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Abstract

With the advancement ofmedical technology, there are increasing opportunities for new-borns,
infants, and pregnant women to be exposed to general anaesthesia. Propofol is commonly used
for the induction of anaesthesia, maintenance of general intravenous anaesthesia and sedation
of intensive-care children. Many previous studies have found that propofol has organ-
protective effects, but growing evidence suggests that propofol interferes with brain
development, affecting learning and cognitive function. The purpose of this review is to
summarize the latest progress in understanding the neurotoxicity of propofol. Evidence from
case studies and clinical studies suggests that propofol has neurotoxicity on the developing
brain. We classify the findings on propofol-induced neurotoxicity based on its damage
mechanism. We end by summarizing the current protective strategies against propofol
neurotoxicity. Fully understanding the neurotoxic mechanisms of propofol can help us use it at
a reasonable dosage, reduce its side effects, and increase patient safety.

Introduction

With the continuous improvement of surgical and medical technology, the number of general
anesthesia procedures for new-borns, young children and pregnant women is increasing.
Studies have found that many anesthetics cause nerve damage and learning and memory
impairment.1–4 Therefore, more attention has been paid to the safety of anesthetics.

Propofol is commonly used in clinical anesthesia and postoperative intensive care because of
such advantages as its rapid and stable onset, easy control of anesthesia depth, rapid recovery of
patients, complete recovery of brain function, and low incidence of postoperative nausea and
vomiting. The mechanism of propofol’s anesthetic effect is that it acts on synapses to release
gamma-aminobutyric acid (GABA) from the prominent anterior membrane and binds with the
postsynaptic GABA-A receptor to enhance the transport activity of chloride ion channels,
increasing chloride ion influx, neuronal hyperpolarization, and postsynaptic inhibition, which
ultimately lead to a decrease in central excitability. In addition, propofol can block the N-
methyl-D-aspartate glutamate receptor to produce anesthetic effects.5 However, studies have
found that the effect of propofol on neuronal hyperpolarization causes abnormal changes in
immature neurons.6

The rapid development period of the human brain refers to the period from 3 months of
embryo development to 2 ~ 3 years after birth. During this period, young children have normal
physiological reflexes, such as the sucking reflex and holding reflex, and they can understand
pictures and arithmetic approximately 2 years after birth.7 In the period of rapid development,
the blood–brain barrier is not yet fully developed, and synapses grow rapidly. The
neurotransmitters produced have different effects than they do on the mature brain. At this
time, the brain is very sensitive to changes in the internal or external environment, which is due
to the large number of physiological and biochemical changes occurring in the brain during
development from the immature to the mature state. Propofol easily passes through the blood–
brain barrier and produces anesthetic effects in the brain. Therefore, the use of propofol during
rapid development can affect the development of the brain.8,9

At present, in vivo and in vitro experiments have shown that propofol is neurotoxic to the
developing brain, can cause damage to developing nerve cells, and can interfere with the learning
and memory function of animals.10–12 In case reports and clinical studies, it was found that
children under propofol anesthesia experience neuromuscular damage, resulting in various
changes, such as tendon hyperreflexia, muscle weakness, visual memory impairment, and
cognitive impairment.13 Due to the neurotoxicity of propofol found in both laboratory and
clinical studies, the safety of propofol anesthesia in pregnant women and children has received
widespread attention. Many signal pathways of propofol-induced brain injury during
development have been explored, but the mechanism of propofol neurotoxicity is still unclear.
In addition, there are relatively few preventionmethods for propofol neurotoxicity, and its effect
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is not obvious. The purpose of this review is to summarize the
recent research on the neurotoxicity of propofol to the developing
brain. We also summarize the protective measures against
propofol neurotoxicity to support the development of new drugs
and measures to reduce the damage of propofol to the
developing brain.

