0 £ F(U!,) D Z\
and some open V 3 zo such that V C F(UQ) and diam(F ("I Z\) < 8. By minimality
of F we can find some open U£ ^ 0 , Ug C U'o, with F(U£) C V and diaml/J' < 8.
Hence diam(F(i7Q') fl Z\) < 8 and the one element family {UQ1} satisfies (i), (ii) and
(iii). Now consider a maximal system a" = {U"} satisfying (i), (ii), (iii).

Let us show that it satisfies (iv) as well. For a contradiction, suppose there exists
U'Q G a' and x0 G UQ \ \J{U" : U" G a " } . Then, as before, we can find a nonempty

open set U^' CU^\ \J{U" : U" G a"} such that d i am(F(^ ' ) n Zx) < 8, di&mUi' < 8,

and FjuJ) C F(U'O). The system a " U { ^ ' } is strictly larger than a" and still satisfies
the conditions (i), (ii), (iii). This contradiction completes the proof of the lemma. D

Consider now the one element family a0 = {E}. Apply Lemma 2.8 with a' := a0

and 8 = 1. Denote the resulting system a" by a1 . Then apply Lemma 2.8 with
a' := a1 and 8 = 1/2. This yields a system a" which we denote by a2 . Proceeding
in this manner we construct inductively a sequence (<*n)n>0 of systems such that, for
every n ^ 1,

(i) an is a disjoint family of nonempty open sets which is inscribed in a""1;
(ii) diam(7 < 1/n for every U G an;

(iii) For every Un G an, di&m{F(Un) n Zx) < 1/n and F{Un) C

where U"'1 is the element of a""1 for which Un C Un~l;

(iv) Gn := \J{Un : Un G a n } is dense in E.

Put G := P| Gn. Take xo G G. Then there is a uniquely determined sequence
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(£/n ) n^ j of open sets Un G an such that x0 = f] Un a n d (u i) i s satisfied. Since Zt

is a complete metric space there is some ZQ G ZI such that {zo} = P) (FfU1) D Zi) =

Let PT 9 zo be some open set in Z . Find some open V C Z such that ZQ £ V C
l f . There is some integer ra > 0 for which F(Un) f~l ^ C V. Since Zj is dense

in Z we have F(*7n) = F{Un) D Zx c F c I f . This implies that {z0} = f) F(tf .) C

f| F(Ui) = F ( f | [/;) = i ^zo) and that F is use at x0 • The proof that (a) implies

(b) is completed.

(b)=>- (a). Let {U^)n>1 be open and dense subsets of E and let F be single-
valued and use at the points of G = p | U^. We first show that Z is a Baire space. That

is, the intersection f] Hn of any sequence (Hn)n>1 of open and dense sets is dense in

Z. Let V ^ 0 be an open subset of Z . Since F : E -> Z is onto and F f~l /Ti ^ 0 the
minimality of F implies that for some nonempty open U\ C E, U\ C U^ , the open set
F{Ui) CVnHi. We can assume that d i a m ^ j < 1/2. Further, since F(C/1)nff2 ^ 0 ,
the minimality of F implies that we can find some non-empty open set J72 C E such
that diam*72 < 1/22, U2 C Ult V2 C U£ and F(U2) C V n H2. Continuing this
process we construct a sequence {Un}n^i of nonempty open subsets of E such that ,
for every integer n > 0, Un+1 C *7n, diamtfn < l / 2 n , Un C ^ and F(Un) CHnnV.
For the point {x0} = fl Un C G we have F (x 0 ) = f| F(f / n ) £ ( fl Hn) n V. Thus

the latter set is nonempty.

To show that Z contains a dense completely metrisable set Z\ we proceed as
follows. Let a.\ = {U} be a maximal system of nonempty open subsets of E such that
(1) diam*7 < 1/2 for all U G a j ; (2) U C Uf for all U <= c*i and (3) {F(l^) : { / £ a , }
is a disjoint family of open subsets of Z. Necessarily, c*i = {U} is also a disjoint
system. We show now that the open set Hi := U{-^(^) '• U £ a} is dense in Z.

Suppose the contrary: Z \ Hi / 0 . Since F : E —> Z is onto, there exists some
open U' C Ui, diamf/' < 1/2 for which F(U') C Z\H~[. This contradicts maximality
of ai since the family ai U {?/'} is bigger than a i and still satisfies the conditions
(1) - (3). Further we take a maximal system a 2 = {U} which is strongly inscribed
in a j (the latter means that the closure of every element of a 2 is contained into some
element of ai and is such that, for every U G a 2 : (12) diaxaU < 1/22; (22) U C Z72

and (32) {F(U) : U G a 2 } is a disjoint family of open subsets of Z. Necessarily, a 2 is
also a disjoint system and every Uz G a2 uniquely determines some Ui G a i so that
ThcUi. It is not difficult to see that the set H2 := \J{F(U) : U G a 2 } is dense in Hi
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12 P.S. Kenderov and R.E. Lucchetti [8]

and, therefore, in Z. Proceeding in this way we construct a sequence an of disjoint

families of open sets such that, for every U G a n ,

( l n ) diam*7<l/2n

(2«) UCU*
(3n) Hn := \J{F(U) : U £ an} is open and dense in Z.

