## GENERATING FUNCTIONS FOR BESSEL FUNCTIONS

LOUIS WEISNER

1. Introduction. On replacing the parameter $n$ in Bessel's differential equation

$$
\begin{equation*}
x^{2} \frac{d^{2} v}{d x^{2}}+x \frac{d v}{d x}+\left(x^{2}-n^{2}\right) v=0 \tag{1.1}
\end{equation*}
$$

by the operator $y(\partial / \partial y)$, the partial differential equation $L u=0$ is constructed, where

$$
\begin{equation*}
L=x^{2} \frac{\partial^{2}}{\partial x^{2}}+x \frac{\partial}{\partial x}-y^{2} \frac{\partial^{2}}{\partial y^{2}}-y \frac{\partial}{\partial y}+x^{2}=\left(x \frac{\partial}{\partial x}\right)^{2}-\left(y \frac{\partial}{\partial y}\right)^{2}+x^{2} \tag{1.2}
\end{equation*}
$$

This operator annuls $u(x, y)=v(x) y^{n}$ if, and only if, $v(x)$ satisfies (1.1) and hence is a cylindrical function of order $n$. Thus every generating function of a set of cylindrical functions is a solution of $L u=0$.

It is shown in $\S 2$ that the partial differential equation $L u=0$ is invariant under a three-parameter Lie group. This group is then applied to the systematic determination of generating functions for Bessel functions, following the methods employed in two previous papers (4;5).
2. Group of operators. The operators

$$
A=y \frac{\partial}{\partial y}, B=y^{-1} \frac{\partial}{\partial x}+x^{-1} \frac{\partial}{\partial y}, C=-y \frac{\partial}{\partial x}+x^{-1} y^{2} \frac{\partial}{\partial y}
$$

satisfy the commutator relations $[A, B]=-B,[A, C]=C,[B, C]=0$, and therefore generate a three-parameter Lie group. From these relations and the operator identity

$$
\begin{equation*}
-x^{-2} L=B C-1, \tag{2.1}
\end{equation*}
$$

where $L$ is the operator (1.2), it follows that $A, B, C$ are commutative with $x^{-2} L$ and therefore convert every solution of $L u=0$ into a solution. In particular

$$
\left\{\begin{array}{l}
A J_{n}(x) y^{n}=n J_{n}(x) y^{n}, A J_{-n}(x) y^{n}=n J_{-n}(x) y^{n},  \tag{2.2}\\
B J_{n}(x) y^{n}=J_{n-1}(x) y^{n-1}, B J_{-n}(x) y^{n}=-J_{-n+1}(x) y^{n-1}, \\
C J_{n}(x) y^{n}=J_{n+1}(x) y^{n+1}, C J_{-n}(x) y^{n}=-J_{-n-1}(x) y^{n+1}
\end{array}\right.
$$

where $n$ is an arbitrary complex number.

[^0]The operator 1 generates the trivial group $x^{\prime}=x, y^{\prime}=t y,(t \neq 0)$, which is used for purposes of normalization. The extended form of the group generated by the commutative operators $B, C$ is described by

$$
\begin{equation*}
e^{b B+c C} f(x, y)=f\left([(x-2 c y)(x+2 b / y)]^{\frac{1}{2}},[y(x y+2 b) /(x-2 c y)]^{\frac{1}{2}}\right), \tag{2.3}
\end{equation*}
$$

where $b$ and $c$ are arbitrary constants and $f(x, y)$ an arbitrary function, the signs of the radicals being chosen so that the right member reduces to $f(x, y)$ when $b=c=0$. If $f(x, y)$ is annulled by $L$, so is the right member of (2.3).

## 3. Generating functions annulled by operators of the first order.

Since $J_{\nu}(x) y^{\nu}$ is annulled by $L$ and $A-\nu$, it follows from the operator identity

$$
e^{b B+c C} A e^{-b B-c C}=A+b B-c C
$$

(4, p. 1035) and (2.3) that

$$
\begin{align*}
G(x, y) & =e^{b B+c C} J_{\nu}(x) y^{\nu}  \tag{3.1}\\
& \left.=(x y+2 b)^{\frac{1}{2} \nu}\left(x y^{-1}-2 c\right)^{-\frac{1}{2} \nu} J_{\nu}([x-2 c y)(x+2 b / y)]^{\frac{1}{2}}\right)
\end{align*}
$$

is annulled by $L$ and $A+b B+c C-\nu$. While any cylindrical function of order $\nu$ may be employed in place of $J_{\nu}(x)$, it is sufficient to confine attention to the Bessel functions of the first kind.