The clinical study on neurotoxicity of propofol to
developing brain

In 1992, a report was published on neurological sequelae after
long-term infusion of propofol, which was also the first case in
which propofol was thought to have neurotoxicity. The child was 4
years old and was hospitalized due to wheezing secondary to upper
respiratory virus infection. After 4 days of continuous infusion of
propofol in the ICU, the child had epileptic seizures and slight
convulsions. The child could open his eyes but was weak and
unresponsive. After stopping propofol for 7 days, the child
developed excessive tendon reflex and ankle clonus, normal muscle
tension and ataxia while walking. Another child, aged 2.5 years,
was hospitalized with severe laryngotracheal bronchitis. The child
was sedated with propofol at a speed of 100mg/h. After continuous
infusion for 44 h, the child hadmuscle weakness, slight convulsions
of the hands and feet, and dance movement of the arms.14 In 2009,
three infants developed convulsions with similar clinical features
23–30 h after propofol infusion. During the follow-up period, the
investigators found that these patients had progressive micro-
cephaly (with normal head circumference at birth), and 2 of them
had developmental impairment with cognitive and behavioral
impairment, as well as bilateral symmetric white matter
abnormalities on brain magnetic resonance imaging.15 In 2014,
Millar et al. selected 58 children aged 5–14 who needed daytime
dental surgery and randomly used isoflurane or propofol
anesthesia to compare the effects of the two anesthetics on
postoperative cognitive impairment. In the propofol group, the
initial blood target concentration was 5 μg/ml, and the end-
expiratory concentration of isoflurane was maintained at 1 mac.
The following symptoms occurred after operation: (1) The
postoperative reaction time of both groups was prolonged, and
the control of consciousness and movement was impaired but
recovered 24 h later. (2) Visual memory impairment was found in
the two groups after operation and after 24 h, and cognitive
impairment was found after operation. (3) Delayed language recall
disorder also appeared in the propofol group.13 These cases and
clinical trials show that propofol may affect the function of the
developing brain and disrupt the nervous system. Therefore, in
2016, the US Food and Drug Administration issued a statement
that exposure of children under the age of three or women in late
pregnancy to anesthetics, including propofol, for more than 3 h or
in repeated exposures may lead to brain developmental defects in
the child.16

The mechanism of propofol on brain damage during
development

The function of neurons determines the function of the central
nervous system. Damaged neurons cause functional disorders of
the central nervous system, and neurons in development are more
vulnerable to the influence of the internal and external
environment. It was found that the motor skill learning of adult
mice was impaired by multiple intraperitoneal injections of
propofol in new-born mice, accompanied by a decrease in the

number of vertebral neurons and a weakening of the activity of the
cortical motor area.17 At present, research on propofol in the
developing brain is mainly about the injury and death of neurons,
and specific mechanistic research mainly involves the following
aspects:

Mitochondrial damage pathway

Mitochondria are the main organelles for oxidative energy supply,
which convert glucose into adenosine triphosphate (ATP) through
oxidative phosphorylation. Studies have shown that when SH-
SY5Y nerve cells were treated with 2% propofol for 48 h, the
number of mitochondria decreased, the oxygen consumption of
cells decreased, the respiratory rate decreased by 35%, the activity
of cytochrome C decreased, and the release of ATP decreased.
These phenomena indicate that propofol damages mitochondria
and impairs mitochondrial function inmature neurons.18 Propofol
also affects neurons in the development stage. In 7-day-old SD rats
injected with 100 mg/kg propofol, it was found by electron
microscopy that the mitochondria of neurons were swollen, some
mitochondrial inner membranes were broken, mitochondrial
cristae were loose or even broken, matrix density was reduced, and
ATP production was reduced.19 Propofol not only damages the
mitochondria of developing neurons but also induces mitochon-
drial deformation, vacuolation and swelling and reduces the
mitochondrial membrane potential of neural stem cells, which
ultimately leads to their proliferation, differentiation and
apoptosis.20 Mitochondrial damage is involved in propofol-
induced developmental neurotoxicity and could be an important
target for further studies of propofol-induced developmental
neurotoxicity.