Since Z is a Baire space, the set Z\ := |~| i/n is dense in Z. Every point

zo G Zi uniquely identifies a sequence (fn)n>i, Un £ an, such that z0 £ F(Un) for
n = 1,2,... . Properties ( l n ) - (3n) show that g(z0) := f| Un is a singleton which

belongs to G. The single-valued map g : Z\ —> G is continuous and F(</(z0)) =
-f( Pi ^«) = Pi F(Un) 3 zo • Since F is single valued and use at <7(zo) we see that

)) = Zo and that (7 : Z\ —» G is a homeomorphism between Zi and the Gg set

fl (LJ{^ • ̂  ^ a " } ) °^ ^ e complete metric space E. It is known that in such a case

Z\ is completely metrisable. U

3. GENERIC SUP-WELL-POSEDNESS

In this section we study the properties of the mapping M : B(X x Y) —» X defined
by

M(f) := {x £ X : inf f(x,y)=vf}.

We give conditions under which the restriction of M on some subsets E of
B(X x Y) is a minimal or minimal and open mapping with dense domain. This opens
the way to apply the general results from Section 2 in order to derive that M is single
— valued and use at the points of some dense Gg subset G of E. Further, it turns out
that for every f £ G the problem (Pf) is sup-well-posed.

PROPOSITION 3 . 1 . Let {/0} = f| Bi where {Bi)i:>1 is a sequence o{sets in

B(X x Y) with lim diarnB; = 0. Tien M(/o) = f|

PROOF: Clearly, M(/o) C fl -^(#i)- Let x' £ M(f0). Then there is some

x" G X and some e > 0 such that inf fo(x",y) > inf fo(x',y) + e.
y€Kx" yEKx'

Take the positive integer n so large that diam.Bn < e/2. Then for each / G Bn

we have | | / - / o | | < e/2 and consequently inf f{x",y) > inf fo{x",y) - e / 2 >
»€AV' y&Kx"

inf fo{x',y) + e/2 ^ inf f(x',y). This shows that x' g M(/) for every f £ Bn.
y€Kx' y€Kx'
Hence s' ̂  Af(BB) and z' ̂  fl Af(B,-). Q
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PROPOSITION 3 . 2 . Let E C B(X xY) be a. subset such that f(x,y)+g(x)
belongs to E whenever g(x) is a continuous function on X. Then the restriction of M
on E is a minimal mapping.

PROOF: We shall denote the restriction of M on E by M again. Let U C E and
V C X be open sets and let x0 £ M(f0) fl V for some f0 6 U. Let g : X —> [0,1] be
a continuous function such that g(xo) = 1 and g(X\V) = 0. Let e > 0 be so small
that h := f0 + eg £ U. For y £ Kx0, h(xo,y) = fo(xo,y) + e and inf h(xo,y) =

yEKx0

inf fo(xo,y) + e = vt0 + e. On the other hand, for x 4 V and y £ Kx, we have
yEKx0

inf h(x,y) =; inf fo{x,y) ^ vfo . Therefore vh ^ vfo + e > vfo ^ sup inf h(x,y).
€K* yEKx £VK

It is easy to derive from here that for all functions / from the open ball B(h,e/2),
vf > sup inf f{x,y). This implies that M(B(h,e/2)) C V. Clearly, h £ Uo :=

UnB(h,e/2) and M{UO)CV. D

PROPOSITION 3 . 3 . Let E be a subset of B(X x Y) containing the constant
functions and such that whenever f, g 6 E, so do f + g, max{/,g}, min{/,g}. Then
the domain DomM := {/ £ B(X x Y) : M(f) ± 0} is dense in E.

