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Ciliated microorganisms near the base of the aquatic food chain either swim to encounter
prey or attach at a substrate and generate feeding currents to capture passing particles.
Here, we represent attached and swimming ciliates using a popular spherical model in
viscous fluid with slip surface velocity that affords analytical expressions of ciliary flows.
We solve an advection–diffusion equation for the concentration of dissolved nutrients,
where the Péclet number (Pe) reflects the ratio of diffusive to advective time scales. For a
fixed hydrodynamic power expenditure, we ask what ciliary surface velocities maximize
nutrient flux at the microorganism’s surface. We find that surface motions that optimize
feeding depend on Pe. For freely swimming microorganisms at finite Pe, it is optimal to
swim by employing a ‘treadmill’ surface motion, but in the limit of large Pe, there is
no difference between this treadmill solution and a symmetric dipolar surface velocity
that keeps the organism stationary. For attached microorganisms, the treadmill solution
is optimal for feeding at Pe below a critical value, but at larger Pe values, the dipolar
surface motion is optimal. We verified these results in open-loop numerical simulations
and asymptotic analysis, and using an adjoint-based optimization method. Our findings
challenge existing claims that optimal feeding is optimal swimming across all Péclet
numbers, and provide new insights into the prevalence of both attached and swimming
solutions in oceanic microorganisms.
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1. Introduction

Feeding of oceanic microbes is essential for their biological fitness and ecological function
(Solari et al. 2006; Guasto, Rusconi & Stocker 2012; Elgeti, Winkler & Gompper 2015;
Gasol & Kirchman 2018; Shekhar et al. 2023). The metabolic processes of microbes, from
small bacteria to larger ciliates like the Stentor or Paramecium, hinge on the absorption of
particles or molecules at their surface (Verni & Gualtieri 1997; Pettitt et al. 2002; Vopel
et al. 2002; Bialek 2012; Doelle 2014; Wan et al. 2020). These particles or molecules
vary widely depending on the organism, and encompass dissolved oxygen and other gases,
lightweight molecules, complex proteins, organic compounds, and small particles and
bacteria. The typical random motion of these particles and bacteria is akin to a diffusive
process at the scale of the microorganism (Berg & Purcell 1977; Magar, Goto & Pedley
2003; Magar & Pedley 2005; Michelin & Lauga 2011; Berg 2018). For simplicity, all cases
will be referred to collectively as ‘nutrients’.

Ciliated microorganisms use surface cilia to generate flows in viscous fluids (Sládecek
1981; Emlet 1990; Pettitt et al. 2002; Christensen-Dalsgaard & Fenchel 2003; Hartmann
et al. 2007; Kirkegaard & Goldstein 2016). Ciliates either swim (Bullington 1930;
Michelin & Lauga 2010, 2011; Guasto et al. 2012; Andersen & Kiørboe 2020) or attach
to a surface and generate feeding currents (Sleigh & Barlow 1976; Vopel et al. 2002;
Zima-Kulisiewicz & Delgado 2009; Pepper et al. 2010, 2013; Andersen & Kiørboe 2020;
Wan et al. 2020). Whether motile or sessile, these ciliates perform work against the
surrounding fluid, creating flow fields that affect the transport of nutrients and maintain
a sufficient turnover rate of nutrients, unattainable by diffusion only (Solari et al. 2006).
These nutrients can thus be modelled using a continuous concentration field subject to
diffusion and advection by the microorganism’s induced flows.

The coupling between diffusive and advective transport can be essential for
microorganisms to achieve feeding rates that match their metabolic needs (Solari et al.
2006). The relative importance of advective transport is quantified by the Péclet number
Pe = τdiff /τadv , defined as the ratio of diffusive τdiff to advective τadv time scales. The
diffusive time scale τdiff = a2/D is given by the typical size of the organism a and the
diffusivity D of the nutrient of interest, while the advective time scale τadv = a/U is
governed by the flow speed U created by the microorganism.

To generate flows in a viscous fluid, a ciliated microorganism, through ciliary activity,
must execute a series of irreversible surface deformations (Purcell 1977; Lauga & Powers
2009). We call such sequence of surface deformations a ‘stroke’. A stroke can induce a
net force on the organism causing it to swim, or in the case of an attached organism, can
require a reaction force, applied via a tether or a stalk, to resist swimming. Alternatively,
the stroke itself could produce zero net force and be non-swimming. The question is, for
a fixed rate of energy dissipation in the fluid, what are the optimal strokes that maximize
nutrient flux at the organism’s surface?

For a freely-moving organism, Michelin & Lauga (2011) showed that the ‘treadmill’
stroke, where on average all cilia exert tangential forces pointing from one end of the
organism to the opposite end, is the only stroke that causes swimming. Importantly,
Michelin & Lauga (2011) proposed that the treadmill stroke optimizes swimming and
feeding at once for all Pe values. All other strokes were deemed suboptimal for feeding,
even when considering unsteady strokes (Michelin & Lauga 2013).

In this study, we evaluate, given a fixed amount of available energy, the effect of surface
velocities on feeding rates in attached ciliated microorganisms and its comparison to
swimming ciliated microorganisms. We consider a simplified spherical geometry, with
the ciliated envelope modelled via a tangential slip velocity at the spherical surface
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(Blake 1971). The Stokes equations are solved analytically using a linear decomposition
of the ciliary stroke in terms of swimming and non-swimming modes (Blake 1971; Magar
et al. 2003; Michelin & Lauga 2011), which we then optimize to maximize the organism’s
nutrient uptake for a given energetic cost.