If $b=0$, we choose $c=1$, so that

$$
G(x, y)=(x y)^{\nu}\left(x^{2}-2 x y\right)^{-\frac{1}{2} \nu} J_{\nu}\left(\left[x^{2}-2 x y\right]^{\frac{1}{2}}\right)=\sum_{n=0}^{\infty} g_{n} J_{v+n}(x) y^{\nu+n} .
$$

The indicated expansion is justified by the observation that $(x y)^{-\nu} G(x, y)$ is an entire function of $x$ and $y$. Since $G$ is annulled by $A-C-\nu$, we find, with the aid of (2.2), that $g_{n-1}=n g_{n}(n=1,2, \ldots)$. Multiplying $G$ by $(x y)^{-v}$ and then setting $x=0$, noting that

$$
\begin{equation*}
\left.x^{-\nu} J_{\nu}(x)\right]_{x=0}=\frac{1}{2^{\nu} \Gamma(\nu+1)}, \tag{3.2}
\end{equation*}
$$

we have $g_{0}=1$; hence $g_{n}=1 / n$ !. Thus

$$
\begin{equation*}
x^{\nu}\left(x^{2}-2 x y\right)^{-\frac{1}{2} \nu} J_{\nu}\left(\left[x^{2}-2 x y\right]^{\frac{1}{2}}\right)=\sum_{n=0}^{\infty} J_{\nu+n}(x) y^{n} / n!, \tag{3.3}
\end{equation*}
$$

which may be identified with Lommel's first formula (3, p. 140).
If $c=0$, we choose $b=1$, whence

$$
\begin{align*}
G(x, y) & =\left(y^{2}+2 y / x\right)^{\frac{1}{2} \nu} J_{\nu}\left(\left[x^{2}+2 x / y\right]^{\frac{1}{2}}\right)  \tag{3.4}\\
& =(2+x y)^{\nu}\left(x^{2}+2 x / y\right)^{-\frac{1}{2} \nu} J_{\nu}\left(\left[x^{2}+2 x / y\right]^{\frac{1}{2}}\right) .
\end{align*}
$$

From the last expression it is evident that $G$ has a Laurent expansion about $y=0$ :

$$
G(x, y)=\sum_{n=-\infty}^{\infty} g_{n} J_{n}(x) y^{n}, \quad|x y|<2 .
$$

Since this function is annulled by $A+B-\nu$, we find, with the aid of (2.2), that $g_{n+1}=(\nu-n) g_{n}, \quad(n=0, \pm 1, \pm 2, \ldots)$. Setting $x=0$, we have $g_{0}=1 / \Gamma(\nu+1)$; hence $g_{n}=1 / \Gamma(\nu-n+1)$. Replacing $y$ by $y^{-1}$, we obtain

$$
\begin{equation*}
(x y)^{-\nu}\left(x^{2}+2 x y\right)^{\frac{1}{2} \nu} J_{\nu}\left(\left[x^{2}+2 x y\right]^{\frac{1}{2}}\right)=\sum_{n=-\infty}^{\infty} J_{n}(x)(-y)^{n} / \Gamma(\nu+n+1) \tag{3.5}
\end{equation*}
$$

$$
|2 y|>|x|
$$

Writing (3.4) in the form

$$
G(x, y)=(x y)^{\nu}(1+2 / x y)^{\nu}\left(x^{2}+2 x / y\right)^{-\frac{1}{2} \nu} J_{\nu}\left(\left[x^{2}+2 x / y\right]^{\frac{1}{2}}\right)
$$

it is evident that $(x y)^{-\nu} G$ is expressible as a power series in $y^{-1}$, convergent for $|x y|>2$. We obtain, after simplification,

$$
\begin{equation*}
(1+2 y / x)^{\frac{1}{2} \nu} J_{\nu}\left(\left[x^{2}+2 x y\right]^{\frac{1}{2}}\right)=\sum_{n=0}^{\infty} J_{\nu-n}(x) y^{n} / n!, \quad|2 y|<|x| \tag{3.6}
\end{equation*}
$$

which may be identified with Lommel's second formula (3, p. 140).
If $b c \neq 0$, it proves convenient to choose $b=\frac{1}{2} w, c=-\frac{1}{2} w$, whence

$$
\begin{array}{rlrl}
G(x, y) & =(w+x y)^{\frac{1}{2} \nu}(w+x / y)^{-\frac{1}{2} \nu} J_{\nu}\left(\left[w^{2}+x^{2}+w x\left(y+y^{-1}\right)\right]^{\frac{1}{2}}\right)  \tag{3.7}\\
& =\sum_{n=-\infty}^{\infty} g_{n} J_{n}(x) y^{n}, & |x y|<|w| .
\end{array}
$$