Oxidative stress pathway

The production and clearance of reactive oxygen species are
dynamically balanced in the normal body. Once the balance is
broken by endogenous or exogenous stimulation, a large amount
of reactive oxygen species (ROS) will be produced, which cause
oxidative stress. Oxidative stress leads to neutrophil inflammatory
infiltration, increased protease secretion and the production of a
large number of oxidative intermediates, which eventually damage
cellular proteins, lipids and nucleic acids. Many neurological
diseases and injuries are related to oxidative stress, such as
Alzheimer’s disease, Huntington’s disease, Parkinson’s disease and
cerebral ischemia–reperfusion injury.21–24 Some studies have
found that anesthetics can cause an increase in ROS, mitochondrial
damage and neuronal apoptosis.25 Primary hippocampal neurons
were isolated from neonatal SD rats and treated with 20 μM
propofol for 6 h. ROS production by these cells increased, which
promoted the production of the apoptotic proteins cleaved
caspase3 and Bax and reduced the expression of the B-cell
lymphoma-2 (Bcl-2) protein. TUNEL staining showed that the
number of apoptotic neurons increased.26 Both superoxide
dismutase (SOD) and malondialdehyde (MDA) can be detected
as indicators of oxidative stress. When oxidative stress occurs, the
release of SOD, an oxygen free radical scavenging enzyme,
decreases, causing lipid peroxidation and producing the harmful
substance MDA. After exposing hippocampal neurons of neonatal
rats to propofol, ROS and MDA increased and SOD decreased.27

These results suggest that oxidative stress is involved in the process
by which propofol damages developing neurons.
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Calcium overload process

Calcium ions (Ca2þ) are an important component of the human
body and a significant secondmessenger in cells, which is critical in
the central nervous system. The balance of calcium is very
important to maintaining normal nervous system function.28 An
imbalance in calcium homeostasis can lead to neuronal damage.
The endoplasmic reticulum is the main source of calcium ion
release in neurons, maintaining the balance of Ca2þ within them
through recovery and release. In the mitochondrial matrix, an
appropriate amount of Ca2þ can regulate the process of oxidative
phosphorylation, but excessive Ca2þ will hinder mitochondrial
respiration and eventually lead to cell damage. Sevoflurane can
cause an increase in Ca2þ in primary hippocampal neurons of rats
and then cause apoptosis.29 The same effect has been found for
propofol. The primary neurons of E17Wistar rats were exposed to
the therapeutic dose of propofol, and the calcium concentration
and cell survival rate were measured at 3, 7 and 13 days in vitro
(DIV). The results showed that the concentration of Ca2þ and the
number of apoptotic neurons treated with propofol increased on
DIV 3 and 7, but not 13, under therapeutic concentrations of
propofol in primary cultured neurons obtained from E17 Wistar
rats.30 In mouse embryonic fibroblasts, it was also found that
propofol caused a large outflow of Ca2þ in the endoplasmic
reticulum and thus cell death.31 Therefore, calcium overload is
closely related to the neurotoxicity of propofol. These findings may
provide a new way to alleviate the developmental neurotoxicity
caused by propofol by correcting the dysregulation of calcium
concentration.

Inflammatory factors

The main feature of neuroinflammation is the overexpression of
pro-inflammatory factors caused by glial cell activation or immune
cell infiltration and the suppression of anti-inflammatory factor
expression.32 In the brain, glial cells are divided into microglia,
astrocytes and oligodendrocytes. Microglia are the main neuro-
immune cells and the first sensor of pathophysiological changes.
They are very important for monitoring and defense, and trigger
signaling cascades. When experiencing trauma or brain disease,
microglia are stimulated and activated, polarized to become
M1-activated microglia, and secrete proinflammatory factors, such
as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and
IL-6, thereby stimulating the deterioration characteristic of
neurological diseases.33–35 Inflammatory factors are also important
in the process of propofol-induced neurotoxicity. Wang et al.
exposed Sprague–Dawley rats (SD rats) and PC12 cells to propofol.
Propofol caused nerve cell damage in the brains of rats by
increasing proinflammatory factors, including IL-1β, IL-6, IL-17,
and IL-18, which was also found in vitro.36 After neonatal rats were
exposed to propofol, TNF-α expression levels were found to be
elevated in the cerebrospinal fluid, hippocampus and prefrontal
cortex, resulting in neuronal damage.37 Propofol can produce
inflammatory effects in the hippocampus of the developing brain
by enhancing astrogliosis activation (as measured by GFAP level)
and increasing the levels of neuronal nitric oxide synthase (nNOS)
and the proinflammatory cytokines IL-6 and TNF-α.38 The Fas
ligand/Fas death receptor pathway, as an inflammatory mediator
in central nervous system pathology, is also involved in the
neurotoxicity of propofol. This pathway leads to the activation of
Caspase-8 and Caspase-9 through the mediated exogenous and
Bcl-2-dependent endogenous apoptosis pathways, respectively, to
result in neurodevelopmental abnormalities.39 The above results

indicate that neuroinflammation may be involved in the neurotox-
icity of propofol, providing meaningful insights for finding
therapeutic targets in neuroinflammatory signaling cascades.

