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SUMMARY

Surveying and declaring disease freedom in wildlife is difficult because information on population

size and spatial distribution is often inadequate. We describe and demonstrate a novel spatial

model of wildlife disease-surveillance data for predicting the probability of freedom of bovine

tuberculosis (caused by Mycobacterium bovis) in New Zealand, in which the introduced brushtail

possum (Trichosurus vulpecula) is the primary wildlife reservoir. Using parameters governing

home-range size, probability of capture, probability of infection and spatial relative risks of

infection we employed survey data on reservoir hosts and spillover sentinels to make inference on

the probability of eradication. Our analysis revealed high sensitivity of model predictions to

parameter values, which demonstrated important differences in the information contained in

survey data of host-reservoir and spillover-sentinel species. The modelling can increase cost

efficiency by reducing the likelihood of prematurely declaring success due to insufficient control,

and avoiding unnecessary costs due to excessive control and monitoring.
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INTRODUCTION

Wildlife reservoirs of zoonotic disease continue to

present major risks worldwide to human health,

domestic animals and endangered wildlife (for review

see [1]). Reduction of wildlife disease to low levels

is often achievable [2–5], but regional or national

disease eradication from wildlife is far more chal-

lenging [6–8] and typically requires intensive (and

therefore expensive) intervention over large areas for

extended periods of time [9, 10]. For such eradication

programmes, the key question is deciding when the

disease has been eradicated so that wildlife vector

control can be stopped. The problem is that the ab-

sence of evidence of disease does not necessarily in-

dicate the absence of disease, particularly where little

effort has been made to collect evidence. All else being

equal, the most cost-effective eradication programme
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would be one that stops as soon as the disease has

been eradicated. Quantifying the probability of suc-

cess (i.e. freedom from disease) is crucial in achieving

that. Confidence in disease freedom increases with

increasing survey effort with negative outcomes across

a population. Using surveillance data to predict

the probability of disease freedom could reduce the

likelihood of prematurely declaring success due to

insufficient control and, conversely, could also help

avoid incurring unnecessary costs by continuing to

fund wildlife vector control long after the disease has

been eradicated from an area.

Where surveillance is undertaken to assess the

probability that a disease has been eradicated from a

host population, the disease will either be confirmed

as still present or no disease will be detected. Given

negative surveillance results, standard disease survey

models for livestock use classical sampling theory to

assess the likelihood that a population is free of the

disease at a specified prevalence [11–13]. Surveying

and declaring disease freedom in wildlife is more

difficult. Accurate and precise information on popu-

lation size (or proportion sampled) and spatial distri-

bution is expensive to obtain and therefore often

inadequate. Further, infected populations are often

greatly reduced as part of a disease control pro-

gramme, making it difficult to capture and test hosts

even with substantial capture effort, resulting in little

information on the population disease status.

In this paper, we describe and demonstrate a spatial

model of wildlife disease-surveillance data for pre-

dicting the probability of freedom that uses two

alternatives to direct sampling of host populations,

and hence avoids the estimation of population size

and distribution. First, we incorporate an empirically

derived probability of host capture that allows a

spatially explicit estimate of the probability of disease

detection from zero-capture data (i.e. where an effort

was made to capture a host but none were captured).

Second, we use location data of captured sentinel

animals in conjunction with an estimated probability

of disease transmission from an infected host to the

captured sentinel. We use the term ‘host ’ throughout

the paper to mean a true reservoir species capable of

independently sustaining the disease of interest [14],

and the term ‘sentinel ’ to refer to spillover species

that become infected (and so provide a signal of dis-

ease presence) but do not play a major role sustaining

the disease [15–17].

A virtual grid-cell system is super-imposed over the

landscape of interest and the probability of detecting

the disease is quantified in each grid cell assuming that

the home-range centre of an infected host is in the grid

cell. Both sentinels and host-capture devices (e.g.

traps) are considered to have ‘searched’ one or more

grid cells for disease as a function of home-range size

of sentinels and hosts, respectively, and the prob-

ability of disease detection increases with increasing

numbers of sentinels surveyed and with increasing

effort attempting to capture hosts. The predicted

probabilities of detection in each of the grid cells are

aggregated up to the landscape using a hierarchical

approach that accounts for spatial coverage and

spatial relative risks (e.g. due to habitat hetero-

geneity [18]).

To illustrate this modelling approach, we used

surveillance data from the current programme aimed

at eradicating bovine tuberculosis (bTB; caused by

Mycobacterium bovis) from parts of New Zealand

[19]. bTB is a globally widespread zoonotic disease of

cattle and other livestock, and in New Zealand the

introduced brushtail possum (Trichosurus vulpecula)

has emerged as the primary wildlife reservoir [20–22].