PROOF: Let / £ E and e > 0. Consider the function

fe{x,y) = min{f{x,y),vf - e} + max{f(x,y),vf +e}-vf

Clearly, fe £ E. We shall show that | | / - fc\\ < e and M(fc) ^ 0 . Take an arbitrary
point (x,y) £ X x Y. If f(x,y) <vf-e, then fe(x,y) = f{x,y) + (vf + e) - vf =
f(x,y) + e. Similarly, if f(x,y) > v/ + e, then fc(x,y) = f{x,y) - e. It remains to
consider the case when \f(x,y) — Vf\ ^ e. In this case we have fc(x,y) = (v/ — e) +
(vf + e)-vf "= vf. Thus | | / - fe\\ < e. Now we shall show that M{fc) ^ 0 . Indeed,
there exists some x* £ X with Vf + e > vt ^ inf f(x*,y) > vt — e. There is

y£Kx*
some y* £ Kx* for which vj + e > f{x*,y*) ^ inf f(x*,y) > v* — e. Then

yeKx*

fc(x*,y*) = Vf. Also, for every y £ Kx* we have /(x*,y) ^ inf f(x*,y) > Vf—e and
yEKx*

hence fe(x*,y) = (vf - e) + max{/(z*,y),t;/ +e} -vf ^ (v/ - e) + (vf + e)-vf =vf.

Thus JnixJc(x*,y)=vf.
Further, for every x' £ X, we have inf f(x',y) ^ Vf < Vf + e. There exists

yEKx'

some y' £ KV such that f{x',y') <vf+e. Then fe(x',y') = min{f(x',y'),Vf - e} +
(v/ + e) - Vf < («/ - e) + (vf + e) - Vf = Vf. This implies that inf fc(x' ,y) ^ vf.

yEKx'

We get that x* £M( / e ) . •
Bearing in mind our needs in Section 4 we note here that (x*,y*) is actually a

solution of (Pfc), that is, (x*,y*) £ S(fe). In particular, it follows from Proposition 3.3.
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that Dom 5 is dense in E whenever the requirements of that proposition are satisfied.
More generally, it was proved above that every pair (x*,y*) € XxY for which y* 6 Kx*
and Vf + e > f(x*,y*) ^ inf f(x*,y) > vj — e, is a solution of (P/e).

PROPOSITION 3 . 4 . Suppose E C B(X xY) satisfies t ie requirements of
Proposition 3.3 and, in addition, satisfies that for every f £ E, inf f(x,y) is a

y£Kx
lsc function of x. Then the restriction of M on E is an open mapping.

PROOF: Let xo € M(f) and e > 0. With fe as in the proof of Proposi-
tion 3.3, it suffices to show tha't M(/e) contains some neighbourhood of xo • Since

inf f{xo,y) = Vf0 and inf /(x,y) is lsc at Xo > there exists some open V 3 Xo such
y€Kx0 y€Kx
that inf f(x,y) > vt — e for every x 6 V. This means that for x € V and y £ Kx

y€Kx
we have f(x,y) ^ inf f(x,y) > vt — e. Therefore,

y€Kx

fe(x,y) = (vf-e) + max{f(x,y),Vf + e}-vf^vf and inf fc(x,y)^vf.
yeKx

On the other hand, as we have seen in the proof of Proposition 3.3.,

inf fc(x',y) ^.Vf for every x'£ X.
yeKx'

Hence we have that M(fc) D V. D

In the sequel we shall need also the following observation.

LEMMA 3 . 5 . For every / e B{X x Y) and e > 0 the following inequality holds:

sup inf f(x,y) ^Vf - e <Vf.
tM(f-K

PROOF: In the proof of Proposition 3.3 we established that if x* G X is such that
inf f(x*,y) >vf-£, then x* £ M ( / e ) . D
^Kx*

The connection between the properties of M and the sup-well-posedness is de-
scribed in the next statement.

PROPOSITION 3 . 6 . Let E he as in Proposition 3.3 and f £ E. Then the

following conditions are equivalent:

(a) M : E —» X is single - valued and use at f;

(b) (Pf) is sup—well posed.

PROOF: Let M(f) = {xo} and let M be use at / . Take some open V 3 XQ and
let ( X J ) > 1 be a maximising sequence for (Pf), that is, lim inf f(x{,y) = Vf.

^ i—>oo y£Kxj
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Since M is use at / , there exists some e > 0 such that M( / e ) C V. By Lemma
3.5, the sequence (3t)j>i eventually belongs to V. This shows that lim X{ = XQ

** Xj —>OO

and that (a) =̂  (b). Suppose now that {Pf) is sup—well-posed and has sup—solution
xo — M(f) but M is not use at / . Then there exists some open V 3 XQ and a
sequence (fn)n^x C E such that | | /n - f\\ -» 0 but M{fn)\V ^ 0 for every n ^ 1.
But for every sequence (xn) >, with xn £ M(fn) we have vtn = inf / n ( x n , y ) .