Our results can be organized as follows. We first compare analytic solutions of the
Stokes equations around the sessile and motile ciliated sphere. The difference in flow
fields is fundamental and not reconcilable by a mere inertial transformation. We solve
numerically the advection–diffusion equation around the sessile and motile sphere for a
range of Pe values and for three distinct strokes: the treadmill mode, a symmetric dipolar
mode, and a symmetric tripolar mode. Only the treadmill mode leads to swimming in
the motile sphere case and requires a tethering force in the sessile case. By symmetry,
higher-order modes are stationary, thus identical in the motile and sessile cases. We find
that nutrient uptake depends non-trivially on Pe values, and we successfully validate our
numerical results by conducting an asymptotic analysis in the two limits of large and small
Pe for the sessile sphere, and comparing these asymptotic results to their counterparts in
the motile case (Magar et al. 2003; Michelin & Lauga 2011). We then turn to optimal
feeding strokes in the sessile case, and seek, for a given amount of energy, the optimal
stroke (possibly combining multiple simpler strokes) that maximizes nutrient uptake. We
find consistent results through an open-loop search and an adjoint-based optimization
method. We conclude by commenting on the implications of our findings to understanding
biological diversity at the micron scale.

2. Mathematical formulation

2.1. Fluid flows around sessile and motile ciliates
The fluid velocity u in a three-dimensional domain bounded internally by a spherical
ciliate of radius a (figure 1a) is governed by the incompressible Stokes equation (Kim
& Karrila 2013)

−∇p + η∇2u = 0, ∇ · u = 0, (2.1)

where p is the pressure field, and η is the dynamic viscosity. To solve these equations, we
consider the spherical coordinates (r, θ, φ) and assume axisymmetric boundary conditions
in φ at the spherical surface, with the axis of symmetry labelled by z, and the angle θ
measured from the z-axis (figure 1a). For notational convenience, we introduce the unit
vectors er, eθ , and unit vector ez along the axis of symmetry, where ez = cos θ er − sin θ eθ
(figure 1a).

Following Blake’s envelope model (Blake 1971), the cilia motion imposes a tangential
slip velocity u(r = a, θ) = Veθ at the surface of the spherical boundary. We introduce the
nonlinear transformation μ = cos θ and expand V = ∑∞

n=1 Bn Vn(μ) in terms of the basis
functions Vn(μ) defined in terms of the Legendre polynomials Pn(μ) (see Appendix A).
All modes result in surface velocities with φ-axis rotational symmetry. For mode 1, B1 = 1
and Bn = 0 for all n /= 1, the ciliary surface motion is referred to as a ‘treadmill’ motion
(figure 1b).

We distinguish between two cases: a sessile sphere, fixed in space, and a motile sphere
moving at a swimming speed U in the ez direction. The latter was considered in Blake
(1971) and Michelin & Lauga (2010, 2011). In the motile case, the coordinate system
(r, θ) is attached to the sphere, and the equations of motion and boundary conditions are
described in the body-fixed frame (er, eθ ). We get two sets of boundary conditions:
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Figure 1. Modelling motile and sessile ciliates at zero Reynolds number. (a) Spherical envelope model with
coordinates (r, θ, φ), where θ ∈ [0,π] and, due to axisymmetry, φ ∈ [0, 2π) is an ignorable coordinate. Ciliary
motion is represented via a slip surface velocity. (b) First three modes of surface velocity all at the same
energy value: treadmill (mode 1), dipolar (mode 2) and tripolar (mode 3), corresponding to B1 V1(μ) (B1 =
1 for sessile and B1 = √

3/2 for motile), B2 V2(μ) and B3 V3(μ), with B2 = √
3, B3 = √

6 for both sessile
and motile. Dotted lines represent lines of symmetry of surface velocity. (c) Flow streamlines (white) and
concentration fields (colour map) at Pe = 100 (top row) and 1000 (bottom row) for the same hydrodynamic
power P = 1 and distinct surface motions. In the treadmill mode, the streamlines, concentration field and
Sherwood number Sh differ between the sessile and motile spheres, but are the same in the dipolar and tripolar
surface modes.

Sessile u|r=a = ∑∞
n=1 Bn Vn(μ) eθ , u|r→∞ = 0,

Motile u|r=a = ∑∞
n=1 Bn Vn(μ) eθ , u|r→∞ = −Uez.

}
(2.2)

Substituting (2.2) into the general solution of (2.1), we obtain analytical expressions for
the fluid velocity field and pressure field for sessile and motile sphere (see table 1).

In the motile case, we need an additional equation to solve for the swimming speed
U. This equation comes from consideration of force balance. The hydrodynamic force
acting on the sphere is given by F h = ∫

σ · n̂ dS, where σ = −pI + η(∇u + ∇uT) is the
stress tensor, and n̂ is the unit normal from the sphere pointing into the fluid. The total
hydrodynamic force F h = 0 should be zero, leading to U = 2B1/3.

