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1. Introduction

For a topological space X, we say X has torsion if its integral homology does.
Let G be a compact connected Lie group. The cohomology of the connected Lie
group G, its loop space ΩG and its classifying space BG has been studied by many
mathematicians after the pioneering works of Hopf, Bott and Borel. The loop space
ΩG has no torsion. The classifying space BG has torsion if and only if G does.

Let P → X be a principal G-bundle over a paracompact space X. Then, there
is a classifying map f : X → BG. The group of bundle automorphisms covering
the identity on X is called the gauge group G(P ). The classifying space BG(P ) is
homotopy equivalent to the path-component of the mapping space Map(X, BG)
containing the classifying map f as in [1, 2]. If X = S1, since π1(BG) = {0}, the
mapping space Map(S1, BG) is path-connected and it has torsion if and only if G
does. If X = S2, since π2(BG) might not be zero, the mapping space Map(S2, BG)
may not be path-connected. The path-component that contains the trivial map
is homotopy equivalent to the classifying space of the gauge group of the trivial
G-bundle over S2, and it has torsion if and only if G does. However, the situation
is different for other path-components that are homotopy equivalent to classifying
spaces of gauge groups of non-trivial G-bundles.

Let SO(n) be the special orthogonal groups. Classification of SO(n)-bundles over
S2 is determined by the Stiefel–Whitney class w2 ∈ Z/2 = {0, 1} = π2(BSO(n)).
The path-component of the mapping space corresponding to the non-trivial
Stiefel–Whitney class is homotopy equivalent to the classifying space of the gauge
group of the non-trivial SO(n)-bundle over S2. Tsukuda [5] showed that it has no
torsion for n = 3. Minowa [3] proved that it has no torsion for n = 3, 4 and torsion
for n � 5.
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2 M. Kameko

The special orthogonal group SO(3) could be regarded as the projective unitary
group PU(2) = U(2)/S1. In this paper, we generalize Tsukuda’s result for projec-
tive unitary groups PU(n), n � 2 and determine when the classifying space of a
PU(n)-gauge group over the sphere S2 has torsion.

Throughout the rest of this paper, let n be an integer greater than or equal
to 2. The second homotopy group π2(BPU(n)) is isomorphic to the cyclic group
Z/n. We identify the cyclic group Z/n with its complete set of representatives
{0, 1, . . . , n − 1}. Let k be an element in

π2(BPU(n)) = Z/n = {0, 1, . . . , n − 1}.
Let us denote by Mapk(S2, BPU(n)) the path-component of the mapping space
Map(S2, BPU(n)) containing maps in the homotopy class k. Let p be a prime
number. Unless explicitly stated, H∗(X) is the mod p cohomology of the topological
space X. The following is the p-local form of our result.

Theorem 1.1. The following holds for Mapk(S2, BPU(n)).

(1) If n �≡ 0 mod (p), it has no p-torsion.

(2) If n ≡ 0 mod (p) and k �≡ 0 mod (p), it has no p-torsion.

(3) If n ≡ 0 mod (p) and k ≡ 0 mod (p), it has p-torsion.

As an immediate consequence of theorem 1.1, we obtain the following global form
of our result.

Corollary 1.2. The topological space Mapk(S2, BPU(n)) has no torsion if and
only if k is relatively prime to n.

In particular, for n � 2, the topological space Map1(S2, BPU(n)) has no torsion
even though the underlying Lie group PU(n) has torsion.

This paper is organized as follows. In § 2, we show the existence of p-torsion in
Mapk(S2, BPU(n)) is equivalent to the triviality of certain induced homomorphism
in the mod p cohomology. Section 3 recalls the free double suspension in Takeda
[4] and its elementary properties. Section 4 collects some elementary facts on the
mod p cohomology of BU(n). In § 5, we prove theorem 1.1 assuming lemma 5.6 on
an n × n matrix B. In § 6, we prove lemma 5.6.