Replacing $y$ by $2 y / x$ and then setting $x=0$, we obtain, with the aid of (3.2),

$$
(1+2 y / w)^{\frac{1}{2} \nu} J_{\nu}\left(\left[w^{2}+2 w y\right]^{\frac{1}{2}}\right)=\sum_{n=0}^{\infty} g_{n} y^{n} / n!, \quad|2 y|<|w| .
$$

Comparing with (3.6), we infer that $g_{n}=J_{\nu-n}(w),(n=0,1,2, \ldots)$. Similarly, replacing $y$ by $x / 2 y$ and then setting $x=0$, we obtain

$$
w^{\nu}\left(w^{2}+2 w y\right)^{\frac{1}{2} \nu} J_{\nu}\left(\left[w^{2}+2 w y\right]^{\frac{1}{2}}\right)=\sum_{n=0}^{\infty} g_{-n}(-y)^{n} / n!.
$$

Comparing with (3.3) we conclude that $g_{-n}=J_{\nu+n}(w),(n=0,1,2, \ldots)$. Hence

$$
\begin{array}{rlrl}
(w+x y)^{\frac{1}{2} \nu}(w+x / y)^{-\frac{1}{2} \nu} J_{\nu}\left(\left[w^{2}+x^{2}+w x\left(y+y^{-1}\right)\right]^{\frac{1}{2}}\right) &  \tag{3.8}\\
& =\sum_{n=-\infty}^{\infty} J_{\nu-n}(w) J_{n}(x) y^{n}, & |x y|<|w|,
\end{array}
$$

which may be identified with Graf's addition theorem (3, p. 359) by substituting $y=-e^{-i \phi}$. Another expansion of (3.7), valid for $|x y|>|w|$, may be obtained from (3.8) by replacing $y$ by $y^{-1}$, interchanging $x$ and $w$, and multiplying by $y^{\nu}$.

We have now obtained, in normalized form, functions annulled by $L$ and differential operators of the first order of the form $r_{1} A+r_{2} B+r_{3} C+r_{4}$, where the $r$ 's are constants and $r_{1} \neq 0$. Generating functions annulled by $r_{2} B+r_{3} C+r_{4}$ are not included in (3.1) but may be derived independently.

Since $[B, C]=0$, we seek a solution of the simultaneous equations $(B-1) u$ $=0,(C-1) u=0$. This solution is annulled by $r_{2} B+r_{3} C+r_{4}$, normalized so that $r_{2}+r_{3}+r_{4}=0$. $\mathrm{By}(2.1)$ it is also annulled by $L$. We find the solution to be the familiar generating function

$$
\begin{equation*}
e^{\frac{1}{k} x(y-y-1)}=\sum_{n=-\infty}^{\infty} J_{n}(x) y^{n} \tag{3.9}
\end{equation*}
$$

of the Bessel functions of integral order.
4. Generating functions annulled by $A(B-C)+\frac{1}{2}(B+C)+4 \alpha-1$. By a suitable choice of new variables the equation $L u=0$ may be transformed into one solvable by separation of variables. A solution so obtained, if possessed of suitable analytic properties, provides a generating function for Bessel functions. We shall present several examples.

Choosing new variables

$$
\xi=\frac{1}{2} x\left(y^{-1}-y+2 i\right), \eta=\frac{1}{2} x\left(y^{-1}-y-2 i\right),
$$

the equation $L u=0$ is transformed into

$$
4 \xi \frac{\partial^{2} u}{\partial \xi^{2}}-4 \eta \frac{\partial^{2} u}{\partial \eta^{2}}+2 \frac{\partial u}{\partial \xi}-2 \frac{\partial u}{\partial \eta}-(\xi-\eta) u=0
$$