In the sessile case, the hydrodynamic force is balanced by an external force F t,
provided by a tether or stalk, that fixes the sphere in space. From force balance,
F t = −F h = −4πηaB1ez.
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Sessile ciliated sphere

Fluid velocity field ur(r, μ) =
∞∑

n=1

(
an+2

rn+2 − an

rn

)
Bn Pn(μ)

uθ (r, μ) =
∞∑

n=1

1
2

(
nan+2

rn+2 − (n − 2)an

rn

)
Bn Vn(μ)

Pressure field p(r, μ) = p∞ − η

∞∑
n=1

4n − 2
n + 1

an

rn+1 Bn Pn(μ)

Energy dissipation rate P = 16πaη
∞∑

n=1

B2
n

n(n + 1)

Hydrodynamic force F h = 4πηaB1ez

Motile ciliated sphere

Fluid velocity field ur(r, μ) =
(

−2
3

+ 2a3

3r3

)
B1 P1(μ)+

∞∑
n=2

(
an+2

rn+2 − an

rn

)
Bn Pn(μ)

uθ (r, μ) =
(

2
3

+ a3

3r3

)
B1 V1(μ)+

∞∑
n=2

1
2

(
nan+2

rn+2 − (n − 2)an

rn

)
Bn Vn(μ)

Pressure field p(r, μ) = p∞ − η

∞∑
n=2

4n − 2
n + 1

an

rn+1 BnPn(μ)

Energy dissipation rate P = 16πaη

(
1
3

B2
1 +

∞∑
n=2

B2
n

n(n + 1)

)

Swimming speed U = 2
3

B1

Table 1. Comparison of Stokes flow around sessile and motile ciliate models. Mathematical expressions are
given for the fluid velocity field, pressure field, hydrodynamic power and forces acting on the sphere, for both
sessile and motile ciliated spheres, and for the swimming speed for a freely swimming ciliated sphere. All
quantities are given in dimensional form in terms of the radial distance r and angular variable μ = cos θ .

It is instructive to examine the leading-order term in the fluid velocity (ur, uθ ) in the
sessile and motile cases (table 1). In the sessile case, the far-field fluid velocity is of order
1/r, similar to that of a force monopole (Stokeslet). In the motile case, the far-field fluid
velocity is of order 1/r3, as in the case of a three-dimensional potential dipole. The fluid
velocity fields corresponding to the sessile and motile cases are not related to each other
by a mere inertial transformation.

In order to compare sessile and motile ciliates that exert the same hydrodynamic power
P on the surrounding fluid, we introduce a characteristic velocity scale U based on the total
hydrodynamic power U = √

P/(8πaη). To obtain non-dimensional forms of the equations
and boundary conditions, we consider the spherical radius a = 1 and T = 1/U = 1 as
the characteristic length and time scales of the problem. These considerations impose the
following constraints on the velocity coefficients Bn (table 1):

Sessile
∞∑

n=1

2B2
n

n(n + 1)
= 1, Motile

2
3

B2
1 +

∞∑
n=2

2B2
n

n(n + 1)
= 1. (2.3a,b)

Considering only the treadmill mode leads to B1 = 1 in the sessile case, and B1 = √
3/2

in the motile case, with all other coefficients identically zero (Bn /= 1 = 0). That is, for the
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same hydrodynamic power P , the sessile sphere exhibits a slower surface velocity than
the motile sphere (B1 = 1 versus B1 = √

3/2), which can be proved using the reciprocal
theorem (Happel & Brenner 1965) (see Appendix A). Considering only the second mode,
we get B2 = √

3 and Bn /= 2 = 0 in both the sessile and motile spheres, and when only the
third mode is considered, B3 = √

6 and Bn /= 3 = 0 (figure 1b). In the sessile case, when a
surface motion consists of multiple modes simultaneously, the portion of energy assigned
to each mode is denoted by β2

n , such that Bn = βn
√

2/(n(n + 1)). For example, if the
total energy budget P is equally distributed between the first two modes, then we have
β2

1 = 0.5, β2
2 = 0.5, and B1 = √

0.5, B2 = √
1.5.

2.2. Advection–diffusion model of nutrient concentration
To determine the effect of the advective flows generated by the ciliated sphere on
the nutrient concentration field around the sphere, we consider the advection–diffusion
equation for the steady-state concentration C of nutrients subject to zero concentration at
the spherical surface (Berg & Purcell 1977; Magar et al. 2003; Michelin & Lauga 2011;
Bialek 2012):

u · ∇C = D�C, C(μ)|r=a=1 = 0, C(μ)|r→∞ = C∞. (2.4a–c)

We normalize the concentration field by its far-field value C∞ at large distances away from
the sphere, and consider the transformation of variables c = (C∞ − C)/C∞ (Magar et al.
2003; Michelin & Lauga 2011). Writing the advection–diffusion equation and boundary
conditions (2.4) in non-dimensional form in terms of the new variable c(r, μ) yields

Pe u · ∇c = �c, c(μ)|r=a=1 = 1, c(μ)|r→∞ = 0, (2.5a–c)

where the Péclet number Pe = aU/D quantifies the ratio of diffusive to advective time
scales. When advection is dominant, the advective time is much smaller than the diffusive
time, and Pe � 1; when diffusion is dominant, the advective time is much larger, and
Pe � 1. At Pe = 1, the two processes are in balance.