Noncoding RNA

In mammals, more than 80% of DNA is transcribed, but less than
2% of RNA is transcribed into proteins, and the rest are RNAs
without coding ability. Among all human organs, the central
nervous system has the highest content of noncoding RNA.40

Noncoding RNAs play an important role in brain neurodevelop-
ment and neurological diseases.41 microRNAs (miRNAs) and long
noncoding RNAs (lncRNAs) have been found to be involved in the
neurotoxicity process of propofol.42,43

MicroRNAs (miRNAs) are endogenous noncoding RNA
molecules with a length of approximately 22 nucleotides that
regulate cellular processes by inhibiting the translation of
messenger RNAs.44 MiRNAs have become a research hotspot on
the neurotoxicity of anesthetics in recent years. So far, more than
40 miRNAs have been found to be involved in the neurotoxicity
process of anesthetics.45 The expression of miR-363-3p and miR-
34a in SH-SY5Y cells was dysregulated after propofol treatment,
resulting in a decrease in the cell survival rate.46,47 Propofol can
cause neuronal injury during brain development by causing an
imbalance of miRNA expression.10,27,48 Zhu et al. exposed
hippocampal neurons of neonatal rats to 50 μM propofol for 6
h. PCR showed that after propofol treatment, the expression of
miR-455-3p decreased and the expression of its target protein
EphA4 increased, leading to a decrease in neuronal proliferation
and an increase in apoptosis.49

Long noncoding RNAs (lncRNAs), with a length of more than
200 nucleotides, lack an open reading frame.50 Studies have shown
that lncRNAs participate in many biological processes, including
neurodevelopment and neurological diseases.51,52 Transcription of
the lncRNA called HOX antisense RNA (HOTAIR) is involved in
nervous system diseases and is related to sevoflurane-mediated
brain dysfunction.53,54 It was found that the miR-455-3p/NLRP1
axis regulated by HOTAIR was also involved in the neurotoxicity
of propofol.55 The lncRNA BNDF-AS can reverse the expression of
brain-derived neurotrophic factor (BDNF). Xu et al. found that the
expression of BDNF-AS decreased after propofol treatment in
neurons, and reversing this BDNF-AS change reduced the
apoptosis induced by propofol.43 In addition, recent studies have
found that neonatal animals with high levels of lncRNA LCRF are
more vulnerable to nervous system damage caused by propofol.56

The effect of propofol on the fine structure and functional
integrity of nerve cells

Most studies on the neurotoxicity of propofol focus on the
apoptosis of nerve cells, but some experiments show that the
amount of apoptosis caused by propofol accounts for only 1% - 2%
of the neural cortex, while 50% of the synapses of hippocampal
neurons are lost immediately after anesthesia exposure, and the
number of synapses continue to decrease by 10% in the following
three months.57 The occurrence of cognition and consciousness
depends on the neuronal circuitries formed between the synapses
of nerve cells, and synapse creation coincides with the peak time of
brain development. At this time, exposure to general anesthetics
can cause serious and persistent ultrastructural abnormalities of
the neuropil.58 Xu et al. confirmed that propofol affects the
formation of synapses during development through the mTOR
pathway and affects cognitive function.59 In the process of neural
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development, the growth of neurons is determined by the
morphology of their growth cones and axonal transport.
Propofol collapses the growth cones of neurons in new-born mice
by activating RhoA and affects the axonal transport of the
neurotrophic factor brain-derived neurotrophic factor (BDNF),
resulting in the impairment of cognitive function in mice.60

Milanovic et al. found that exposure to propofol can cause damage
to neural synaptic function and structure in the developing brain
and can cause long-term cognitive function changes by interfering
with brain plasticity changes.61 The fine structure and functional
integrity of nerve cells as affected by propofol are worth exploring
in depth.