Four linearly independent solutions are obtained by separation of variables:

$$
\begin{aligned}
& u_{1}=e^{-\frac{1}{2}(\xi+\eta)}{ }_{1} F_{1}\left(\alpha ; \frac{1}{2} ; \xi\right)_{1} F_{1}\left(\alpha ; \frac{1}{2} ; \eta\right), \\
& u_{2}=\xi^{\frac{1}{2}} e^{-\frac{1}{2}(\xi+\eta)}{ }_{1} F_{1}\left(\alpha+\frac{1}{2} ; 3 / 2 ; \xi\right)_{1} F_{1}\left(\alpha ; \frac{1}{2} ; \eta\right), \\
& u_{3}=\eta^{\frac{1}{2}} e^{\frac{-1}{2}(\xi+\eta)}{ }_{1} F_{1}\left(\alpha ; \frac{1}{2} ; \xi\right)_{1} F_{1}\left(\alpha+\frac{1}{2} ; 3 / 2 ; \eta\right), \\
& u_{4}=(\xi \eta)^{\frac{1}{2}} e^{-\frac{1}{2}(\xi+\eta)}{ }_{1} F_{1}\left(\alpha+\frac{1}{2} ; 3 / 2 ; \xi\right)_{1} F_{1}\left(\alpha+\frac{1}{2} ; 3 / 2 ; \eta\right),
\end{aligned}
$$

where $\alpha$ is an arbitrary constant. These functions are also annulled by

$$
\begin{aligned}
4 \xi \frac{\partial^{2}}{\partial \xi^{2}} & +2 \frac{\partial}{\partial \xi}-\xi+1-4 \alpha \\
& =4 \xi(\xi-\eta)^{-2} L-A(B-C)-\frac{1}{2}(B+C)+1-4 \alpha
\end{aligned}
$$

where $A, B, C$ are the operators of $\S 2$, and hence by

$$
A(B-C)+\frac{1}{2}(B+C)+4 \alpha-1
$$

This operator provides recurrence relations for the coefficients of the expansions of the generating functions; but these relations will not be used.

When expressed in terms of $x$ and $y$, the function $u_{1}$ is seen to have a Laurent expansion about $y=0$ :

$$
\begin{aligned}
& e^{\frac{1}{2} x\left(y-y^{-1}\right)}{ }_{1} F_{1}\left(\alpha ; \frac{1}{2} ; \frac{1}{2} x / y-\frac{1}{2} x y+i x\right)_{1} F_{1}\left(\alpha ; \frac{1}{2} ; \frac{1}{2} x / y-\frac{1}{2} x y-i x\right) \\
& \quad=\sum_{n=-\infty}^{\infty} g_{n} J_{n}(x) y^{n} .
\end{aligned}
$$

Replacing $y$ by $2 y / x$ and then setting $x=0$, we have by (3.2)

$$
e^{y}\left[{ }_{1} F_{1}\left(\alpha ; \frac{1}{2} ;-y\right)\right]^{2}=\sum_{n=0}^{\infty} g_{n} y^{n} / n!
$$

By Kummer's formula,

$$
e^{y}\left[{ }_{1} F_{1}\left(\alpha ; \frac{1}{2} ;-y\right)\right]^{2}={ }_{1} F_{1}\left(\alpha ; \frac{1}{2} ;-y\right)_{1} F_{1}\left(\frac{1}{2}-\alpha ; \frac{1}{2} ; y\right) .
$$

The expansion of the right member in powers of $y$ may be obtained with the aid of Chaundy's formula

$$
{ }_{1} F_{1}(a ; c ;-y)_{1} F_{1}\left(a^{\prime} ; c^{\prime} ; y\right)=\sum_{n=0}^{\infty} \frac{(a)_{n}(-y)^{n}}{n!(c)_{n}}{ }_{3} F_{2}\left[\begin{array}{l}
a^{\prime}, 1-c-n ; 1 \\
c^{\prime}, 1-a-n
\end{array}\right]
$$

(2, p. 70). However, this expansion may be expressed in a more suitable form by means of the transformation formula

$$
\begin{aligned}
{ }_{3} F_{2}\left[\begin{array}{c}
\alpha_{1}, \alpha_{2}, \alpha_{3} ; 1 \\
\beta_{1}, \beta_{2}
\end{array}\right]= & \frac{\Gamma\left(\beta_{2}\right) \Gamma\left(\beta_{1}+\beta_{2}-\alpha_{1}-\alpha_{2}-\alpha_{3}\right)}{\Gamma\left(\beta_{2}-\alpha_{3}\right) \Gamma\left(\beta_{1}+\beta_{2}-\alpha_{1}-\alpha_{2}\right)} \\
& \times{ }_{3} F_{2}\left[\begin{array}{c}
\beta_{1}-\alpha_{1}, \beta_{1}-\alpha_{2}, \alpha_{3} ; 1 \\
\beta_{1}, \beta_{1}+\beta_{2}-\alpha_{1}-\alpha_{2}
\end{array}\right]
\end{aligned}
$$