We substitute the analytical solutions of the flow field u from table 1 into (2.5). We
arrive at governing equations for the concentration field c, which we solve analytically in
the asymptotic limit of small and large Péclet numbers (see Appendix B), and numerically
using a spectral method (see Appendix C).

2.3. Sherwood number
To quantify the uptake of nutrients at the surface of the sphere, we introduce the Sherwood
number. The nutrient uptake rate is equal to the area integral of the concentration flux over
the spherical surface

I = −
∮

n̂ · (−D ∇C) dS, (2.6)

where dS = 2πa2 sin θ dθ is the element of surface area of the sphere. The sign convention
is such that the concentration flux is positive if the sphere takes up nutrients. In the case of
pure diffusion, the steady-state concentration obtained by solving the diffusion equation
is given by C(r) = C∞(1 − a/r), and the steady-state inward current due to molecular
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diffusion is given by
Idiffusion = 4πaDC∞. (2.7)

Accounting for both advective and diffusive transport, the Sherwood number Sh is
equivalent to a dimensionless nutrient uptake, where I is scaled by Idiffusion:

Sh = I
Idiffusion

= − 1
4πaDC∞

∮
n̂ · (−D ∇C) dS = −1

2

∫ 1

−1
∇c · er|r=a=1 dμ. (2.8)

3. Results

3.1. Comparison of feeding rates in sessile and motile ciliates
In figure 1(c), we show the streamlines (white) around the motile and sessile spheres with
slip surface velocity corresponding to the treadmill mode (mode 1), dipolar mode (mode
2) and tripolar mode (mode 3). In all cases, the hydrodynamic power P/(8πηa) = 1 is
held constant. Modes 2 and 3 produce zero net force on the sphere, causing no net motion
even in the motile case, thus the streamlines are the same. Mode 1, the treadmill mode, is
the only mode that leads to motility. The associated streamlines are shown in body-fixed
frame in the motile case and in inertial frame in the sessile case.

The steady-state concentration field (colour map) is obtained from numerically solving
the advection–diffusion equation around the motile and sessile spheres at Pe = 100 and
1000. In the treadmill mode, the motile sphere swims into regions of higher concentration,
which thins the diffusive boundary layer at its leading surface, leaving a trailing plume
or ‘tail’ of nutrient depletion. Similar concentration fields are obtained for the sessile
sphere, albeit with wider trailing plumes, because, although the sphere is fixed, the surface
treadmill velocity generates feeding currents that bring nutrients towards the surface of
the sphere. In the dipolar and tripolar modes, feeding currents bring fresh nutrients to the
spherical surface from, respectively, two opposite and three nearly equiangular directions.

We evaluated Sh associated with each mode at both Pe = 100 and Pe = 1000. Clearly,
larger Pe leads to higher nutrient uptake. In the treadmill mode, evaluating Sh for the motile
and sessile spheres led, respectively, to 7.6 and 6.7 at Pe = 100, and to 23.2 and 20.8 at
Pe = 1000. Indeed, at each Pe, the motile sphere with treadmill surface velocity produced
the largest Sh, implying that for the same hydrodynamic power, motility maximized
nutrient uptake. But the percentage difference in nutrient uptake between the motile and
sessile sphere decreased with increasing Pe, from 13.4 % to 11.5 %. For the swimming
sphere, comparing the treadmill mode and dipolar mode (mode 2), we found Sh = 7.6 and
6.0 at Pe = 100, and Sh = 23.2 and 22.7 at Pe = 1000. That is, for the motile sphere, the
difference in nutrient uptake between mode 1 and mode 2 also decreased with increasing
Pe from 26.7 % to 2.2 %. Interestingly, for the sessile sphere, the nutrient uptake in mode
2 (Sh = 22.7) exceeded that of mode 1 (Sh = 20.8) at Pe = 1000, with a 9.1 % increase.

To probe the trends in Sh over a larger range of Pe values, we computed, for the
same hydrodynamic power, the steady-state concentration field for the sessile and motile
spheres, and for modes 1, 2 and 3, for Pe ∈ [0, 1000]. The increment in Pe is dynamically
adjusted from �Pe = 0.01 for Pe < 1 (denser grid) to �Pe = 100 for Pe > 100 (sparser
grid), with 173 discrete points in total between Pe = 0 and Pe = 1000. In figure 2(a), we
show the results for the sessile sphere. The solid lines in blue, purple and grey represent
modes 1, 2 and 3, respectively. Mode 1 exhibits the best feeding performance (highest Sh)
for Pe ≤ 284. Mode 2 exceeds mode 1 after this critical Pe value. At Pe = 1000, the Sh of
mode 2 is approximately 10 % higher than that of mode 1. Numerical results for the motile
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Figure 2. Sherwood number as a function of Péclet number: (a) sessile ciliate model and (b) motile ciliate
model for the same hydrodynamic power P = 1. Solid lines are numerical calculations for mode 1 (blue),
mode 2 (purple) and mode 3 (grey). Dashed lines and scaling laws in the limits of large and small Pe are
obtained from asymptotic analysis for mode 1 (blue) and mode 2 (purple).

sphere are shown in figure 2(b). Mode 1 outperforms modes 2 and 3 for the entire range
of Pe values, but the difference between modes 1 and 2 seems to decrease, and the two
modes seem to approach each other asymptotically at larger Pe.