In addition, wild ferrets (Mustela furo [23–25]), pigs

(Sus scrofa [26]) and red deer (Cervus elaphus scoticus

[27, 28]) have often been found infected but are re-

garded as spillover hosts at the densities at which they

occur in the wild so can be used as sentinels [17].

Specifically, we address three objectives : (1) to de-

scribe the probabilistic relationships in the spatial

surveillance-data model for quantifying the prob-

ability of bTB eradication in possums based on host-

and sentinel-surveillance effort; (2) to assess sensi-

tivity of model predictions to model parameters and

spatial relative risks ; and (3) to quantify the prob-

ability of bTB freedom following a localized eradi-

cation operation in Blythe Valley, New Zealand using

host- and sentinel-surveillance data, and incor-

porating spatial relative risks.

While we focus on a single system (bTB in pos-

sums), the issues encountered here are potentially

applicable to many other systems where eradication is

a realistic goal [6, 8–10] and surveys do not detect the

disease. New Zealand currently spends NZ$82 million

annually in an effort to control and eradicate bTB [19].

Although the disease incidence in livestock herds has

been reduced by >95% since 1994, with just 0.2% of

herds currently infected, about 40% of New Zealand

(y10 million ha) is still designated as being vector

risk areas in which bTB might still persist in wild

possums that could potentially re-infect livestock.

As a step toward nationwide biological eradication

1510 D. P. Anderson and others

https://doi.org/10.1017/S095026881200310X Published online by Cambridge University Press

https://doi.org/10.1017/S095026881200310X


of the disease, the current objective of bTB manage-

ment is to achieve and objectively demonstrate, by

2025, bTB freedom in 2.5 million ha of vector risk

areas. Meeting this objective requires a way of quan-

titatively estimating the probability of freedom for

specified areas, a need that prompted the development

of the spatial model of wildlife disease-surveillance

data.

METHODS

Predicting probability of freedom from bTB in a

wild possum population

Possums are a small (2–3 kg) marsupials that were

introduced from Australia and are now found in most

parts of New Zealand. They are predominantly ar-

boreal folivores and tend to be most abundant in

forest (where densities of 5–10/ha are not uncommon)

but occur in most other habitats except completely

open large areas where there is little or no shrub or

tree cover (such as extensive cropland). Infected po-

pulations usually have a low prevalence of bTB

(1–2% [20]) and are usually surveyed for disease

presence using leg-hold trapping.

While our predictive modelling of the probability of

disease freedom is novel, it is analogous to the well-

established scenario-tree modelling for predicting

disease freedom [11–13]. Our modelling approach is

organized such that the basic sampling unit is a spatial

grid cell that is one of a grid-cell system superimposed

on the area of interest (extent). Following a survey in

which disease is not detected (Sx ; negative surveil-

lance), the probability of bTB freedom for the full

extent at time t, P(free|Sx)t, is calculated as a function

of the sensitivity of the surveillance system (SSet), or

the probability of detecting bTB given an infected

possum is present in at least one grid cell. Assuming

that false-positive results are not possible (we cannot

find bTB if it is not present), Bayes theorem is used to

estimate a posterior distribution of P(free|Sx)t :

P(freejSx)t=
P(free)t

1xSSet(1xP(free)t)
, (1)

where P(free)t is the prior probability of freedom for

the full extent, which can be derived from previous

analyses, expert opinion or drawn from a non-

informative distribution [e.g. uniform (0,1)]. The

P(free)t and SSet are distributions from which

we sample to obtain the posterior distribution

P(free|Sx)t. The prior is updated annually, so that the

P(free|Sx)t becomes the following year’s prior

[P(free)t+1]. If present, the risk of introduction

[P(intro)t] from adjacent areas can also be incorpor-

ated into the annual updating of the priors :

P(free)t=P(freejSx)tx1* (1xP(intro)t), (2)

The SSet is calculated by combining all cell-level sen-

sitivities (SeUi ; probability of detecting bTB in grid

cell i given it is present). The probability of finding an

infected grid cell in any order is given by a hypergeo-

metric distribution [29], which is achieved by sam-

pling without replacement each grid cell with its

associated SeUi. To increase computational efficiency,

we used a binomial approximation to the hypergeo-

metric distribution to calculate SSet [29] :

SSet=1x 1xSeUavg*
n

N

� �P*
u�N

, (3)

where SeUavg is the average grid-cell sensitivity of

sampled cells, n is the number of grid cells sampled, N

is the total number of grid cells across the full extent,

and Pu* is the grid cell-level prior or design prevalence

[12, 13]. The Pu* is not related to the actual prevalence

of disease and is used to determine the amount of

surveillance necessary to achieve the eradication goal

[13]. The Pu* is expressed as the minimum proportion

of the total number of grid cells expected to be in-

fected if the extent of interest is in fact infected. We

use equation (1) to test the hypothesis that that

population (of grid cells) is infected at the design

prevalence. If we obtain a high P(free|Sx)t, the like-

lihood of this hypothesis is low and we can conclude

that the population is not infected at or above the

design prevalence, but we cannot conclude that it is

not infected with a prevalence less than Pu*. Conse-

quently, to obtain a posterior probability of absolute

freedom, the Pu* must be 1/N (i.e. no grid cells contain

the home-range centre of an infected possum).