^ y£Kxn

Since | | /n — f\\ —* 0, \vfn — Vf\ —> 0 and therefore (xn)n>i is a maximising sequence

for [Pf) and must converge to Xo • This is a contradiction. U

THEOREM 3 . 7 . Let E be a dosed subset of (B(X X Y), | | | |) which satisfies the

requirements:

(1) E contains all bounded continuous functions g{x) defined in X (each

such function g is naturally identified with some function ~g in B(X x Y)
fayg{x,y) •= s0<0 for (x,y) <=XxY);

(2) for every pair fi,f2&E the functions fi+f2, max{/j, f2 }, min{/i, f2 }
aiso belong to E;

(3) for every f £ E the function inf f(x,y) is lsc in X.
y&Kx

Then the following statements are equivalent
(a) X contains a dense completely metrisable subset;
(b) E is generically sup—well posed.

PROOF: Consider the mapping M : E —> X. Since E contains the function
/o(x,y) = 1 and M(fQ) = X, this mapping is "onto". Propositions 3.1. through 3.4
indicate that Theorem 2.7 can be applied with F = M and Z = X. The rest of the
proof is contained in Proposition 3.6. U

Condition (3) from Theorem 3.7 is connected with the properties of the mapping
K. Closely related to K is the mapping K' : X —> GrK which is defined by the formula
K'x = {x} x Kx and maps X into the graph of K, GrK := {(x, y) £ X x Y : y £ Kx}.
K is called graph use if K' is use. If K is graph use, then it is use. The two notions
coincide if K is use and Kx is a nonempty compact subset of Y for every x £ X (in this
case K is called an usco mapping). The following lemma is standard in optimisation:
we omit the simple proof.

LEMMA 3 . 8 . If K is graph use and f is a bounded lsc function in X x Y, then

inf / (x,y) is a lsc function of x.
yEKx

COROLLARY 3 . 9 . Let K : X -> Y be graph use and let E be the space
C(X x Y) (L{X X Y)) of all bounded continuous (lower semicontinuous) real-valued
functions. Then the statements (a) and (b) from Theorem 3.7 are equivalent. In par-
ticular, this happens if K is an usco mapping.
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In some cases we can prove that E is genetically sup-WP without requiring use
of K or K'. In these cases we can not apply Theorem 2.7 because the mapping M is
not, in general, open.

The mapping K : X —> Y is called lower semicontinuous (lsc) at xo £ X if for
every open W C Y such that W l~l Kxo ^ 0 , there exists some open V 3 xo such that
x £ V implies Kx n W ̂  0 . if is called lsc if it is lsc at every x £ X.

THEOREM 3 . 1 0 . Let (X, T) be a topological space which is fragmented by some
complete metric d(-,-) such that the identity map (X,d) <—* {X,r) is continuous.
Let K : X —> Y be lsc. Then the set E — C(X X Y) of all continuous functions in
(X,T) x Y is generically sup-WP. In particular, this is true if {X,T) is a complete
metric space.

PROOF: We apply Theorem 2.4 and find a dense Gs subset G C E such that
for every fo & G there is a point XQ £ X and a sequence (Un)n>1 of open sets

in E with /o = PI Un, {x0} = f] M(Un) and diamM(f/n) < l/n. Note that

M(/o) = D M{Un) C D M(Un) = {x0}- We shall show that (P/o) is sup-WP and

Let (xi)i>! be a maximising sequence for (Pf0). That is, inf fo[xi,y) —> vr0 . By
^ yeKxi

Lemma 3.5 the set M(Un) eventually contains the sequence (xi)i>i • Therefore (xi)i>1

is a Cauchy sequence which can converge in d(-, •) only to xo (and then converges also
to xo in T ) . Let j/o £ -K̂ ô and e > 0. Find some open sets V 3 xo and l̂ F 9 j/o
such that fo(V x W) < fo(xo,yo) + e. Without loss of generality we can suppose that
Kx f l f f ^ 0 for every x £ V, because K is lsc at xo • For a;,- £ V we have some
yi G ifzinWT. For such i we have fo(xo,yo) + £ > /o(z«,2/») > inf fo{xi,y). Passing

y€Kxi

to limits as i —> oo we get fo(xo,yo) + e ̂  w/0 • It follows that inf fo(xo,y) > f/„ .
yeKxi

This means that xo £ M(fo). U
COROLLARY 3 . 1 1 . Let X be a complete metric space and let E = C{X x Y)

be the space of all continuous bounded functions in X x Y. Then there exists a dense
Gg subset G C E such that the problem

(Pf) supinf/(x,y)
X Y

is sup-well-posed for every f £ G.