To further understand the asymptotic behaviour of Sh in the limit of large Pe, we
performed an asymptotic analysis to obtain the scaling of Sh with Pe (see Appendix B).
To complete this analysis, we considered the two limits of small Pe � 1 and large Pe � 1
for the sessile ciliated sphere. Our approach is similar to that used in Magar et al. (2003)
and Michelin & Lauga (2011) for the treadmill mode in the motile ciliated sphere. In
table 2, we summarize the results of our asymptotic analysis for modes 1 and 2 of the
sessile sphere. Note that the asymptotic analysis of mode 2 applies equally to the sessile
and motile spheres. For comparison reasons, we also include in this table the asymptotic
results of Magar et al. (2003) and Michelin & Lauga (2011) for the swimming ciliated
sphere. These asymptotic results are superimposed onto the numerical computations in
the two insets in figures 2(a,b).

At small Pe (Pe � 1), in the treadmill mode, Sh scales with Pe2 and Pe1, respectively,
for the sessile and motile spheres, and in the dipolar mode, Sh scales with Pe2. That is,
at Pe � 1, the treadmill mode outperforms the dipolar mode in the motile case, and the
motile sphere outperforms the sessile sphere in the treadmill mode.

At large Pe (Pe � 1), in the treadmill mode, Sh scales with
√

Pe in both the sessile and
motile ciliated spheres. That is, there is no distinction in the scaling of Sh with Pe between
the motile and sessile spheres. Interestingly, we found that in the dipolar mode, Sh also
scales with

√
Pe, indicating no distinction between the treadmill and dipolar modes. The

constant coefficients in the asymptotic scaling differ slightly: Sh ≈ 0.65
√

Pe for treadmill,
sessile, Sh ≈ 0.72

√
Pe for treadmill, motile, and Sh ≈ 0.74

√
Pe for dipolar, both. Thus in

the motile sphere, the treadmill and dipolar modes perform nearly similarly in the large Pe
limit, while in the sessile sphere, the dipolar mode outperforms the treadmill mode by a
distinguishable difference (by approximately 10 %).

3.2. Optimal feeding in sessile ciliates
We next focused on the sessile ciliated sphere and, keeping the total hydrodynamic power
constant, we investigated numerically how Sh varies when multiple surface modes coexist.
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Sessile Motile

Large Pe limit

Mode 1 Sh = 2√
3π

Pe1/2 Sh = 2√
3π

(
3
2

)1/4

Pe1/2

Magar et al. (2003), Michelin & Lauga (2011)

Mode 2 Sh = 1√
π

31/4 Pe1/2

Small Pe limit

Mode 1 Sh = 1 + 43
720

Pe2 Sh = 1 + 1
3

√
3
2

Pe

Magar et al. (2003), Michelin & Lauga (2011)

Mode 2 Sh = 1 + 41
8400

Pe2

Table 2. Asymptotic expression for Sh as a function of Pe for sessile and swimming ciliated sphere model.
The velocity coefficients associated with each mode are chosen satisfying the same constraint hydrodynamic
power.

In figure 3(a), we distributed the total hydrodynamic power into the first two modes
only, assigning a fraction β2

1 to mode 1, and the remaining fraction 1 − β2
1 to mode 2.

We varied β2
1 from 1 (all hydrodynamic power assigned to mode 1) to 0 (all hydrodynamic

power assigned to mode 2) at fixed intervals �β2
1 = 0.05. We also varied Pe from 0

to 1000 at �Pe = 0.1. For each combination (Pe, β2
1 ), we computed the steady state

concentration field and calculated the resulting Sh. We found that at small Pe, Sh increased
monotonically as β2

1 varied from 0 to 1, indicating that mode 1 is optimal. At larger
Pe, a new local maximum appeared at β2

1 = 0 (mode 2). This change is evident when
comparing figures 3(b,c), which illustrate Sh as a function of β2

1 at Pe = 10 and Pe = 1000,
respectively. At Pe = 10, the maximal Sh at β2

1 = 1 is a global optimum. At Pe = 1000,
two local optima in Sh are obtained at β2

1 = 1 and β2
1 = 0, with Sh|β2

1=0 > Sh|β2
1=1,

indicating that mode 2 is a global optimum. Interestingly, when calculating the sensitivity
∂Sh/∂β2

1 of these maxima to variations in β2
1 , we found that the maximum at β2

1 = 0
(mode 2) is more sensitive to variations in β2

1 , with |∂Sh/∂β2
1 |β2

1=0 � |∂Sh/∂β2
1 |β2

1=1.