In equation (3), all grid cells are considered to have

equal risk of being infected. If the landscape is het-

erogeneous in terms of habitat suitability for possums

or from population control history, then not all grid

cells would be expected to have equal risk of infection.

Put simply, and in the extreme, if grid cells with a

particular habitat do not contain any possums, then

bTB cannot be present in those grid cells. Incor-

porating cell-specific relative risks of infection into the

calculation of the SSet is achieved with the following

equation:

SSet=1x 1xSeUavg � n
N

� �EPIavg�N
, (4)
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where

EPIavg=
P*
u

Pn
k=1 ARi

n
, (5)

and ARi is the adjusted risk for grid cell i. The EPIavg

is the effective probability of infection and represents

the probability that one of the sampled grid cells is

infected. The ARi is calculated as:

ARi=N �RRi=
XN

k=1
RRk, (6)

where RRi is the relative risk for grid cell i. The RRi

are specified relative to the lowest risk grid cell within

the spatial extent of interest. If a habitat preference

map is used, then high map values suggest relatively

high numbers of possums and associated high risk of

bTB relative to habitat areas with low preference. The

RRi values can be calculated from a possum habitat

map as follows:

RRi=
habitati

min (habitat)
, (7)

where habitati is the value that summarizes the habi-

tat preference for grid cell i.

Possum traps and captured sentinels provide

information on the probability that bTB is present.

We assume that if a possum population is infected,

then sympatric spillover hosts such as pigs, ferrets,

and deer will also become infected at some level.

Sampling of ‘sentinel ’ species therefore provides in-

formation on the probability that bTB is in the area.

Similarly, if an infected possum was present in an

area and the area was surveyed using traps, there

is a joint probability that it would be captured

and that bTB infection would be detected. Thus,

provided no bTB is found, the trapping outcomes also

provide information on the probability that bTB is

present in possums in the area, regardless of whether

or not a possum was actually captured (provided all

possums captured within a survey are found to be

negative).

Our objective is to use possum traps and sentinels

to quantify the probability of detecting bTB in a grid

cell given that it is present. We assume that each

possum trap j or captured sentinel j ‘ searches’ for

bTB in multiple grid cells as a function of home-range

size and other parameters (see details below). The

SeUi is calculated as a function of the search effort

from one or more traps and sentinels :

SeUi=1x
Yj

J=1
(1xSeUij), (8)

where SeUij is sensitivity of trap/sentinel j detecting

bTB in grid cell i. The mechanisms by which possum

traps and captured sentinels detect disease in a grid

cell are distinct, and therefore we model separately the

contribution that these two groups make to grid-cell

sensitivities.

The contribution to the SeUi that is made by a

single trap (whether a possum was trapped or not) is

simply the product of the probability of capture

[P(capture)ij] of a possum from cell i in trap j, and the

probability that the diagnostic test will detect bTB in

an infected animal [P(test+)] :

SeUij=P(capture)ij P(test
+): (9)

The probability of capture of an infected possum,

and therefore the contribution that a trap makes to

the sensitivity of a given grid cell will decrease with

increasing distance between the trap and the grid cell.

We emphasize that equation (9) represents the sensi-

tivity of surveillance using traps, therefore the prob-

ability of capture is applied to all traps regardless

of whether possums are captured (provided that cap-

tured possums are tested and found to be negative).

The probability of trap j capturing an infected

possum that has its home-range centre in cell i is

calculated as:

P(capture)ij=1x 1xg0 exp
xd2ij
2s2

� �� �nights
, (10)

where dij is the distance between a given trap j and cell

i, g0 is the probability of capturing a possum if the

trapping device is placed at the animal’s home-range

centre [30], s is the spatial-decay parameter for a

home-range kernel [30], and nights represents the

number of nights that a trap is set and checked.

Consequently, the estimated search effort of a given

possum trap for bTB in grid cells is assumed to decay

spatially from the trap location with a half-normal

kernel up to a maximum distance of twice the radius

of a typical possum home range from the trap (4s).