PROOF: Put Kx := Y for every x £ X and apply Theorem 3.10. D

COROLLARY 3 . 1 2 . Let X be a topological space and E be either the space
L(X) of all bounded lsc functions in X or the space C(X) of all bounded continuous

https://doi.org/10.1017/S0004972700015033 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700015033


[13] Suplnf Problems 17

functions in X (in both cases with the norm | | / | | = sup|/(x)|j . Then the following
X

statements are equivalent:

(a) X contains a dense completely metrisable subset;

(b) E is generically Tykhonov well-posed.

PROOF: Let Y = {yo} be a one point set with the discrete topology. The space

L(XxY) (C(XxY)) is naturally identifiable with L(X) (C{X)). The function

f(x,y) is sup-WP if, and only if, the corresponding function /(x) = f(x,yo) is

Tykhonov well posed. The claim follows from Corollary 3.9. D

The equivalence of (a) and (b) for the case E = C(X) was established in [4] and

[5] for compact spaces X and in [6] for arbitrary topological space X.

4. GENERIC WELL POSEDNESS

Using the results from the previous sections we give here sufficient conditions under

which L(X x Y) (or C(X X Y)) is generically well posed.

LEMMA 4 . 1 . Let Y be a complete metric space and K : X —> Y usco. Let

e > 0 and f : X x Y —> R a bounded lsc function. Then for every 6 > 0 there exist

some open sets V C X, W C Y such that

(1) VC Vo : = { x £ X : inf /(as, y) >vf-e},

(2) d iamW<6,

(3) for every x £ V there exists some yx £ Kx (1 W with f(x,yx) ^ Vf + e.

In particular, for every x £ V we have

Vf — e< inf f(x,y) < inf f(x,y)^Vf+e.

PROOF: Since inf f(x,y) is lsc (because K is usco), the set Vo is open and
yEKx

nonempty. Take some x0 £ Vo •

Let Wi, W2,-.., Wk be a finite cover of Kxo consisting of open sets of diameter less
k

than 8. There exists some open Vi 9 XQ , Vi C Vo, such that Kx C |J Wi whenever
t=i

x £ Vj (because K is use at xo )• If for every x £ Vi there is some yx £ Kx fl W\

with f(x,yx) ^ Vf +£, the proof is complete. If this is not the case, then there is some

xi £ Vi for which either (i) Kxi n Wi = 0 or (ii) inf_ f(x\,y) > Vf + e.
W0

In the case (i) there exists some open V2 3 xi , V-j C Vi, such that Kx fl Wi = 0

whenever x £ V2 (by the usco property of K). In case (ii) we can find some open

V2 9 xi, Vi C Vi, so that inf_ f(x,y) > vt + e for every x £ V2 (by the lsc
eKW

property of / and because x —* Kx D W\ is an usco mapping).
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If the property (3) is satisfied with V := V2 and W := W2, we are done. If not,
two alternatives arise again. Either there is some X3 £ V2 for which KX3 D W2 = 0
or KX3 fl W2 7̂  0 but inf f{x3iy) > « / + £ • In both cases there is some

open F3 3 x3 , V3 C V2 , such that inf_ f(x,y) > vf + e (if Kx n W2 = 0 the
yeKxnw2

corresponding "inf" is +00 by definition).

If (3) is satisfied with V := V3 and W := W3 , the proof is over. If not, we can find

some V4 C V3 with inf /(2>2/) > t>/ + £ for every x £ V4 . Proceeding in this way,

at every step we either finish the proof or find another open set V with the corresponding
property. Finally we get a sequence Vo D V\ D V2 D • • • D Vjt of nonempty open sets
such that inf_ f{x,y) > Vf + e for every x £ V{, i = 1,2... ,k. Then we must

KW
have (3) satisfied for V := Vjt and W = Wk because, otherwise, we would find some

Xk £ Vk with inf f(xk,y) > Vf + e for every i — 1,2,...,k. Then we get the
W

contradiction:

inf f{xk,y) = min{ inf _ f(xk,y) : i = 1,2,... ,fc} > •«/ + e.
EK*k £KnW

LEMMA 4 . 2 . Let X and Y be topological spaces. Let f € L(X x Y), e > 0 and
iet the open sets V C X, W C Y be such that, for all x £ V, vt - e < inf f(x, y) ^

y£Kx
inf f{x,y) < Vf + e. Then for every continuous function h : Y —> [0,1] with

yEKxnW

h(W) = 0 and for every open set W with h(Y\W) = 1 there is some f £ L{X x Y),
||f - f\\ < We, such that S{h') cV xW whenever \\h' - f'\\ < e/2.

PROOF: Let xo £ V and g : X —> [—1,0] be a continuous function such that
g(xQ) = 0 and g{X\V) = - 1 . Put f'(x,y) := f(x,y) + 6eg(x) + 3 e % ) . Clearly,
| | / ' - / | K 9 £ < 1 0 £ .