(1, p. 98), whence

$$
\begin{align*}
& { }_{1} F_{1}(a ; c ;-y)_{1} F_{1}\left(a^{\prime} ; c^{\prime} ; y\right)  \tag{4.1}\\
& =\sum_{n=0}^{\infty} \frac{\left(c+c^{\prime}-a-a^{\prime}\right)_{n}}{(c)_{n}} y^{n}{ }_{3} F_{2}\left[\begin{array}{c}
c^{\prime}-a^{\prime}, c+c^{\prime}+n-1,-n ; 1 \\
c^{\prime}, c+c^{\prime}-a-a^{\prime}
\end{array}\right] .
\end{align*}
$$

Thus

$$
e^{y}\left[{ }_{1} F_{1}\left(\alpha ; \frac{1}{2} ;-y\right)\right]^{2}=\sum_{n=0}^{\infty}{ }_{3} F_{2}\left(\alpha, n,-n ; \frac{1}{2} ; \frac{1}{2} ; 1\right) y^{n} / n!,
$$

and $g_{n}$ is determined for $n=0,1,2, \ldots$. Since the generating function is unaltered when $y$ is replaced by $-y^{-1}, g_{-n}=g_{n}$. Hence

$$
\begin{align*}
& e^{\frac{1}{2} x\left(y-y^{-1}\right)}{ }_{1} F_{1}\left(\alpha ; \frac{1}{2} ; \frac{1}{2} x / y-\frac{1}{2} x y+i x\right)_{1} F_{1}\left(\alpha ; \frac{1}{2} ; \frac{1}{2} x / y-\frac{1}{2} x y-i x\right)  \tag{4.2}\\
& =\sum_{n=-\infty}^{\infty}{ }_{3} F_{2}\left(\alpha, n,-n ; \frac{1}{2} ; \frac{1}{2} ; 1\right) J_{n}(x) y^{n} .
\end{align*}
$$

Since $\xi^{\frac{1}{2}}=\left(\frac{1}{2} x\right)^{\frac{1}{2}}\left(y^{-\frac{1}{2}}+i y^{\frac{1}{2}}\right), u_{2}$ has an expansion of the form

$$
\sum_{n=-\infty}^{\infty}\left[a_{n} J_{n+\frac{1}{2}}(x)+b_{n} J_{-n-\frac{3}{2}}(x)\right] y^{n+\frac{1}{2}}
$$

Applying the methods described above, we obtain, after multiplying by $(2 y / x)^{\frac{1}{2}}$

$$
\begin{align*}
& \quad(1+i y) e^{\frac{1}{2} x\left(y-y^{-1}\right)}{ }_{1} F_{1}\left(\alpha+\frac{1}{2} ; 3 / 2 ; \frac{1}{2} x / y-\frac{1}{2} x y+i x\right)  \tag{4.3}\\
& \quad \times{ }_{1} F_{1}\left(\alpha ; \frac{1}{2} ; \frac{1}{2} x / y-\frac{1}{2} x y-i x\right) \\
& =(\pi / 2 x)^{\frac{1}{2}} \sum_{n=0}^{\infty}{ }_{3} F_{2}\left(\alpha, n+1,-n ; 1, \frac{1}{2} ; 1\right) J_{n+\frac{1}{2}}(x)\left[i y^{n+1}+(-y)^{-n}\right] .
\end{align*}
$$

Replacing $i$ by $-i$, we obtain the expansion which arises similarly from $u_{i j}$.

Since $(\xi \eta)^{\frac{1}{2}}=\frac{1}{2} x\left(y+y^{-1}\right), u_{4}$ has a Laurent expansion about $y=0$. We obtain, after replacing $\alpha$ by $\alpha-\frac{1}{2}$,

$$
\begin{align*}
& \frac{1}{2} x\left(y+y^{-1}\right) e^{\frac{1}{2} x\left(y-y^{-1}\right)}{ }_{1} F_{1}\left(\alpha ; 3 / 2 ; \frac{1}{2} x / y-\frac{1}{2} x y+i x\right)  \tag{4.4}\\
& \quad \times{ }_{1} F_{1}\left(\alpha ; 3 / 2 ; \frac{1}{2} x / y-\frac{1}{2} x y-i x\right) \\
& =\sum_{n=-\infty}^{\infty} n_{3} F_{2}(\alpha, n+1,1-n ; 3 / 2 ; 3 / 2 ; 1) J_{n}(x) y^{n} .
\end{align*}
$$