The author would like to thank Yuki Minowa for his talk on [3] at the Homotopy
Theory Symposium at the Osaka Metropolitan University on 5 November 2023.
This work was inspired by his talk.

2. Torsion

In this section, we show that the existence of p-torsion of a path-component is
equivalent to the triviality of certain induced homomorphism.

Let us fix a fibre bundle BU(n) → BPU(n) induced by the obvious projection
map U(n) → PU(n). We denote the inclusion map of its fibre by φ : BS1 → BU(n).
It is a map induced by the obvious inclusion map S1 → U(n) where S1 consists of
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Torsion in classifying spaces of gauge groups 3

the scalar matrices in the unitary group U(n). Consider the commutative diagram
induced by the fibre bundle BU(n) → BPU(n).

F0 Ω2
kBU(n) Ω2

kBPU(n)

F Mapk(S2, BU(n)) Mapk(S2, BPU(n))

BU(1) BU(n) BPU(n)

�

�

��

�

ιk

�
�ϕ

�

�

�

�

π

�
�φ �

Both vertical maps in the bottom-right square are evaluation maps at the base
point of S2, and all maps in the bottom-right square are fibrations. Moreover, all
horizontal and vertical sequences are fibre sequences. In particular, Ω2

kBU(n) and
Ω2

kBPU(n) are fibres of evaluation maps. Since

Ω2
kBU(n) → Ω2

kBPU(n)

is a homotopy equivalence, the fibre F0 is contractible, and the map F → BS1 is
also a homotopy equivalence.

The goal of this section is to prove the following proposition.

Proposition 2.1. The following are equivalent.

(1) The topological space Mapk(S2, BPU(n)) has p-torsion.

(2) The mod p cohomology of Mapk(S2, BPU(n)) has a non-zero odd degree
element.

(3) The induced homomorphism ϕ∗ : H2(Mapk(S2, BU(n))) → H2(F ) is zero.

To establish the equivalence of (1) and (2) in proposition 2.1, we use the following
lemma.

Lemma 2.2. Let X be a topological space. Suppose that the integral homology groups
Hi(X; Z) are finitely generated abelian groups for all i, and the rational cohomology
of X has no non-zero odd degree element. Then, the mod p cohomology H∗(X; Z/p)
has a non-zero odd degree element if and only if X has p-torsion.

Proof. First, we prove that the assumptions of lemma 2.2 imply that H2j+1(X; Z)
is a finite abelian group for all j. By the universal coefficient theorem, we have an
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4 M. Kameko

isomorphism

H2j+1(X; Q) � Ext1(H2j(X; Z), Q) ⊕ Hom(H2j+1(X; Z), Q).

By the assumption that the rational cohomology of X has no non-zero odd degree
element, we have

Hom(H2j+1(X; Z), Q) = {0}.
By the assumption that the integral homology groups Hi(X; Z) are finitely
generated, H2j+1(X; Z) is a finite abelian group.

Next, we show that if X has p-torsion, then H2j+1(X; Z/p) is non-trivial for some
j. By the universal coefficient theorem, we have an isomorphism

H2j+1(X; Z/p) � Ext1(H2j(X; Z), Z/p) ⊕ Hom(H2j+1(X; Z), Z/p).

If X has p-torsion, H2j+1(X; Z) or H2j(X; Z) has p-torsion for some j. Therefore,
H2j+1(X; Z/p) is non-trivial.

Finally, we show that if H2j+1(X; Z/p) is non-trivial for some j, X has p-torsion.
By the universal coefficient theorem, we have an isomorphism

H2j+1(X; Z/p) � Ext1(H2j(X; Z), Z/p) ⊕ Hom(H2j+1(X; Z), Z/p).