If x i V, we have f'(x,y) = f(x,y) - 6e + 3e%) ^ /(x,i/) - 3e because
h(y) < 1. Consequently, for x &. V, inf f'(x,y) ^ inf f(x,y) - 3e ^ Vf - 3e.

On the other hand, for a; = x0 and y £ Kx0 we get f'{xo,y) = f(xo,y) + 3eh(y) ^
inf f(x0, y) >vt — e. Then inf f'(xo,y) ^ vt—e. Hence t;*; = sup inf f'(x,y)^

yetCx0 y£Kx0 x yeKx
inf f'[xo,y) ^ Vf — e > Vf— 3e ^ sup inf f'(x,y). This shows that, for every func-

setfso x$Vy€Kx
tion h'(x,y) with | | / i '—/ ' | | < e, the inequality «J,I > sup inf h'(x,y) holds. In

fVZK

turn, this inequality implies that, if {x',y') £ S(h'), then x' € V. Now we shall
show that the second coordinate y' belongs to W if ||fc'— / ' | | < e/2. If x £ V
and y £ ii:a;\W^' we have h(y) = 1 and therefore f{x,y) = /(x,y) + 6eg(x) + 3e ^
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inf f(x,y) + 6eg(x) + 3e > (vf - e) + 6eg(x) + 3e = vf + 6eg(x) + 2e. For ev-

ery x G V there is some yx G Kx ("I W such that f{x,yx) < vf + e. Then

f'(x,yx) = f(x,yx)+6eg(x) < (vf + e)+6eg(x). Taken together all this means that, for

x G V, inf f'(x,y) ^ vf+6eg(x)+2e > Vf+6eg(x)+e ^ f'(x,yx) ^ inf f'(x,y).

This implies that for all functions h'(x,y) with ||A'— f'\\ < e/2 and x G V we
have: inf h'(x,y) > inf h'(x,y). In particular, this inequality shows that, if

(z'.y1) G S(h') and a;' G V, then y' G W . Finally we get that S(h') C V x W if
\\h'-f'\\ <e/2. D

THEOREM 4 . 3 . Let X contain a dense completely metrisable subset X\ and let
Y be a complete metric space. Let K : X —» Y be an usco map and let E = L(X x Y)
(or E = C(X x Y)J. Tien £ is genericatfy well posed.

PROOF: First note that by Corollary 3.9 there is some dense Gg subset H C E
such that (Pf) is sup-WP whenever / G H.

Further, put Un = \J{U : U open in E and diam(S(U) D (Xi x Y)) < 1/n}.
We shall show that Un in dense in E. Take some open U' / 0 and some f £ U'.
Find e > 0 so that the ball B(f, l ie) C £/'. By Lemma 4.1 we can find some open
sets V C X and H^ C Y" such that properties (1), (2) and (3) from that lemma are
satisfied. Without loss of generality we can consider that d i a m ( F n X i ) < 1/n and
diamVF < 1/n. Take some open W1 D W with diam W' < 1/n and apply Lemma
4.2. We get that S(B(f',e/2)) C V x W. This shows that Un D V D B(f',e/2) =£ 0
which means that Un is dense in E. Put G := P| Un and take some f £ G <1 H.

There are sequences (Ul) , (V1) , (W7*) of open subsets of J5, X and Y respectively
such that 5( i / ' ) C V' x Wi and diamPy* < 1/t for every i > 1. Let (xp,yp)p>1

be an optimising sequence for (Pf), that is, yi £ Kxi, inf f(xp,y) —> a/ and

f(xp,yp) —* Vf. Since P ( / ) is sup-WP (because / G H) (xp) yi converges to some
x* G X such that Vf = inf f(x*,y). Since J7n is open, there is some 6 > 0 for which

the function fg(x,y) = m.in{f(x,y),Vf — 6} + m&x{f(x,y),Vf — 6} — Vf belongs to Un.
There exists z'o such that, for i ^ io, f{xi,yi) < Vf + 6 and inf f{xi,y) > Vf — 8.

y£KXi

Then {(xi,yi) : i ^ i0} C S{f6) C 5(t / n ) C VnxWn. (See the remark after the proof of
Proposition 3.3.) In particular, {yi : i ^ io} C VFn. This shows that (yi){>1 is a Cauchy
sequence in the complete metric space Y. Let y* = lim yi. Since the graph of the

I—»OO

mapping K is closed and (z»,t/i) G GrK, y* G Ifz* . It follows by lower semicontinuity
of / that f{x*,y*) < hm /(zi,jft) = Vf. Since f(x*,y*) ^ inf f(x*,y) = Vf we see
that (x*,y*) G 5 ( / ) and that (Pf) is well posed. D
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With stronger assumptions about the mapping K we can prove generic well posed-
ness under less restrictive conditions on the space Y.