With the aid of these results the elementary solutions of the three-dimensional wave equation in parabolic cylindrical co-ordinates may be expressed in terms of cylindrical wave functions.
5. Generating functions annulled by $B^{2}+8 C A+4 C$. When we choose new variables $\xi=x y-(x / y)^{\frac{1}{2}}, \quad \eta=x y+(x / y)^{\frac{1}{2}}$, the equation $L u=0$ becomes

$$
\frac{\partial^{2} u}{\partial \xi^{2}}-\frac{\partial^{2} u}{\partial \eta^{2}}+\frac{1}{4}(\xi-\eta) u=0
$$

The following solutions are obtained by separation of variables:

$$
\begin{aligned}
& u_{1}={ }_{0} F_{1}\left(2 / 3 ;-[\xi+z]^{3} / 36\right)_{0} F_{1}\left(2 / 3 ;-[\eta+z]^{3} / 36\right), \\
& u_{2}=(\xi+z)_{0} F_{1}\left(4 / 3 ;-[\xi+z]^{3} / 36\right)_{0} F_{1}\left(2 / 3 ;-[\eta+z)^{3} / 36\right), \\
& u_{3}=(\eta+z)_{0} F_{1}\left(2 / 3 ;-[\xi+z]^{3} / 36\right)_{0} F_{1}\left(4 / 3 ;-[\eta+z]^{3} / 36\right), \\
& u_{4}=(\xi+z)(\eta+z)_{0} F_{1}\left(4 / 3 ;-[\xi+z]^{3} / 36\right)_{0} F_{1}\left(4 / 3 ;-[\eta+z]^{3} / 36\right.
\end{aligned}
$$

where $z$ is an arbitrary constant. These functions are also annulled by

$$
\frac{\partial^{2}}{\partial \xi^{2}}+\frac{1}{4}(\xi+z)=2 \xi\left[(\xi-\eta)\left(\xi^{2}-\eta^{2}\right)\right]^{-1} L+\frac{B^{2}}{16}+\frac{1}{2} C A+\frac{C}{4}+\frac{z}{4}
$$

and hence by $R=B^{2}+8 C A+4 C+4 z$.
The functions $u_{1}$ and $u_{4}$ have expansions of the form

$$
\sum_{n=-\infty}^{\infty} g_{n} J_{n}(x) y^{n}
$$

Applying $R$, we obtain the recurrence relation

$$
g_{n+2}+4 z g_{n}+4(2 n-1) g_{n-1}=0 \quad(n=0, \pm 1, \pm 2, \ldots)
$$

by means of (2.2). No explicit solution is available for arbitrary $z$. A solution is readily obtained for $z=0$. We find that

$$
\begin{align*}
& { }_{0} F_{1}\left(2 / 3 ;-\left[x y-(x / y)^{\frac{1}{2}}\right]^{3} / 36\right)_{0} F_{1}\left(2 / 3 ;-\left[x y+(x / y)^{\frac{1}{2}}\right]^{3} / 36\right)  \tag{5.1}\\
& =\sum_{m=-\infty}^{\infty}(-24)^{m} \Gamma(m+1 / 6) J_{3 m}(x) y^{3 m} / \Gamma(1 / 6) \\
& \begin{array}{r}
\frac{1}{8}\left(x^{2} y^{2}-x / y\right)_{0} F_{1}\left(4 / 3 ;-\left[x y-(x / y)^{\frac{1}{3}}\right]^{3} / 36\right) \\
\\
\quad \times{ }_{0} F_{1}\left(4 / 3 ;-\left[x y+(x / y)^{\frac{1}{2}}\right]^{3} / 36\right) \\
=\sum_{m=-\infty}^{\infty}(-24)^{m} \Gamma(m+5 / 6) J_{3 m+2}(x) y^{3 m+2} / \Gamma\left(\frac{5}{6}\right)
\end{array} \tag{5.2}
\end{align*}
$$

For $u_{2}$ we obtain similarly

$$
\begin{align*}
& {\left[x y-(x / y)^{\frac{1}{2}}\right]_{0} F_{1}\left(4 / 3 ;-\left[x y-(x / y)^{\frac{1}{2}}\right]^{3} / 36\right)}  \tag{5.3}\\
& \left.=-(\pi / 2)^{\frac{1}{2}} \sum_{m=0}^{\infty}(-24)^{-m} J_{3 m+1 / 2}(x) y^{-3 m-1 / 2} / m!-\left[x y+(x / y)^{\frac{1}{2}}\right]^{3} / 36\right) \\
& +2 \sum_{m=-\infty}^{\infty}(-24)^{m} \Gamma\left(m+\frac{1}{2}\right) J_{3 m+1}(x) y^{3 m+1} / \Gamma\left(\frac{1}{2}\right) .
\end{align*}
$$