Suppose that

Hom(H2j+1(X; Z), Z/p)

is non-trivial. Then, since H2j+1(X; Z) is a finite abelian group, H2j+1(X; Z) has
p-torsion. Suppose that

Ext1(H2j(X; Z), Z/p)

is non-trivial. Then, since H2j(X; Z) is a finitely generated abelian group, H2j(X; Z)
has p-torsion. Hence, in either case, X has p-torsion. �

Proof of proposition 2.1, (1) ⇔ (2). Let us consider the right vertical fibre
sequence

Ω2
kBPU(n) → Mapk(S2, BPU(n)) → BPU(n)

and Leray–Serre spectral sequences associated with this fibre sequence. The E2-
page of the Leray–Serre spectral sequence for the integral homology consists of
finitely generated abelian groups, and so are the integral homology groups of
Mapk(S2, BPU(n)). The E2-page of the Leray–Serre spectral sequence for the
rational cohomology has no non-zero odd degree element. So the rational coho-
mology of Mapk(S2, BPU(n)) also has no non-zero odd degree element. Thus, by
lemma 2.2, Mapk(S2, BPU(n)) has p-torsion if and only if its mod p cohomology
has a non-zero odd degree element. �

Let ci ∈ H2i(BU(n)) be the mod p reduction of the ith Chern class. The following
proposition is what we need on the mod p cohomology of Mapk(S2, BU(n)) in this
section. Section 5 gives a more detailed description of the generator x in terms of
c2 and the free double suspension we will define in § 3.
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Torsion in classifying spaces of gauge groups 5

Proposition 2.3. The following hold.

(1) H∗(Mapk(S2, BU(n))) has no non-zero odd degree element.

(2) As an abelian group, H2(Mapk(S2, BU(n))) is generated by two elements
π∗(c1) and x such that ι∗k(x) �= 0.

Proof. Consider the Leray–Serre spectral sequence associated with the middle
vertical fibre sequence

Ω2
kBU(n) → Mapk(S2, BU(n)) → BU(n),

converging to the mod p cohomology of Mapk(S2, BU(n)). Then, the E2-page
has no non-zero odd degree element. Hence, the spectral sequence collapses at the
E2-page, and we obtain (1). Furthermore, we have

E0,2
∞ = H2(Ω2

kBU(n)) � Z/p,

E1,1
∞ = {0},

E2,0
∞ = H2(BU(n)) = Z/p{c1}.

Hence, we have (2). �

Proof of proposition 2.1, (2) ⇔ (3). We consider the Leray–Serre spectral sequence
associated with the middle horizontal fibre sequence

F
ϕ−→ Mapk(S2, BU(n)) −→ Mapk(S2, BPU(n))

converging to the mod p cohomology of Mapk(S2, BU(n)). The mod p cohomology
ring of F � BS1 is a polynomial ring generated by a single element u of degree 2.
The E2-page is given by

E∗,∗
2 = H∗(Mapk(S2, BPU(n))) ⊗ H∗(F ).

If the induced homomorphism

ϕ∗ : H2(Mapk(S2, BU(n))) → H2(F )

is non-zero, the induced homomorphism

ϕ∗ : H∗(Mapk(S2, BU(n))) → H∗(F )

is surjective. Then, by the Leray–Hirsh theorem, the induced homomorphism

H∗(Mapk(S2, BPU(n))) → H∗(Mapk(S2, BU(n)))

is injective and, by proposition 2.3 (1), the mod p cohomology of
Mapk(S2, BPU(n)) also has no non-zero odd degree element.
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If the induced homomorphism

ϕ∗ : H2(Mapk(S2, BU(n))) → H2(F )

is zero, u does not survive to the E∞-page. Hence, d2(u) �= 0 or d3(u) �= 0 must
hold. Relevant subgroups of E2-page are as follows.

E0,2
2 = Z/p{u},

E1,1
2 = {0},

E2,1
2 = {0},

E3,0
2 = H3(Mapk(S2, BPU(n))).