THEOREM 4 . 4 . Let K : X —> Y be both usco and lsc. Then the following
statements are equivalent

(a) GrK := {{x,y) 6 X x Y : y 6 Kx} contains a dense completely metris-
able subset;

(b) C(X x Y) is genetically well posed.

It is not difficult to guess that in the proof of this theorem we are going to apply
Theorem 2.7. To be able to do so we need to investigate the properties of the mapping
S. This is done in the following propositions that are also of independent interest.
After that we give the proof of the theorem.

PROPOSITION 4 . 5 . Let X and Y be topological spaces and let K : X —> Y
be usco and lsc. Then the mapping S : C(X x 7 ) - > GrK is minimal.

PROOF: Let U', V, W be open subsets of E = C{XxY), X and Y re-
spectively such that ( V x W) H S{U') ^ 0 . Take (zo,3/o), f G V so that
(so,3/o) G S{f) n ( V x W). Let e > 0 be such that B{f,lie) C U'. Find some
open W 3 T/o for which W C W and there is a continuous function h : Y —> [0,1]
with h(W) = 0 and h(Y\W) = 1. By lower semicontinuity of K we can assume
that Kx n W / 0 for all x from some open V 9 zo • Without loss of generality we
can assume that sup / < Vf + e and V C V. Moreover, we can suppose also that

VxW

inf f{x,y) > Vf — e for all a; £ V. It follows from Lemma 4.2 that there is some / ' ,

| | / ' - f\\ < lOe, such that S(B{f',e/2)) cVxW cV xW, where B{f',e/2) is the

open ball around / ' of radius e/2. Since B(f',e/2) C U' we see that 5 is a minimal
mapping. D

PROPOSITION 4 . 6 . Let X and Y be topological spaces and let K : X —> Y
be usco and lsc. Then S is an open mapping of E = C{X x Y) onto Z = GrK.

PROOF: Let (a;o,3/o) £ S{f) and let e > 0. Consider the function j c of Proposition
3.3. It suffices to show that S(fc) is a neighbourhood of (zo,J/o) m Z. We already
know that there are some open sets V 9 xo and W 3 j/o such that inf f(x,y) > vr — e

y€Kx
for every x £ V and sup f <Vf + e. From the remark after the proof of Proposition

VxW

3.3 we know that (V x W) ("I GrK C S( / e ) . D

PROPOSITION 4 . 7 . Let fo — f) Bi where (-B;)i>i is a sequence of sets in

L{X x Y) with diamSi —> 0. Then S(/o) = fl S(B,).
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PROOF: Clearly, S( / o ) C fl S{Bi). Let (x',y') £ S(f0). There are two possibil-

ities:

(a) inf f0(x',y)<vf,oT
y€Kx'

(b) inf iMx',y) = vf<fo(x',yl).

In case (a) there is some x" £ X and some e > 0 so that

inf fo(x',y)< inf fo(x",y)-3e.
yEKx' y£Kx"

In case (b) there is some y" £ Kx' and some e > 0 so that

fo(x',y')-3e>fo(x',y").

Then for any function h, \\h — fo\\ < e, we have: in case (a) inf h(x',y) <
y€Kx'

inf h(x",y) ^ v^, and in case (b) h(x',y') > h(x',y").
y€Kx"

In both cases (x',y') ^ ^(f1)- Take the integer io so large that diam£j0 < e.

Then ||/o -h\\<£ for every /i £ Bio and (z',y') £ £(£;„)• D

PROPOSITION 4 . 8 . Theproblem (Pf) is wellposedif, andonlyif, S is single-

valued and use at f.

PROOF: Let {Pf) be well posed and (zo,2/o) — S(f). Suppose S is not use
at / . Then for some open sets V 3 xo, W 3 yo there is a sequence of functions
fn, ||/n - f\\ -» 0, and points (xn,yn) E S(fn)\{V x W). It is not difficult to see
that (xn,yn)n>1 is an optimising sequence for (Pf). Well posedness of (Pf) implies
that (xn,yn)n>i belongs to V x W eventually, and this is a contradiction. Let now
S(f) = (xo,yo) and suppose S is use at / . Take some optimising sequence (xi,yi)i:>1

for (Pf). We shall show that (xi,yi){>1 converges to (xo,yo)- Let V 3 xo , W 3 yo
be open sets and e > 0 be such that S(fc) C V x W. This is possible because S
is use at / . Since S(fc) contains the tail of any optimising sequence we get that
(xi,yt)—>(xo,yo)- D

PROOF OF THEOREM 4.4: Put E = C(X x Y), Z := GrK and F := S. Propo-
sitions 4.5, 4.6, 4.7 show that we can apply Theorem 2.7. The rest of the proof follows
from Proposition 4.8. U

4 . 9 . COROLLARY. Let Y be a compact space and let both X and Y contain
dense completely metrisable subspaces. Then there exists a dense Gg subset G of
C(X x Y) such that for every f £ G the problem

sup inf f(x,y)
x Y
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is well posed.