For spillover sentinels, we assume that individuals

are killed and necropsied with an estimated prob-

ability of detection of the disease if the animal was

infected [P(test+)]. Unlike traps, we do not use

non-capture sentinel survey data in calculating the

contribution that captured sentinels make to the SeUi,

because we do not make any assumptions concerning

the presence of sentinels, nor do we have any data on

the probability of sentinel presence. Thus, because we

only use data from animals actually sampled, it is not
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necessary to include the probability of capturing sen-

tinels, as we did with possums. We model the prob-

ability of detecting bTB in possums in grid cell i using

a captured sentinel at location j, therefore we must

include the uncertainty associated with the prob-

ability of disease transmission from an infected pos-

sum in a given grid cell to the sampled sentinel. The

probability of a sentinel becoming infected in a given

grid cell decreases with increasing distance from

the point of capture. The contribution that a captured

sentinel j makes to the sensitivity of a given grid

cell i is :

SeUij= 1x 1xl0 exp
xd2ij
2s2

� �� �age" #
P (test+), (11)

where l0 is the probability that a sentinel becomes

infected given that the sentinel’s home-range centre is

at or very near the home-range centre of an infected

possum, and age is the estimated age of the sentinel

in years at the time of capture. The exponential

term reduces the probability of becoming infected

with increasing distance using a half-normal kernel

up to a maximum distance of twice the radius of a

typical sentinel home range from the capture location

(4s). This search area is selected because we do not

have information on the location of the home-range

centre. We estimated l0 by first calculating the aver-

age annual probability that a sentinel would be in-

fected by a single possum occurring within its home

range (Pa [31, 32], unpublished data). For each senti-

nel species and its associated s, l0 was the maximum

value (y intercept) of a half-normal distribution with

mean Pa.

Parameter sensitivity analysis

We conducted a sensitivity analysis of model par-

ameters to assess how variations in values influence

the resulting SSet. We evaluated each parameter

iteratively across a range of values while holding all

other parameters at default values (Table 1). To assess

relative parameter sensitivities, the estimated median

SSet was graphed against the proportional change in

parameter value (elasticity [33]). This analysis was

done on a simulated square 25-km2 landscape with a

grid-cell size of 1 ha, and no spatial relative risks were

present.

The grid-cell size defines the structure of the model

and is not a biological parameter, and the model

should not be sensitive to structural parameters. The

model and predictions of SSet will be insensitive to

grid-cell size if Pu* is adjusted to always be 1/N. This is

appropriate because the objective is to calculate

the probability of absolute freedom (i.e. no grid cells

contain the home-range centre of an infected pos-

sum). The Pu* was adjusted to be 1/N for each grid-cell

size in the sensitivity analysis (Table 2).

Last, we conducted a sensitivity analysis of trap

placement in landscapes with spatial relative risks of

bTB infection (RR). The 25-km2 landscape had a

baseline RR of 1 and was covered by a varying pro-

portion of a second habitat type (X; Fig. 1).

Estimated SSet values were graphed across a range of

proportions of traps in habitat X (0–100%). In the

first test, X was set to cover 50% of the landscape and

we compared estimated SSet values when RR(X)=
50, 10, 3.33 and 0 (i.e. no RR). The no-RR test was

conducted to explore the effect of non-even placement

Table 1. Default and range of parameter values used in sensitivity analysis of

the wildlife disease-surveillance model. Single parameter values were used,

and uncertainty was not incorporated into this analysis

Parameters Parameter description
Default
value

Sensitivity
range

s Home-range kernel 90 m 50–130

g0 Maximum probability of capture 0.13 0.05–0.25
l0# Maximum probability of

transmission
0.21 0.05–0.35

P(test+) Diagnostic sensitivity 0.95 0.55–0.95

Pu* Design prevalence 0.0004 0.0004–0.003
Grid-cell size Spatial resolution 1 ha 50–125

# Sensitivity analysis of l0 was conducted by randomly placing four pigs in
the landscape, as l0 only applies to spillover sentinel species. The default s value

used for pigs was 910 m, and all other relevant default parameters were as in this
table.
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of traps across the landscape. Next we examined the

effect of placing a range of proportion of traps in

habitat X when RR(X)=10 and the percentage of

cover of habitat X was 20% and 80%. Third, we as-

sessed the effect of placing a varying proportion of

250, 500, 1000 and 1500 traps in habitat X when

Table 2. Details and results of a sensitivity analysis of grid-cell size on a square 25-km2 simulated landscape with

50% coverage of a habitat X with a relative risk of 10

Grid-cell size (length of side) 50 m 75 m 100 m 125 m
Pu* 0.0001 0.00023 0.0004 0.00062
Number of cells 10000 4489 2500 1600