That is, a small variation in β2
1 leads to larger drop in Sh at β2

1 = 0 (mode 2), while the
same variation in β2

1 leads to a small drop in Sh at β2
1 = 1 (mode 1). In figure 3(c), we

show that a 10 % variation of β2
1 leads to a 3 % drop from the optimal value at mode 1, and

a 20 % drop from the optimal value at mode 2.
We next considered the case when the total hydrodynamic power P is distributed over

the first three modes, with a fraction β2
1 assigned to mode 1, a fraction β2

2 assigned to
mode 2, and the remaining fraction (1 − β2

1 − β2
2 ) assigned to mode 3. We considered

five values of Pe = 10, 100, 200, 500, 1000. For each Pe value, we varied β2
1 and β2

2 from
0 to 1 at �β2

(·) = 0.1, computed the steady-state concentration field at each grid point,
and evaluated the corresponding Sh. Results are shown in figure 3(d). A similar trend
appears: at small Pe, feeding is optimal when all the energy is assigned to mode 1 (β2

1 = 1,
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∂
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(a)
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(d)

Figure 3. Sherwood number for hybrid surface motions. (a) Hybrid surface motions with two fundamental
modes, treadmill and dipolar, and constraint hydrodynamic power P/(8πηa) = β2

1 + β2
2 = 1, where β2

1
represents the portion of the energy assigned to mode 1. Plot of Sh versus Pe and β2

1 as β2
1 varies from 0

to 1. Close-ups of Sh versus β2
1 at (b) Pe = 10 and (c) Pe = 1000 (left) and partial derivative of Sh with respect

to β2
1 (right). (d) Hybrid surface motions with three fundamental modes, treadmill, dipolar and tripolar, and

constraint hydrodynamic power P/(8πηa) = β2
1 + β2

2 + β2
3 = 1, where β2

1 and β2
2 represent, respectively, the

portions of the energy assigned to the treadmill and dipolar modes. Colour map shows variation in Sh as we
vary the energy portions β2

1 and β2
2 in the first two modes. Grey regions marked by red dashed lines correspond

to Sh within 10 % of corresponding maximal Sh.

β2
2 = 0), but as Pe increases, a new local optimum appears at mode 2 (β2

1 = 0, β2
2 = 1).

To test the sensitivity of these optima to variations in surface motion, we highlighted in
light grey regions in the (β2

1 , β
2
2 ) space that correspond to a 10 % drop in Sh from the

corresponding optimal value. Although at high Pe, mode 2 reaches higher values of Sh,
it is more sensitive to variations in surface motion. The local optimum at mode 1 is more
robust to such perturbations.

The optima in figure 3 are identified in an open-loop search over the parameter spaces
(β2

1 ,Pe) and (β2
1 , β

2
2 ,Pe). Such an open-loop search becomes unfeasible when considering

higher-order surface modes. A closed-loop optimization algorithm that seeks surface
velocities that optimize Sh is needed. Here, we adapted the adjoint optimization method
with gradient ascent algorithm used in Michelin & Lauga (2011) (see Appendix D).

In figure 4, we considered initial surface velocities with 10 modes, satisfying the
constraint on the total hydrodynamic power

∑N
n=1 β

2
n = 1. We used the closed-loop

optimization algorithm to identify optimal surface velocities that maximize Sh.
In figure 4(a), we show the optimization results at Pe = 10 and two distinct initial
conditions (grey line). The optimization algorithm converges to an optimal solution (black
line) that is close to mode 1 (superimposed in blue). The energy distribution among all
modes as a function of iteration steps shows that while the initial energy was distributed
among multiple modes, in the converged solution, energy is assigned mostly to mode 1.
Indeed, comparing Sh (black marker ∗) to Sh of mode 1 (blue line) shows that the optimal
Sh converges to that of mode 1. Flow streamlines and concentration fields at these optima
are shown in the bottom row of figure 4(a).
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Figure 4. Numerical optimization of surface motions that maximize feeding rates in sessile ciliates.
(a) Optimization results at Pe = 10 for two different initial guesses. (b) Optimization results at Pe = 1000
for the same two different initial guesses. The top row shows initial surface velocity (grey), optimal surface
motion (black), and mode 1 (blue). The second row shows the energy distribution among ten different velocity
modes at each iteration of the numerical optimization process. The third row shows Sh (black) at each iteration,
Sh for only mode 1 (Shmode1, blue), and the difference in Sh (Shmode1 − Sh, grey). The last row shows fluid
and concentration fields under optimal surface conditions. In (b), at Pe = 1000, the numerical optimization
algorithm converges to one of two distinct solutions, depending on initial conditions that are close to either
mode 1 (blue) or mode 2 (purple).

In figure 4(b), we show the optimization results at Pe = 1000 and the same two
initial conditions (grey line) considered in figure 4(a). Here, unlike in figure 4(a), the
optimization algorithm converges to two different optimal solutions depending on initial
conditions: one optimal (black line) is close to mode 1 (superimposed in blue), and the
other optimal is close to mode 2 (superimposed in purple), as reflected in the energy
distribution (second row) and in Sh values (third row). Flow streamlines and concentration
fields at these two distinct optima are shown in the bottom row of figure 4(b). The second
optimal, the one corresponding to mode 2, exhibits the higher Sh value. These results are
consistent with the open-loop analysis presented in figures 2 and 3.

4. Conclusion

This work outlines several novel contributions. (1) We extended the envelope model to a
fixed ciliated sphere. (2) We analysed the feeding rates around fixed and freely swimming
spheres, subject to steady-state surface velocities, and computed the Sherwood number
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Sh numerically in a range of moderate Péclet numbers Pe. (3) We performed asymptotic
analysis for Sh as a function of Pe in the two extreme (small and large) Pe limits, and for
the two first modes of surface velocities. (4) We computed optimal surface velocities that
maximize feeding rates using an adjoint feedback optimization method.