Since d2(u) ∈ E2,1
2 = {0}, we have d2(u) = 0. Therefore, d3(u) �= 0. Since E1,1

2 =
{0}, the differential d2 : E1,1

2 → E3,0
2 is zero and we have E3,0

3 = E3,0
2 . Since

d3(u) ∈ E3,0
3 � H3(Mapk(S2, BPU(n)))

is non-zero, the mod p cohomology of Mapk(S2, BPU(n)) has the non-zero odd
degree element d3(u). �

3. Free double suspension

To describe the generator x of H2(Mapk(S2, BU(n))) in proposition 2.3 in more
detail, we use the free double suspension

σ : H∗(Mapk(S2, BU(n))) → H∗−2(Mapk(S2, BU(n))))

defined by Takeda in [4]. One may define the free double suspension over any
coefficient groups. We focus on the mod p cohomology. Our definition of σ differs
slightly from Takeda’s σ̂2

f in [4] but is the same homomorphism.
In this section, let X be a simply connected topological space. We denote by ∗

the base points of both S2 and X. Let k be a homotopy class in π2(X) and 0 is the
homotopy class in π2(X) containing the trivial map. Let

pr2 : S2 × Mapk(S2,X) → Mapk(S2,X)

be the obvious projection map. We use the evaluation maps

ev : S2 × Mapk(S2,X) → X, ev(s, g) = g(s),

and its restriction to Mapk(S2, X) = {∗} × Mapk(S2, X),

π : Mapk(S2,X) → X, π(g) = g(∗),
to define a homomorphism

σ : H∗(X) → H∗−2(Mapk(S2,X)).

Let us fix a generator of H2(S2) � Z/p and we denote it by u2. We define σ by

ev∗(x) − (π ◦ pr2)
∗(x) = u2 ⊗ σ(x).
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Let Ω2
kX = π−1(∗) and denote the inclusion map by ιk : Ω2

kX → Mapk(S2, X). We
define

σ̃k : H∗(X) → H∗−2Ω2
kX)

by ι∗k ◦ σ. Proposition 3.1 (1) below is nothing but a particular form of proposition
2.1 in [4].

Proposition 3.1. The homomorphism σ satisfies the following.

(1) σ(x · y) = σ(x) · π∗(y) + π∗(x) · σ(y),

(2) for a cohomology operation O of positive degree, σ(Ox) = Oσ(x).

Proof.

(1) Since

ev∗(x) · ev∗(y) = (u2 ⊗ σ(x) + 1 ⊗ π∗(x)) · (u2 ⊗ σ(y) + 1 ⊗ π∗(y))

= u2 ⊗ σ(x) · 1 ⊗ π∗(y)

+ 1 ⊗ π∗(x) · u2 ⊗ σ(y) + 1 ⊗ π∗(x) · 1 ⊗ π∗(y)

= u2 ⊗ (σ(x) · π∗(y) + π∗(x) · σ(y)) + 1 ⊗ (π∗(x) · π∗(y)),

Hence, we have

ev∗(x · y) − (π ◦ pr2)
∗(x · y) = u2 ⊗ (σ(x) · π∗(y) + π∗(x) · σ(y)).

(2) is also clear from the naturality of cohomology operation.

O(ev∗(x) − (π ◦ pr2)
∗(x)) = ev∗(Ox) − (π ◦ pr2)

∗(Ox)

= u2 ⊗ σ(Ox),

O(u2 ⊗ σ(x)) = u2 ⊗Oσ(x),

since Ou2 = 0. Hence, we have

σ(Ox) = Oσ(x). �

Next, we describe the relation between Ω2
kX and Ω2

0X. Let X1 ∨ X2 be the
subspace of X1 × X2 defined by

X1 ∨ X2 := {(x1, x2) ∈ X1 × X2 | x1 = ∗ or x2 = ∗}.

Let ν : S2 → S2 ∨ S2 be the pinch map collapsing the sphere’s equator. We use it
to define the addition on π2(X). Let f : S2 → X be a map representing k ∈ π2(X)

https://doi.org/10.1017/prm.2024.33 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.33


8 M. Kameko

and cf : Ω2
0X → {f} the obvious constant map. Using f , we define

μf : Ω2
0X → Ω2

kX

by

μf (g)(s) = f(s1) if ν(s) = (s1, ∗),
μf (g)(s) = g(s2) if ν(s) = (∗, s2).