Number of infected cells 1 1 1 1

Proportion of traps

in habitat X SSet SSet SSet SSet CV

0 0.249 0.250 0.248 0.252 0.007
0.1 0.261 0.262 0.261 0.264 0.005

0.2 0.277 0.277 0.276 0.279 0.005
0.3 0.283 0.285 0.282 0.284 0.005
0.4 0.287 0.289 0.287 0.288 0.003

0.5 0.286 0.288 0.287 0.286 0.003
0.6 0.289 0.291 0.289 0.288 0.004
0.7 0.284 0.287 0.285 0.283 0.006

0.8 0.280 0.282 0.281 0.279 0.005
0.9 0.282 0.284 0.282 0.280 0.006
1.0 0.379 0.383 0.380 0.381 0.004

Four different grid-cell sizes and associated Pu* values across a varying range of proportion of traps in habitat X were
explored. The SSet was calculated for each trial and the coefficient of variation (CV) was calculated across trials with different

grid-cell sizes. A lack of effect of grid-cell size is indicated by low CV values for trials across grid-cell sizes (across rows). As
expected, SSet increases with increasing percentage of landscape covered by traps (down columns).

1·0

0·8

0·6

0·4

0·2

0·0

0 1 2 3

Proportional change in parameter

S
ys

te
m

 s
en

si
tiv
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4 5 6

P *
u

P (test+)
σ
g0
λ0

Fig. 1. The estimated median SSet was graphed against the proportional change in parameter value (elasticity) to assess the
relative sensitivities of parameters. This analysis was done on a simulated square 25-km2 landscape with a grid-cell size of
1 ha, and no spatial relative risks were present.
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RR(X)=10 and habitat X covered 50% of the land-

scape.

Case study: Blythe Valley

Blythe Valley is an y13000-ha bTB vector control

zone in the South Island of New Zealand (173.287x,

x42.954x), in which NZ$0.6 million was spent on

reducing possum and ferret populations from 2000

to 2009. The area is comprised of pastureland with a

mosaic of patches of shrubland and forest, which were

the main possum habitat. The surveillance data con-

sisted of 81, 2382, 2642 and 2054 possum traps,

and 18, 53, 34 and 37 ferrets captured in the years

2006–2009, respectively. The number of possums

killed annually decreased from>3700 in 2000 to 17 in

2009. No bTB has been detected in possums or ferrets

since 2004. We applied the spatial bTB surveillance

model to possum-trapping and sentinel ferret-

necropsy data during the period 2006–2009 to predict

the probability of bTB freedom. Although no capture

data exist for pigs, we simulated three pig captures

per year at random locations in the Blythe Valley for

comparative purposes and to illustrate the effect of

using multiple data sources on bTB-freedom predic-

tions.

We set grid-cell size to 1 ha and Pu* to 1/N

(0.000077). Grid-cell size should be smaller than the

expected possum home-range size, and 1 ha was ap-

propriate given that forest-dwelling possums at low

density have mean home-range sizes ofy9 ha [34]. To

examine the effect of including habitat-based relative

risks in the surveillance modelling, we used a predic-

tive spatial model of possum-carrying capacity based

on 36 vegetation classes [35]. Relative risk values in

our study area varied from 1 to 24.

We accounted for uncertainty in model parameters

by repeating the model 500 times, and with each iter-

ation new parameter values were drawn for each

possum trap or sentinel from the respective distribu-

tions (Table 3). The spatial-decay parameters (s) were

drawn from a normal distribution with a mean and

standard deviation for each species (Table 3). The

parameters g0, l0, and P(test+) were drawn from beta

distributions where a and b were derived from a mean

and standard deviation (Table 3). The initial prior

probability of freedom was drawn in each iteration

from a beta distribution derived from a mean=0.5

and standard deviation of 0.2. Given that the inten-

sive possum control history had probably resulted in

a >95% reduction in the possum population over

the 2000–2006 period, this is a highly ‘pessimistic ’ or

conservative prior as modelling predicts that sus-

tained reduction in possum density of this magnitude

is likely to quickly eliminate bTB from possum

populations (see [36]).

The posterior P(free|Sx)t distribution created by

500 model iterations encompasses parameter uncer-

tainty, which is expressed as credible intervals (CIs).

Given uncertainty in model predictions, it is critical to

evaluate both the central tendency and the spread of

the predictions. We assessed the posterior distribu-

tions by evaluating the median, 90% CIs, and the

credible interval value (CIV [37]). The CIV examines

the posterior distribution by asking what proportion

of the posterior probability of freedom is>0.90 (CIV

threshold), thus incorporating both the central tend-

ency and the spread in the distribution. Using a CIV

threshold of 0.90, we compared results of the Blythe

Valley analysis to a target CIV value of 0.95, or the

probability that 95% of the posterior P(free|Sx)t
distribution is >0.90.