The effect of propofol on neural stem cells

Neural stem cells mainly exist in the subventricular area of the
lateral ventricle of the brain and the subgranular area of the dentate
gyrus of the hippocampus. Neural stem cells are key to neural
development because they are numerous in the developing brain
and have the ability to proliferate, differentiate and migrate.62,63

Human induced pluripotent stem cell (hiPSC)-derived neural
progenitor cells were exposed to 20 μM, 50 μM, 100 μM and
300 μM propofol for 6 or 24 h, and 20 μM or 50 μM propofol
treatment for 6 h had no significant effect on neural progenitor
cells, but when the concentration of propofol was 100 μM and
300 μM, the survival rate of neural progenitor cells decreased
significantly. When treated with 50 μM propofol for 24 h, the
neural progenitor cells also had a significantly decreased survival

rate, which indicates that long-term or high concentration
propofol exposure will induce apoptosis of neural progenitor
cells.64 Jiang et al. isolated neural stem cells from the rat embryonic
hippocampus and exposed them to 112 μMpropofol for 6 h, which
weakened their proliferation and migration. In addition, neuronal
marker β-Tubulin III protein expression decreased, indicating that
propofol inhibits the neurogenesis of neural stem cells.65 Propofol
not only reduces the survival rate of neural stem cells and causes
their apoptosis but also inhibits the proliferation of neural stem
cells. A mechanistic study confirmed that propofol inhibits the
proliferation of neural stem cells through the Ca2þ-PKCα-ERK1/
2 signal pathway.66

Neural stem cells can differentiate into a variety of neural cells,
including neurons, astrocytes and oligodendrocytes. Studies have
clarified that the excessive production of glial cells is the
pathophysiological basis of many neurological diseases. The
excessive production of astrocytes leads to synaptic dysfunction
and abnormal cerebrovascular function during neural develop-
ment, resulting in impaired learning and memory and behavioral
disorders.67,68 The use of propofol during brain development can
make neural stem cells more inclined to differentiate into
astrocytes, reduce the differentiation of neurons and hinder the
neurogenesis of neural stem cells.69,70 Cao et al. confirmed that
when rat neural stem cells were cultured with 50 μM propofol for
6 h, the cell cycle stagnated, and astrocyte differentiation increased.
The mechanism was that propofol interfered with neural stem cell
differentiation through the microRNA-124-3p–specificity protein
1–cyclin-dependent kinase inhibitor 1B signaling pathway.71 The

Figure 1. Schematic diagram of the processes by which propofol leads to neuronal death: through mitochondrial damage, oxidative stress, calcium overload, inflammatory
factors and noncoding RNA pathways. Cyt C, cytochrome C; ATP, adenosine triphosphate; SOD, superoxide dismutase; MDA, malondialdehyde; ROS, reactive oxygen species;
nNOS, neuronal nitric oxide synthase; TNF-α, tumor necrosis factor-α (TNF-α); IL-1β, interleukin-1β; fasL, fas ligand; Ca2þ calcium ion; CASP8, caspase-8.
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above studies show that propofol induces apoptosis and impairs
proliferation, differentiation and migration of neural stem cells to
cause neurotoxicity, which may explain much of the propofol-
induced learning and memory impairment in children. These
results suggest that propofol should be used more cautiously in
pregnant women and early new-borns.

Prevention of propofol neurotoxicity

At present, there are many studies on propofol in developmental
brain injury, and the prevention of propofol-induced devel-
opmental brain neurotoxicity has also become an important issue.
Dexmedetomidine, an α2 adrenoceptor agonist, is commonly used
in the clinic for sedation, analgesia and anti-anxiety.72

Dexmedetomidine can attenuate propofol-induced apoptosis of
hippocampal neurons and astrocytes and inhibit the proliferation
of cells in the dentate gyrus through the glycogen synthesis kinase-
3 β (GSK-3 β)–collapsin response mediator protein-2 (Crmp2)
signal pathway and the cyclin-dependent kinase 5 (Cdk5)–Crmp2

signal pathway.73 Another study found that exposure to propofol
during childhood significantly increased the escape latency,
hippocampal neuronal apoptosis, and synaptic ultrastructural
changes in adult rats. However, the neurotoxicity of propofol was
significantly reduced by pretreatment with dexmedetomidine:
pretreatment of young rats with dexmedetomidine attenuated the
potential induced long-term neurotoxicity in their developing
hippocampus.74 Clobenpropit, a histamine H3 receptor antagonist,
can also reduce the damage done by propofol to hippocampal
neurons in neonatal mice through the PI3K–Akt pathway.75