The following lemma is a weak form of lemma 2.2 in [4]. We use it to prove
proposition 5.1.

Lemma 3.2. Let x be an element in Hi(X). If i �= 2, then we have

μ∗
f ◦ σ̃k(x) = σ̃0(x).

Proof. We have the following commutative diagram by the definition of μf .

S2 × Ω2
0X S2 × Ω2

0X ∨ S2 × Ω2
0X S2 × {f} ∨ S2 × Ω2

0X

S2 × Ω2
kX X,

�ν×1

�
1×μf

�1×cf∨1×1

�
ev∨ev

�ev

where we choose f as the base point of both {f} and Ω2
kX, and the constant

map S2 → {∗} as the base point of Ω2
0X. Since the reduced mod p cohomology

H̃i(S2 × {f}) � H̃i(S2) is trivial for i �= 2, we have isomorphisms

Hi(S2 × {f} ∨ S2 × Ω2
0X) → Hi(S2 × Ω2

0X)

and desired identity

σ̃0(x) = μ∗
f ◦ σ̃k(x)

for x ∈ Hi(X), i �= 2. �

4. Cohomology of BU(n)

In this section, we collect some elementary properties of the mod p cohomology
ring of BU(n) and the induced homomorphism

φ∗ : H∗(BU(n)) → H∗(BS1).

Let us fix a generator u of H2(BU(1)) = H2(BS1) � Z/p. Let

ι : BU(1)n → BU(n)

be the map induced by the inclusion map of the maximal torus U(1)n consisting of
diagonal matrices. Let

Bpri : BU(1)n → BU(1) = BS1

be the map induced by the projection of U(1)n to its ith factor U(1), defined
by (x1, . . . , xn) �→ xi. We denote Bpr∗i (u) ∈ H2(BU(1)n) by ti. The mod p coho-
mology of BU(1)n is a polynomial ring generated by t1, . . . , tn and the induced
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homomorphism

ι∗ : H∗(BU(n)) → H∗(BU(1)n) = Z/p[t1, . . . , tn]

is injective, and its image is the set of symmetric polynomials in t1, . . . , tn. In par-
ticular, ci is defined as the element such that ι∗(ci) is the ith elementary symmetric
polynomial in t1, . . . , tn. Let us define si by

ι∗(si) =
n∑

j=1

tij .

The map φ : BS1 → BU(n) factors through

BS1 δ−→BU(1)n ι−→BU(n),

where δ is the map induced by the diagonal map x �→ (x, . . . , x). Since δ∗(ti) = u
for i = 1, . . . , n, we have

φ∗(si) = nui

and

φ∗(ci) =
(

n

i

)
ui.

We use the following lemma 4.1 to prove proposition 5.5. The corresponding identity
in symmetric polynomials is known as Newton’s identity.

Lemma 4.1. In the mod p cohomology of BU(n), for i � 0, we have relations

sn+i+1 +
n∑

j=1

(−1)jcjsn+i−j+1 = 0.

Proof. Let us define symmetric polynomials hi+2,n−1, . . . , hn+i,1. For 	 = i +
2, . . . , n + i, let h�,n+i+1−� be the sum of monomials in the polynomial ring
Z/p[t1, . . . , tn] obtained from t�1t2 · · · tn+i+2−� by permuting 1, . . . , n + j + 2 − 	
in 1, . . . , n. Then, we have

ι∗(c1) · ι∗(sn+i) = ι∗(sn+i+1) + hn+i,1,

ι∗(cj) · ι∗(sn+i+1−j) = hn+i+2−j,j−1 + hn+i+1−j,j , for 2 � j

� n − 1 and ι∗(cn) · ι∗(si+1) = hi+2,n−1.

Therefore, we have

ι∗(sn+i+1 +
n∑

j=1

(−1)jcisn+i+1−j)

= ι∗(sn+i+1) − (ι∗(sn+i+1) + hn+i,1) +
n−1∑
j=2

(−1)j (hn+i+2−j,j−1 + hn+i+1−j,j)

+ (−1)nhi+2,n−1 = 0.