RESULTS

The parameter sensitivity analysis demonstrated that

variation in home-range size (i.e. s) has the strongest

effect on SSet, as indicated by the steepest slope in the

Table 3. Mean and standard deviation of distributions for parameters used in surveillance-data modelling in the

Blythe Valley case study

Species

Mean

s
S.D.

s
Mean

g0

S.D.

g0

Mean

P(test+)

S.D.

P(test+)

Mean

l0

S.D.

l0

Possum 90*# 8 0.13* 0.05 0.95 0.10 n.a. n.a.
Ferret 287* 10 n.a. n.a. 0.95 0.10 0.081· 0.05
Pig 910* 25 n.a. n.a. 0.95 0.10 0.21$ 0.10

s, Home-range size parameter ; g0, probability of capture at home-range centre ; P(test+), diagnostic sensitivity ; l0, prob-

ability of disease transmission from a possum to a sentinel with home-range overlap; n.a., not applicable.
Source of parameter values : * [40], # [34], $ [32], · unpublished data.
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graph of SSet against proportion change in parameter

values (Fig. 1). Design prevalence (Pu*) was the

next most influential, followed by test sensitivity

[P(test+)], probability of capture at home-range

centre (g0), and probability of infection at home-range

centre (l0). We illustrated the effects of high par-

ameter sensitivity by plotting the SeUi for randomly

located possum traps, ferrets and pigs in the Blythe

Valley study area (Fig. 2). The bTB detection capa-

bilities of the different methods (possum traps, senti-

nel ferrets, pigs) vary because of their associated

parameters. Possums have relatively small home ran-

ges compared to pigs and ferrets (s in Table 3),

therefore possum traps have relatively high grid

cell-level sensitivity but in a limited area (Fig. 2a),

resulting in a patchy search coverage for bTB. Pigs

are effective sentinels because they have large home

ranges (Fig. 2c). Ferrets ‘search’ areas of intermedi-

ate size, but the associated grid cell-level sensitivity

is lower than for pigs because of the relatively low l0
(Table 3, Fig. 2b).

The sensitivity analysis of SSet demonstrated

that when Pu* was maintained at 1/N, the model

predictions did not change with varying grid-cell

size (Table 2). The coefficient of variation was<0.008

across trials with different grid-cell sizes and pro-

portion of traps in a habitat that covered 50% of the

area and had a RR of 10 (habitat X) vs. the baseline

risk of 1.

Several important patterns emerged from the

sensitivity analysis of trap placement in simulated

landscapes with spatial relative risks (Fig. 3). First,

there was usually a local maximum in the SSet when

detection devices (possum traps in this case) were

distributed evenly across the landscape and this was

most evident when there was no spatial variation in

bTB risk (RR=0; Fig. 3b). Second, there was a pro-

nounced increase in the SSet when most or all of the

traps were placed in the high-risk habitat (habitat X;

Fig. 3b–d). Third, the SSet decreased when a very low

proportion of traps were located in the high RR area

(Fig. 3b–d). Fourth, when the RR values in habitat X

were varied, the respective decrease and increase in

SSet with low and high proportions of traps in habitat

X were related to the RR value (Fig. 3b). Fifth, the

rate of increase in SSet when most or all the traps

were placed in habitat X increased with decreasing

percent coverage of habitat X (Fig. 3c). Last, the local

maximum of SSet with even distribution of traps in-

creased with increasing number of traps, or the ability

to search the entire landscape (Fig. 3d). The only ex-

plored scenario in which the overall maximum of SSet
occurred at even-trap distribution was when 1500

were deployed (complete coverage). In contrast, there

was no local maximum at even-trap distribution when

there were only 250 traps (i.e. very low coverage).

The Blythe Valley case study demonstrated how

multiple data sources influence the SSet and posterior

P(free|Sx)t (Table 4). When possum-trapping data

were analysed alone, the CIV value in 2009 (0.94) fell

just short of the target value of 0.95. The addition of

ferret capture data increased the SSet and P(free|Sx)t
for all years, and the CIV value exceeded the target in

2009. The SSet and P(free|Sx)t increased further for

all years with the addition of just three pig captures

per year, but the addition of spatial relative risks had

little impact on the posterior distributions and the

CIV.
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Fig. 2.Maps of grid-cell sensitivities (SeUi) across the Blythe
Valley study area for randomly generated locations for (a)
200 possum traps, (b) 20 ferrets, and (c) five pigs. The black

dots are trap locations and the colour scale from green to
off-white represents decreasing SeUi values.
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DISCUSSION

We have described and demonstrated a novel spatial

model of wildlife disease-surveillance data for pre-

dicting the probability of freedom in a wildlife popu-

lation. By using a spatial grid cell as the basic unit

of disease surveillance instead of individual animals,

any need to quantify population size and distribution

is avoided. Further, data from disparate and un-

related sources, such as sentinel surveillance and

host-trapping data (including non-captures), can be

combined because sentinels and host capture devices

both ‘search’ the spatial grid cells for the disease. The

major advantage of the modelling approach presented

here is that while all captured animals are tested for

disease, it takes advantage of disease-surveillance ef-

fort that does not capture host animals. While possum

traps were used here, a variety of animal-capture and

disease-detection methods could be used in which

surveillance effort is quantified but wildlife hosts are

not always captured.