PROOF: Put Kx = Y for every x G X and apply Theorem 4.4. D

Corollary 4.9 generalises the main results from [14] where both X and Y were
required to be compact spaces from a proper subclass of the class of spaces containing
dense completely metrisable subspaces.

5. EXAMPLES AND COMMENTS

A natural question arising in connection with the previous considerations is what
happens if E is the space U(X x Y) of all bounded upper-semicontinuous functions in
X x Y. The answer is simple. Regardless of the properties of X and Y the set E is
always generically sup-WP.

PROPOSITION 5 . 1 . There exists a dense open subset U* C U(X x Y) such
that (Pf) is sup-WP for every f £ U* .

PROOF: By Proposition 3.3 we know that DomM is dense in U{X x Y). Let
x0 G M{f), where / G U(X x Y). Given 6 > 0 define

,6, ^ / rt*'*) if x*x°
j(x,y) = <

{ fixo,y) + * ii x - x0.

Clearly, fs eU{X xY) and \\f - fs\\ ^6. It is not difficult to see that, for every

h G U(X x Y) with \\h - f\\< S/2, M(h) = {x0} and (Ph) is sup-WP. D

The conditions (on X and Y) under which U(X x Y) is generically well posed
are also easy to identify. For simplicity, we shall consider only the case when Kx = Y
for every x £. X. That is, for / G E, we consider the problem

supinf/(a:,y).
x Y

THEOREM 5 . 2 . Let X and Y be topological spaces and U* — U(X x Y) be
the space of all bounded upper semicontinuous functions in X xY. Then the following
statements are equivalent:

(a) Y contains some dense completely metrisable subset;

(b) U* is generically well posed.

PROOF: Let a = {U} be a maximal disjoint system of open sets U C U* such that
for every U G a there is some xu G U with inf f(xu,y) > sup inf f(x,y) whenever

f G U. In particular, this means that M(f) = {xu} for every / G U. As above we can
prove that E := \J{U : U G a} is an open and dense subset of U*.
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Consider the mapping F which assigns to each f £ U £ a the set

F(f) ••= {y*£Y: f(xu,y*) = in{f(xu,y)}.

The problem of minimising the upper semicontinuous function f(xu,y) is equiva-

lent to the problem of maximising the lower semicontinuous function —f(xu,y) and we

can prove (as in Section 3) that F is an open and minimal mapping with dense domain

on every U £ a and, therefore, on E. Hence F(E) is an open subset of Y. We shall

show now that F(E) is also dense in Y. Indeed, take some open W ^ 0 in Y and some

continuous function h : Y —> [0,1] such that h(Y \ W) = 1 and ^(j/o) = 0 for some

2/o £ W. Consider the function fo{x,y) := h(y). Evidently, f0 £ U*. For every / with

| | / - /o|| < 1/3 and every x0 £ X we have {y* £ Y : f(xo,y*) = inif{xo,y)} C W.

Since E is dense in U* the set U' := B(f0,1/3) H E, where B(f0,1/3) is the open ball

around /o , is not empty for some U £ a . Clearly F(U') C W.

The rest of the proof follows from Theorem 2.7 and Proposition 3.6. D

The following two examples exhibit situations when there is no generic well posed-

ness.

EXAMPLE 5 . 3 . Let X be the Cartesian product I I{ / a : a £ A}, where Ia =

[0,1] for every a from the uncountable set A. Then every nonempty Gs subset of

X contains uncountably many points. In particular, every lsc real-valued function

f : X —> R is not sup-WP.

PROOF: Let Vi,i^ 1, be open subsets of X and x0 = {xa)a€A £ f) Vi:• Without

loss of generality we can suppose that Vi is a basic neighbourhood of the form Vi =

n{(a£. -e,x°a.+e):i£ Ai} x II{/Q : a £ Ai], where Ai is a finite subset of A. Put

A' := [jAi. Then the set ( J ^ , x II{/Q : a ^ .A'} is uncountable and is contained

in H Vt. D

EXAMPLE 5.4. Let N be the set of all positive integers with the discrete topology and

let /37V be the Stone - Cech compactification of N. Then every nonempty Gg subset

of X := /3N\N has uncountably many points.
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