Since ι∗ is injective, it completes the proof. �
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If p is an odd prime, let

℘i : Hj(X) → Hj+2i(p−1)(X)

be the ith Steenrod reduced power. If p = 2, let ℘1 = Sq2 and ℘2�−1
= Sq2�

for
	 � 2, where

Sqi : Hj(X) → Hj+i(X)

is the ith Steenrod square. We define cohomology operations Q� inductively by
Q1 = ℘1,

Q� = ℘p�−1Q�−1 −Q�−1℘
p�−1

for 	 � 2. Cohomology operations Q� have the following properties

(1) Q�(x · y) = Q�(x) · y + x · Q�(y) for x, y ∈ H∗(BU(1)n),

(2) Q�ti = tp
�

i for t1, . . . , tn in H2(BU(1)n).

With these properties, we have the following lemma 4.2. We will use it to prove
proposition 5.2.

Lemma 4.2. In the mod p cohomology of BU(n), for 	 � 1, we have

Q�c2 = s1sp� − sp�+1.

Proof. On the one hand, since

ι∗(c2) =
∑

1�i<j�n

titj ,

by direct calculation, we have

ι∗(Q�(c2)) =
∑

1�i<j�n

(tp
�

i tj + tit
p�

j ).

On the other hand, we have

ι∗(sp�s1 − sp�+1) =

(
n∑

i=1

tp
�

i

)⎛⎝ n∑
j=1

tj

⎞⎠−
n∑

i=1

tp
�+1

i =
∑

1�i<j�n

(tp
�

i tj + tit
p�

j ).

Hence, we obtain the desired identity. �
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5. Proof of theorem 1.1

In this section, we consider the commutative diagram

F Mapk(S2, BU(n))

BS1 BU(n)

�ϕ

�

�

�

π

�φ

We begin with the following refinement of proposition 2.3 (2).

Proposition 5.1. As an abelian group, H2(Mapk(S2, BU(n))) is generated by
π∗(c1) and σ(c2).

Proof. Let λ : BSU(n) → BU(n) and λ′ : Ω2BSU(n) → Ω2
0BU(n) be maps induced

by the inclusion map SU(n) → U(n). We have the following commutative diagram
by lemma 2.2 and the naturality of cohomology suspension.

H2(Ω2BSU(n)) H4(BSU(n))

H2(Ω2
0BU(n)) H4(BU(n))

H2(Ω2
kBU(n)) H4(BU(n))

�σ̃

�
λ′∗

� σ̃0

�
λ∗

�
μ∗

f

� σ̃k

�
=

The top horizontal homomorphism σ̃ is the composition of cohomology suspensions

H4(BSU(n)) → H3(ΩBSU(n)) → H2(Ω2BSU(n))

and it is an isomorphism. Since H4(BSU(n)) � Z/p is generated by λ∗(c2), we have

λ′∗ ◦ μ∗
f ◦ σ̃k(c2) = σ̃ ◦ λ∗(c2) �= 0.

Therefore, we obtain

σ̃k(c2) = ι∗k ◦ σ(c2) �= 0.

By proposition 2.3 (2), π∗(c1) and σ(c2) generate H2(Mapk(S2, BU(n))). �

Let u ∈ H2(F ) = H2(BS1) � Z/p be the generator fixed in § 4. Let us define
αi, β ∈ Z/p by

αiu
i = ϕ∗ ◦ σ(si+1),

βu = ϕ∗ ◦ σ(c2).
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Proposition 5.2. If n ≡ 0 mod (p), we have β = −αp� for 	 � 1.

Proof. On the one hand, by the definition of β, we have

ϕ∗ ◦ σ(c2) = βu.

Applying Q�, we have

ϕ∗ ◦ σ(Q�c2) = (βu)p�

= βup�

.