Our analysis revealed that SSet was sensitive to

variation in model parameters, and consequently

the composition of disease-detection methods and the

specified parameter values will have a large influence

on model predictions. The SSet was most sensitive to

s, which intuitively indicates that SSet increases

with increasing search area of the device or sentinel.

Given the high sensitivity to s, it is important to

have accurate parameter estimates for the area under

examination, as home-range sizes vary with popu-

lation density and habitats [34, 38, 39].

When present for capture, pigs are very efficient

sentinels because they have large home ranges [39]

and readily acquire the disease if infected possums are

present [15]. This was evident in the Blythe Valley

analysis in which an addition of only three pigs per

year resulted in substantial increases in SSet (Table 4).
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Fig. 3.Design and results of sensitivity analysis of varying trap distribution in simulated landscapes with spatial relative risks
(RR). This analysis was performed on a square 25-km2 landscape with a grid-cell size of 1 ha, a baseline RR of 1, and a
varying RR value in habitat X (a). In the example shown here (a), 20% of the possum traps are in habitat X, which makes up

50% of the landscape. The grid cell-level sensitivities range from >0.8 (green) to 0 (off-white). In this analysis we varied the
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While possum traps can only capture possums from

within a small area (because possums do not range

widely), they survey that small area with a high sen-

sitivity. The implication is that where possum traps

are used for bTB surveillance, the traps must be

closely spaced over a large area to ensure adequate

spatial coverage, which requires many traps. While

that can be expensive, intensive trapping is also often

used to keep the possum population under control,

in which case the use of trapping data for disease

surveillance could be regarded as ‘free ’ information.

Another key advantage of our approach is that pos-

sum-trapping surveys have the same influence on SSet
regardless of how many possums are captured, pro-

vided that none of captured possums are found to be

infected. Of the three survey methods demonstrated

here, the modest number of ferret sentinels available

made a much smaller contribution to increasing

the SSet for detecting the disease than did the possum-

trapping surveys in the 2007–2009 period. In 2007,

the possum-trapping survey cost NZ$42 750, whilst

the ferret survey cost NZ$28 500, suggesting that

for this area possum trapping provided more cost-

effective bTB surveillance. Pigs are rare or absent in

Blythe Valley, but if it were socially acceptable and

posed minimal ecological risk, the release of sentinel

pigs (as has been done elsewhere [15]) could be more

cost-effective than possum trapping.

The second most influential parameter on SSet was,

which is not subject to uncertainty. Where absolute

eradication is the goal, Pu* should be set to 1/N so that

the probability that one or more units are infected

given negative surveillance results can be quantified.

In contrast, if Pu* is set to 4/N, for example, the model

calculates the probability that o4 grid cells are in-

fected, but tells us nothing about the probability of

f3 grid cells being infected given negative surveil-

lance. The Pu* is inextricably linked to and must be set

relative to the grid-cell size, which together determine

the expected number of infected grid cells that the

surveillance system is attempting to detect [ex-

ponential terms in equations (3) and (4)].

Predictions of SSet were also sensitive to P(test+),

g0 and l0, which are subject to uncertainty, and model

predictions can be made more accurate by improving

our estimates of these parameters. Technological

advances that enhance diagnostic test sensitivity

[P(test+)] and rates of possum interaction with traps

(g0) will increase SSet predictions for a given survey

effort, making it easier to declare disease freedom.