For motile ciliates, we found that assigning all energy into a treadmill surface velocity
that induces swimming is an optimal strategy for maximizing feeding rate, but only in a
finite Pe range. This is in contrast to the findings in Michelin & Lauga (2011) that claimed
optimality of the treadmill mode for all Pe. In the limit of large Pe, we found no distinction
in nutrient uptake between the treadmill mode and the symmetric dipolar mode that applies
zero net force on the ciliated body, inducing no swimming motion.

For sessile ciliates, we found that the treadmill mode achieves optimal feeding rate at
relatively low Pe values below a critical value Pecr ≈ 280, while the dipolar mode becomes
optimal for Pe exceeding this threshold. Our asymptotic analysis supports that in the large
Pe limit, the dipolar surface mode outperforms other modes in terms of feeding rate.
However, our sensitivity analysis shows that although at large Pe the treadmill mode leads
to lower Sh, it is more robust to perturbations in the surface velocity. The dipolar mode
leads to higher Sh, but it is significantly more sensitive to perturbations, with feeding
efficiency dropping rapidly even with small perturbations in surface motion.

The reader may wonder how the optimal solutions discussed here apply to unsteady,
time-dependent ciliary strokes. In a follow-up study to Michelin & Lauga (2011), which
focused solely on motile ciliates, the authors numerically explored unsteady strokes for
maximizing feeding at a fixed energy budget, and found that the optimal steady swimmer
was always the overall optimal feeder (Michelin & Lauga 2013). Similarly, in a preliminary
analysis of unsteady surface motions, we found that in both motile and sessile ciliates,
the optimal steady-state solutions presented in this work set an upper bound for what is
achievable in the unsteady case. These unsteady motions will be explored in future work.

Our findings challenge previous assumptions that motility inherently improves feeding
rate in ciliates (Michelin & Lauga 2011; Andersen & Kiørboe 2020). We demonstrate that
the optimal cilia-driven surface velocity for maximizing feeding rate varies significantly
depending on Pe, with distinct advantages observed for both motile and sessile ciliates
under different Pe. This study enriches the understanding of the complexity of feeding
strategies in ciliated microorganisms, and highlights the importance of considering
various environmental conditions when evaluating the ecological roles and evolutionary
adaptations of these microbes.
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Appendix A. General solution of the Stokes equations in spherical coordinates

A.1. Stokes equations
For solving fluid velocity u at zero Re limit, the incompressible Stokes equation, we
consider following approach. Due to the continuity property of the fluid, the velocity
vector u can be expressed in terms of a vector potential Ψ as u = ∇ × Ψ (Batchelor
2000). Taking the curl of the Stokes equation in (2.1), substituting u = ∇ × Ψ into the
resulting equation and using the incompressibility condition, we get the classic result that
the vector potential Ψ is governed by the bi-Laplacian ∇2∇2Ψ = 0 (Happel & Brenner
1965).

To solve for the fluid velocity in the fluid domain bounded internally by a spherical
boundary of radius a, it is convenient to introduce the spherical coordinates (r, θ, φ)
and associated unit vectors er, eθ , eφ (see figure 1a). We express the fluid velocity in
component form u ≡ (ur, uθ , uφ). Here, we are interested only in axisymmetric flows,
for which uφ = 0 is identically zero, and the components of the vector potential Ψ can be
expressed in terms of an axisymmetric streamfunction ψ (see e.g. Batchelor 2000):

Ψ =
(

0, 0,
ψ

r sin θ

)T

. (A1)

The non-trivial components (ur, uθ ) of the fluid velocity are related to ψ(r, θ) as follows:

ur = 1
r2 sin θ

∂ψ

∂θ
, uθ = − 1

r sin θ
∂ψ

∂r
. (A2a,b)

The streamfunction ψ is governed by the biharmonic equation E2E2(ψ) = 0 given in
terms of the linear operator E2:

E2 = ∂2

∂r2 + sin θ
r2

∂

∂θ

(
1

sin θ
∂

∂θ

)
. (A3)

This biharmonic equation E2E2(ψ) = 0 can be solved analytically for arbitrary boundary
conditions in terms of r and the coordinate μ obtained via the nonlinear transformation
of coordinates μ = cos θ . Explicitly, an expression for ψ(r, μ) can be found in Happel &
Brenner (1965):

ψ(r, μ) =
∞∑

n=2

(anrn + bnr−n+1 + cnrn+2 + dnr−n+3)Fn(μ). (A4)

Here, Fn(μ) = − ∫ Pn−1(μ) dμ are solution functions related to the Legendre
polynomials of the first kind Pn(μ), satisfying the equation (1 − μ2)(d2Fn/dμ2)+ n(n −
1)Fn = 0, and an, bn, cn and dn are unknown coefficients.