On the other hand, by lemma 4.2, in the mod p cohomology of BU(n), we have the
relation

Q�c2 = s1sp� − sp�+1.

Applying ϕ∗ ◦ σ, we have

ϕ∗ ◦ σ(Q�c2) = ϕ∗ ◦ σ(s1) · φ∗(sp�) + φ∗(s1) · ϕ∗ ◦ σ(sp�) − ϕ∗ ◦ σ(sp�+1)

= nα1u
p�

+ nαp�−1up� − αp�up�

= −αp�up�

.

Hence, we have β = −αp� . �

Summing up propositions 5.1 and 5.2, we have the following proposition 5.3. It
reduces the proof of theorem 1.1 to the computation of αp.

Proposition 5.3. The following are equivalent.

(1) ϕ∗ : H2(Mapk(S2, BU(n))) → H2(F ) is zero,

(2) φ∗(c1) = 0 and β = 0,

(3) φ∗(c1) = 0 and αp = 0.

Proof. Since H2(Mapk(S2, BU(n))) is generated by π∗(c1) and σ(c2), (1) and (2)
are equivalent. Under the assumption that φ∗(c1) = 0, we have n ≡ 0 mod (p).
Then, by proposition 5.2, we have

β = −αp.

Hence, (2) and (3) are equivalent. �

By computing αp, we complete the proof of theorem 1.1.

Proposition 5.4. We have α0 = k.
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Proof. Let f : S2 → BU(n) ∈ Mapk(S2, BU(n)). By definition, we have

f∗(c1) = ku2.

Let

if : S2 → S2 × Mapk(S2, BU(n))

be a map defined by t �→ (t, f). Then, we have

f = ev ◦ if

and

π ◦ pr2 ◦ if

is a constant map S2 → {f(∗)}. It implies that

i∗f (ev∗(c1) − (π ◦ pr2)
∗(c1)) = f∗(c1) = ku2.

When we restrict i∗f to H2((S2, ∗) × Mapk(S2, BU(n))), it is injective. So, we have

ev∗(c1) − (π ◦ pr2)
∗(c1) = ku2 ⊗ 1.

Hence, by the definition of σ, we have σ(c1) = k. �

Proposition 5.5. If n ≡ 0 mod (p), we have αp = k.

We use the following lemma 5.6 to prove proposition 5.5. We will prove it in the
next section. Let B be an n × n matrix whose (i, j)-entry is given by integers

b1,j = (−1)j+1

(
n

j

)
for 1 � j � n and bi,j = 1 if i = j + 1, bi,j = 0 if i �= j + 1 for 2 � i � n, 1 � j � n.

Lemma 5.6. When we regard the matrix B as an element in SLn(Z/p), the order
of B is a power of p.

Proof of proposition 5.5. By lemma 4.1, in H∗(BU(n)), we have

sn+i+1 +
n∑

j=1

(−1)jcjsn+i+1−j = 0

for i � 0. Applying ϕ∗ ◦ σ, we have

αn+iu
n+i+

n∑
j=1

(−1)jφ∗(cj) · αn+i−ju
n+i−j +

n∑
j=1

(−1)jϕ∗ ◦ σ(cj) · φ∗(sn+i−j+1) = 0.

Since φ∗(sn+i−j+1) = 0, we obtain

αn+iu
n+i +

n∑
j=1

(−1)jφ∗(cj) · αn+i−ju
n+i−j = 0.
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Furthermore, since φ∗(cj) =
(

n

j

)
uj , we have

αn+i +
n∑

j=1

(−1)j

(
n

j

)
αn+i−j = 0.

Thus, we have

αn+i =
n∑

j=1

(−1)j+1

(
n

j

)
αn+i−j ,

αn−1+i = αn−1+i,

...

α1+i = α1+i.