6. Generating functions annulled by $A^{2}+\alpha(2 C A+C)+\beta C^{2}-\nu^{2}$. If we choose new variables

$$
\begin{aligned}
& \xi=\frac{1}{2}\left[\left(x^{2}+2 a^{2} x y\right)^{\frac{1}{2}}-\left(x^{2}+2 b^{2} x y\right)^{\frac{1}{2}}\right], \\
& \eta=\frac{1}{2}\left[\left(x^{2}+2 a^{2} x y\right)^{\frac{1}{2}}+\left(x^{2}+2 b^{2} x y\right)^{\frac{1}{2}}\right],
\end{aligned} \quad\left(a^{2} \neq b^{2}\right),
$$

where $a$ and $b$ are constants and the signs of the radicals are chosen so that $\xi=0, \eta=x$ when $y=0$, the equation $L u=0$ becomes

$$
\xi^{2} \frac{\partial^{2} u}{\partial \xi^{2}}-\eta^{2} \frac{\partial^{2} u}{\partial \eta^{2}}+\xi \frac{\partial u}{\partial \xi}-\eta \frac{\partial u}{\partial \eta}+\left(\xi^{2}-\eta^{2}\right) u=0 .
$$

Comparing with (1.1), it follows that $L$ annuls the four functions $J_{ \pm \nu}(\xi) J_{ \pm \nu}(\eta)$, where $\nu$ is arbitrary. These functions are also annulled by

$$
\begin{aligned}
\xi^{2} \frac{\partial^{2}}{\partial \xi^{2}}+\xi \frac{\partial}{\partial \xi}+\xi^{2}-\nu^{2}=\xi^{2}\left(\xi^{2}+2 c \xi \eta+\eta^{2}\right)^{-1} L+A^{2} & +\frac{1}{2}\left(a^{2}+b^{2}\right)(2 C A+C) \\
& +a^{2} b^{2} C^{2}-\nu^{2}
\end{aligned}
$$

where $c=\left(a^{2}+b^{2}\right) /\left(a^{2}-b^{2}\right)$, and hence by

$$
R=A^{2}+\frac{1}{2}\left(a^{2}+b^{2}\right)(2 C A+C)+a^{2} b^{2} C^{2}-\nu^{2} .
$$

Employing the methods described previously, and applying the well-known formulae

$$
\begin{aligned}
J_{\mu}(\alpha z) J_{\nu}(\beta z)= & \frac{\left(\frac{1}{2} \alpha z\right)^{\mu}\left(\frac{1}{2} \beta z\right)^{\nu}}{\Gamma(\nu+1)} \sum_{n=0}^{\infty} \frac{(-1)^{n}\left(\frac{1}{2} \alpha z\right)^{2 n}}{n!\Gamma(\mu+n+1)} \\
\times & F\left(-n,-\mu-n ; \nu+1 ; \beta^{2} / \alpha^{2}\right) \\
& F(\alpha, \beta ; \gamma ; z)=(1-z)^{-\alpha} F\left(\alpha, \gamma-\beta ; \gamma ; \frac{z}{z-1}\right),
\end{aligned}
$$

the following results are obtained:

$$
\begin{align*}
& 2^{2 \nu} \Gamma(\nu+1)\left(a^{2}-b^{2}\right)^{-\xi} J_{\nu}(\xi) J_{\nu}(\eta)  \tag{6.1}\\
& \quad=\sum_{n=0}^{\infty} \frac{(a b)^{n}}{n!} F\left(-n, n+2 \nu+1 ; \nu+1 ; \frac{(a+b)^{2}}{4 a b}\right) J_{\nu+n}(x) y^{\nu+n}, \\
& \quad\left(a^{2} \neq b^{2}, a b \neq 0, \nu \neq-1,-2, \ldots\right) .
\end{align*}
$$