Table 4. Results of surveillance-data modelling of Blythe Valley data from 2006 to 2009. Shown are the median, 5th

and 95th quantiles of P(free|Sx)t and SSet, and the credible interval value (CIV) for P(free|Sx)t for each year and

trial

Year
P(free|Sx)t
median

P(free|Sx)t
5th quantile

P(free|Sx)t
95th quantile CIV

SSet
median

SSet
5th quantile

SSet
95th quantile

Possums only

2006 0.515 0.342 0.691 0.000 0.026 0.024 0.028
2007 0.733 0.567 0.853 0.000 0.618 0.613 0.622
2008 0.883 0.789 0.942 0.350 0.654 0.649 0.659
2009 0.945 0.898 0.972 0.940 0.594 0.590 0.600

Possums and ferrets

2006 0.525 0.343 0.666 0.000 0.043 0.039 0.048
2007 0.749 0.586 0.840 0.010 0.635 0.631 0.640
2008 0.894 0.805 0.936 0.430 0.666 0.661 0.670

2009 0.951 0.905 0.971 0.960 0.608 0.603 0.614

Possums, ferrets and pigs

2006 0.537 0.380 0.689 0.000 0.110 0.078 0.156
2007 0.776 0.643 0.867 0.025 0.668 0.653 0.685

2008 0.916 0.849 0.951 0.695 0.693 0.682 0.708
2009 0.965 0.935 0.981 1.000 0.639 0.625 0.656

Possums, ferrets, pigs and relative risks

2006 0.521 0.340 0.685 0.000 0.091 0.070 0.118

2007 0.753 0.599 0.858 0.000 0.651 0.637 0.668
2008 0.905 0.826 0.950 0.575 0.697 0.684 0.710
2009 0.961 0.927 0.977 0.995 0.642 0.628 0.659
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Results of the sensitivity analysis of trap

placement in simulated landscapes with spatial rela-

tive risks reflect a trade-off between maximizing

coverage of the landscape and focusing search effort

in high-risk habitats. Intuitively and quantitatively

a high proportion of the landscape must be sampled

to obtain a sufficiently high SSet. In our analysis we

explored very simple dichotomous landscapes that

had low and high relative risks, consequently we

cannot comment on how the distribution of search

effort would influence predictions in more complex

landscapes. Regardless, including relative risks in

the modelling should improve the accuracy in the

posterior P(free|Sx)t. When relative risks are incor-

porated, the predicted SSet can increase if most de-

tection effort is in high-risk areas, or decrease if effort

is disproportionately in low-risk areas (Fig. 3b). In

our analysis of Blythe Valley, the inclusion of relative

risks had little impact on the model predictions,

probably due to the detection effort being well dis-

tributed and low percentage coverage of risky habitat

(Fig. 3b, c).

Confidence in model predictions is contingent

on the accuracy of model parameters. The modelling

approach deals with this weakness by incorporating

uncertainty in parameters and propagating it

through to the predicted posterior probabilities of

disease freedom. Even in the presence of high uncer-

tainty in model parameters, if search effort is suf-

ficient, a high predicted probability of freedom should

be obtained. We emphasize the importance of inter-

preting the central tendency and the spread or uncer-

tainty in the posteriors by using the CIV [37]. While

the CIV requires an arbitrary threshold, it is a com-

prehensive measure of the magnitude of the posterior

probability of freedom and our confidence in predic-

tions.

We expect that the accuracy of the possum-bTB

surveillance-data model presented here will increase

over time, as a result of research currently being

conducted. New empirical data will help to refine

model parameters, and model validity will increase

with testing model predictions against numerous

eradication efforts. Specifically, empirical studies are

underway to improve our understanding of possum

and sentinel home-range size under a variety of con-

ditions, the probability of capturing hosts (possums)

with a variety of devices, and the probability of sen-

tinels becoming infected given the presence of infected

hosts in their home range. Given the demonstrated

importance of spatial relative risks of disease,

improving our ability to quantify spatial relative risks

will also improve model accuracy.

Wildlife disease eradication is difficult but can be

possible if sufficiently intensive disease control mea-

sures, such as host culling, can be applied at broad

scales for long enough to eliminate the disease [6–10].

The spatial model of wildlife disease-surveillance

data presented here provides a new way of evaluating

the probability that eradication has actually been

achieved in a specified area. This provides a way of

objectively deciding when it is safe to cease disease

control measures in a local area, so that resources can

be re-allocated to areas where the disease is poten-

tially still present. The model can also be used to de-

termine the optimal spatial arrangement of surveys

and forecast the effort necessary to declare success.

Cost estimates to justify budgets or to assess feasi-

bility within the constraints of limited budgets can be

obtained by using the model to evaluate and plan

eradication programmes. The practicality of broad-

scale eradication can be tested by aiming for and

quantitatively demonstrating disease freedom in lim-

ited-area proof-of-concept zones, such as is being at-

tempted in New Zealand [19]. If eradication can be

achieved in specified areas, projections of required

efforts, time and costs for large areas can be esti-

mated. While the case-study analysis presented here

was applied at the level of a landscape-scale oper-

ational area, the probability of freedom could also

easily be assessed for multiple vector-risk areas, whole

regions, or even an entire country; although this

would require additional hierarchical levels in the

model to account for disease clustering at broad scales

[11–13].
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