Therefore, put these identities together in matrix form, using the n × n matrix B
that we just defined, we have⎛⎜⎝αn+i

...
α1+i

⎞⎟⎠ = B

⎛⎜⎝αn−1+i

...
αi

⎞⎟⎠ = · · · = Bi+1

⎛⎜⎝αn−1

...
α0

⎞⎟⎠ ,

for i � 0. By lemma 5.6, the order of B as an element of SLn(Z/p) is a power of p.
Hence, for some positive integer 	, we have

αp� = α0 = k.

By proposition 5.2, we have αp� = −β = αp. Therefore, we obtain αp = k. �

Proposition 5.7 below is immediate from proposition 5.5 and it completes the
proof of theorem 1.1.

Proposition 5.7. The following holds.

(1) If n �≡ 0 mod (p), then φ∗(c1) �= 0,

(2) If n ≡ 0 mod (p) and k �≡ 0 mod (p), then αp �= 0,

(3) If n ≡ 0 mod (p) and k ≡ 0 mod (p), then φ∗(c1) = 0 and αp = 0.

6. Proof of lemma 5.6

In this section, we deal with unimodular n × n matrices. Unless otherwise clear
from the context, matrix entries are integers. What we do in what follows is to find
the transpose of the Jordan matrix similar to the matrix B in § 5.

Proposition 6.1. There is a unimodular n × n matrix A such that A−1BA = D
where (i, j)-entry di,j of D is di,j = 1 if i = j or i = j + 1 and di,j = 0 if otherwise.

https://doi.org/10.1017/prm.2024.33 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.33


Torsion in classifying spaces of gauge groups 15

We prove this proposition by giving such a matrix A explicitly. Before we do it,
we complete the proof of lemma 5.6.

Proof of lemma 5.6. By proposition 6.1, we have

B = ADA−1.

The matrix D belongs to the subgroup Un of SLn(Z/p) consisting of lower triangu-
lar matrices whose diagonal entries are 1. The subgroup Un is a p-group. Therefore,
the order of D is a power of p. Hence, the order of B is also the power of p. �

Now, we prove proposition 6.1 by defining A explicitly.

Proof of proposition 6.1. Let A be the n × n unimodular upper triangular matrix
whose (i, j)-entry is given by

ai,j =
(

n − i

n − j

)
.

We show that (i, j)-entries of BA and AD are equal to
(
n−i+1
n−j

)
for 1 � i � n, 1 �

j � n.
Recall that B is the n × n unimodular matrix whose (i, j)-entry is given as

follows: For i = 1, 1 � j � n, the (1, j)-entry of B is given by

b1,j = (−1)j+1

(
n

j

)
,

and, for 2 � i � n, 1 � j � n, the (i, j)-entry of B is given by

bi,j = 1 if i = j + 1,

bi,j = 0 otherwise.

(1) For 1 � j � n, the (1, j)-entry of BA is given by

n∑
�=1

b1,�a�,j =
j∑

�=1

b1,�a�,j

=
j∑

�=1

(−1)�+1

(
n

	

)
·
(

n − 	

n − j

)

=
j∑

�=1

(−1)�+1 n!
(n − 	)!	!

· (n − 	)!
(n − j)!(j − 	)!

=
j∑

�=1

(−1)�+1 n!
(n − j)!j!

· j!
(j − 	)!	!
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=
j∑

�=1

(−1)�+1

(
n

n − j

)(
j

	

)

=
(

n

n − j

)( j∑
�=1

(−1)�+1

(
j

	

))

=
(

n

n − j

)
=
(

n − 1 + 1
n − j

)
For 2 � i � n, 1 � j � n, the (i, j)-entry of BA is given by

n∑
�=1

bi,�a�,j = bi,i−1ai−1,j

= ai−1,j

=
(

n − i + 1
n − j

)
.

(2) For 1 � i � n, 1 � j � n, the (i, j)-entry of AD is given by
n∑

�=1

ai,�d�,j = ai,jdj,j + ai,j+1dj+1,j

= ai,j + ai,j+1

=
(

n − i

n − j

)
+
(

n − i

n − j − 1

)
=
(

n − i + 1
n − j

)
.

It completes the proof of proposition 6.1 �
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