Neurotrophic factors mainly include nerve growth factor
(NGF), BDNF, neurotrophic factor-3 (NT-3) and NT-4/5, which
are similar in structure and belong to the same gene family.
Neurotrophic factors canmediate the self-healing of the brain after
traumatic injury or stroke and improve motor function.76 Studies
have shown that overexpression of the transcriptional inhibitor
RE-1 silencing transcription factor can reduce the damage caused
by propofol to the mouse neuronal HT-22 cell line by upregulating
BDNF production.77 Li et al. showed that 25 ng/ml NGF can
improve the survival rate of neurons by reducing the production of
the apoptotic protein Bax caused by propofol in developing
hippocampal neurons.78

Xenon is a rare inert gas with anesthetic effects that can reduce
neuronal damage.79 One study found that when xenon and
propofol were administered at the same time, xenon reduced the
damage of propofol to neural stem cells, reduced the differentiation
of astrocytes, and effectively blocked the reduction of neuronal
differentiation caused by propofol.80 So far, there are many studies
on protective measures against propofol neurotoxicity, but their
clinical efficacy and safety are still unknown. Further research is
needed on propofol-protective measures.

Conclusion

In conclusion, both cellular and animal experiments have proven
the neurotoxicity of propofol, especially in the critical period of
brain development. These studies tell us that children need to be
more cautiously treated with propofol. This review describes the
neurotoxic mechanisms of propofol, which include mitochondrial
damage, activation of the oxidative stress pathway, calcium
overload, release of inflammatory factors, interference with
noncoding RNA expression and changes in the microstructure
of nerve cells, and summarizes the current protective measures

against propofol neurotoxicity (Fig. 1). We found that the
neurotoxicity of propofol needs further exploration. First, due to
ethical requirements, trials cannot be conducted directly on
children, and there is no evidence to prove the clinical relevance of
these cell models and animal models, so these studies have been
limited. In addition, because each patient has different tolerance to
propofol, whether patients will have neurotoxicity and clinical
symptoms of neurotoxicity are inconsistent at the same dose. It is
difficult to observe whether propofol causes developmental brain
injury. Finally, in clinical anesthesia, propofol is not used alone, but
in combination with other drugs, and we cannot determine
whether developmental brain injury is caused only by propofol.

There are many noteworthy shortcomings of the studies that
have been done so far, but these limitations provide guidance for
our future research. First, although we cannot directly conduct
experiments in children or pregnant women, human embryonic
stem cells are pluripotent stem cell lines derived from the internal
cell clusters of early embryos, theoretically capable of differ-
entiating into any type of neural cell in the brain. We can simulate
the development of the brain by regulating the differentiation of
embryonic stem cells, serving as a bridge between laboratory and
clinical research. Second, with the advancement of medical
imaging, it has been found that nerve activation is accompanied
by changes in haemodynamics and oxidative metabolism, which
can be observed by blood oxygen level-dependent functional
magnetic resonance imaging (BOLD fMRI). In the developing
brain, the neurotoxicity of propofol is accompanied by a decrease
in the functional connectivity of nerve cells, which leads to the
weakening of signal transmission. We can analyze the changes in
brain information flow through fMRI technology to see whether
nerve cell function is abnormal and thereby observe the
neurotoxicity of propofol to the developing brain. Finally, in
future research, we should establish animal models to compare the
neurocognitive development of propofol in combination with
other anesthetics and propofol alone and explore whether the
combination of anesthetics reduces or exacerbates the neurotox-
icity of propofol.

The contribution of our review is to clarify that the
neurotoxicity of propofol is due to various pathological effects.
By gaining a more comprehensive understanding of the neurotoxic
effects of propofol, we will have the ability to better apply it in
clinical practice and increase the safety of pediatric anesthesia.
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