$$
\begin{align*}
& 2^{2 \nu} \Gamma(\nu+1)\left(a^{2}-b^{2}\right)^{-\nu} J_{\nu}(\xi) J_{-\nu}(\eta)  \tag{6.2}\\
& =\sum_{n=0}^{\infty} \frac{(-a b)^{n}}{n!} F\left(-n, n+2 \nu+1 ; \nu+1 ; \frac{(a+b)^{2}}{4 a b}\right) J_{-\nu-n}(x) y^{\nu+n} \\
& |y|<\operatorname{Min}\left(\left|x / 2 a^{2}\right|,\left|x / 2 b^{2}\right|\right),\left(a^{2} \neq b^{2}, a b \neq 0, \nu \neq-1,-2, \ldots\right)
\end{align*}
$$

$$
\begin{align*}
& \Gamma(\nu+1)(a+b)^{\nu}(a-b)^{-\nu} J_{\nu}(\xi) J_{-\nu}(\eta)  \tag{6.3}\\
& =\sum_{n=-\infty}^{\infty} \frac{(-a b)^{n}}{\Gamma(n-\nu+1)} F\left(-n, n+1 ; \nu+1 ;-\frac{(a-b)^{2}}{4 a b}\right) J_{n}(x) y^{n}, \\
& |y|>\operatorname{Max}\left(\left|x / 2 a^{2}\right|,\left|x / 2 b^{2}\right|\right),\left(a^{2} \neq b^{2}, a b \neq 0, \nu \neq-1,-2, \ldots\right),
\end{align*}
$$

and the left member has the value $(\sin \nu \pi) / \nu \pi$ when $x=0$.
The excluded case $a b=0$ may be treated similarly. Setting $a=0, b^{2}=-2$, the following generating functions, annulled by $A^{2}-2 C A-C-\nu^{2}$, are obtained:

$$
\begin{align*}
& J_{\nu}\left(\frac{1}{2}\left[x-\left(x^{2}-4 x y\right)^{\frac{1}{2}}\right]\right) J_{\nu}\left(\frac{1}{2}\left[x+\left(x^{2}-4 x y\right)^{\frac{1}{2}}\right]\right)  \tag{6.4}\\
& =\sum_{n=0}^{\infty} \frac{1}{\Gamma(\nu+n+1)}\binom{2 \nu+2 n}{n} J_{\nu+n}(x)(y / 2)^{\nu+n}, \\
& J_{\nu}\left(\frac{1}{2}\left[x-\left(x^{2}-4 x y\right)^{\frac{1}{2}}\right]\right) J_{-\nu}\left(\frac{1}{2}\left[x+\left(x^{2}-4 x y\right)^{\frac{1}{2}}\right]\right)  \tag{6.5}\\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\Gamma(\nu+n+1)}\binom{2 \nu+2 n}{n} J_{-\nu-n}(x)(y / 2)^{\nu+n},|4 y|<|x| .
\end{align*}
$$

$$
\begin{align*}
& e^{\nu \pi i} J_{\nu}\left(\frac{1}{2}\left[x-\left(x^{2}-4 x y\right)^{\frac{1}{3}}\right]\right) J_{-\nu}\left(\frac{1}{2}\left[x+\left(x^{2}-4 x y\right)^{\frac{1}{2}}\right]\right)  \tag{6.6}\\
& =\sum_{n=-\infty}^{\infty} \frac{\Gamma\left(n+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right) \Gamma(n+1-\nu) \Gamma(n+1+\nu)} J_{n}(x)(2 y)^{n} \\
& +i \pi^{-\frac{1}{2}} \sin \nu \pi \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}-\nu\right)_{n}\left(\frac{1}{2}+\nu\right)_{n}}{n!} J_{n+\frac{1}{2}}(x)(2 y)^{-n-\frac{1}{2}},|4 y|>|x|,
\end{align*}
$$

where the left member has the value $(\sin \nu \pi) / \nu \pi$ when $x=0$. Formulae (6.4) and (6.5) are limiting cases of formulae (6.1) and (6.2) respectively.

## References

1. W. N. Bailey, Generalized hypergeometric series (Cambridge, 1935).
2. T. W. Chaundy, An extension of hypergeometric functions, Quart. J. Math., 14 (1943), 5578.
3. G. N. Watson, $A$ treatise on Bessel functions (2nd ed., Cambridge, 1944).
4. L. Weisner, Group-theoretic origin of certain generating functions, Pacific J. Math. 4, supp. 2 (1955), 1033-9.
5. -_Generating functions for Hermite functions, Can. J. Math., 11 (1959), 141-147.

## University of New Brunswick.


[^0]:    Received February 5, 1958. This research was supported in part through a summer fellowship of the Canadian Mathematical Congress.