By substituting (A4) into (A2), we obtain the velocity components (ur, uθ ):

ur(r, μ) =
(
α0 + α13

1
r3 + α11

1
r

)
P1(μ)+

∞∑
n=2

(
αn+2

1
rn+2 + αn

1
rn

)
Pn(μ),

uθ (r, μ) =
(

−α0 + α13
1

2r3 − α11
1
2r

)
V1(μ)+

∞∑
n=2

1
2

(
αn+2

n
rn+2 + αn

n − 2
rn

)
Vn(μ),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A5)
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where α0, α11, . . . , αn are unknown coefficients, related to an, bn, cn, dn in (A4), to be
determined from boundary conditions. The basis functions Vn(μ) are defined as

Vn(μ) = − 2√
1 − μ2

∫
Pn(μ) dμ = 2

n(n + 1)

√
1 − μ2 P′

n(μ), (A6)

where P′
n(μ) = dPn(μ)/dμ. Both the Legendre polynomials Pn(μ) and basis functions

Vn(μ) satisfy the orthogonality conditions∫ +1

−1
Pn(μ)Pm(μ) dμ = 2

2n + 1
δnm,∫ +1

−1
Vn(μ)Vm(μ) dμ = 8

n(n + 1)(2n + 1)
δmn.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A7)

A.2. Analytical expressions of the pressure field
The pressure is obtained by substituting (A5) into the Stokes equation (2.1) and integrating,
yielding the pressure field p(r, μ) as

p = p∞ + η

∞∑
n=1

4n − 2
n + 1

αn

rn+1 Pn(μ). (A8)

A.3. Analytical expressions of the stress field
The fluid stress tensor σ is given by σ = −pI + η(∇u + ∇uT). For the axisymmetric
flows considered here, σ admits three non-trivial stress components:

σrr = −p + 2η
∂ur

∂r
, σrθ = η

(
1
r
∂ur

∂θ
+ r

∂

∂r

(uθ
r

))
,

σθθ = −p + 2η
(

1
r
∂uθ
∂θ

+ ur

r

)
.

⎫⎪⎪⎬
⎪⎪⎭ (A9)

Explicit expressions for the stress components are obtained by substituting (A5) and (A8)
into (A9).

A.4. Hydrodynamic force acting on the sphere
The hydrodynamic force exerted by the fluid on the sphere can be calculated by integrating
the stress tensor σ over the surface S of the sphere. Due to axisymmetry, only the force in
the direction of the axis of axisymmetry, taken to be the z-axis, is non-zero:

F =
∫

S
σ · n̂ dS = −4πηα11ez. (A10)

A.5. Viscous dissipation energy
The energy dissipation rate is defined as the volume integral over the entire fluid domain V
of the inner product of the velocity strain rate tensor e = 1

2(∇u + ∇uT) and stress tensor
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σ , which, given proper decay at infinity, can be expressed as an integral over the surface
of the sphere by applying the divergence theorem (see e.g. Kim & Karrila 2013),

P =
∫

V
e : σ dV = −

∫
S

u · (σ · n̂) dS. (A11)

A.6. Energy dissipation and the reciprocal theorem
Let u1 and σ 1 be the fluid velocity and stress field at the surface of the sessile ciliate, and
let um = Uez + u1 and σm be those of the motile ciliate; here, Uez represents the rigid
translation of the ciliate and u1 the ciliary treadmill motion, assuming that both motile
and sessile ciliates exhibit the same u1. The total energy dissipation rates Ps and Pm of
the sessile and motile ciliates, respectively, are given by

Ps = −
∮

u1 · σ 1 · n̂ dS, Pm = −
∮

um · σm · n̂ dS = −
∮

u1 · σm · n̂ dS, (A12a,b)

where, to obtain Pm, we used the fact that
∮

ez · σm · n̂ dS = 0 because the motile ciliate
is force-fee in the ez direction.

Now apply the reciprocal theorem (Happel & Brenner 1965) to the two auxiliary
problems (u1, σ 1) and (um : σm),∮

u1 · σm · n̂ dS =
∮

um · σ 1 · n̂ dS. (A13)

The left-hand side is equal to Pm. The right-hand side, recalling that um = Uez + u1, is
equal to Ps − U

∮
ez · σ 1 · n̂ dS, that is,

Pm = Ps − U
∮

ez · σ 1 · n̂ dS. (A14)

By definition of the treadmill surface velocity u1(r = a, θ) = B1 V1(cos θ) eθ and
associated fluid velocity (table 1) and stress field (A9), we get that Pm = (16/3)πηaB2

1
and Ps = 8πηaB2

1, as listed in table 1. We also get that the last integral on the right-hand
side is equal to U

∮
ez · σ 1 · n̂ dS = 4πηaB1U, which for U = 2B1/3 is consistent with the

results in table 1. That is, for the same surface velocity, the dissipation rate in the motile
case is lower by one-third compared to the dissipation rate in the sessile case. Alternatively,
to maintain the same dissipation rate, the treadmill surface velocity in the motile case
should be set to B1,motile/B1,sessile = √

3/2, as done in the main text.

Appendix B. Asymptotic analysis

In this appendix, we consider the flow field generated by the ciliary motion and derive
an asymptotic solution of the Sherwood number for sessile ciliated sphere in the limit of
large and small Péclet numbers, respectively. In particular, we seek asymptotic expressions
associated with modes 1 and 2.

B.1. Large Pe limit
Here, we start with a general expression for the velocity field corresponding to the nth
mode surface velocity at the unit sphere a = 1, for which uθ (μ)|r=1 = Bn Vn(μ), where
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n = 1 and n = 2 are considered later in the paper. The flow field corresponding to the nth
mode is given by (see table 1)

ur =
(

1
rn+2 − 1

rn

)
Bn Pn(μ), uθ =

(
n

rn+2 − n − 2
rn

)
Bn

2
Vn(μ). (B1a,b)

We take the Taylor series expansion of the flow field at r = 1, and keep only the
leading-order terms:

ur(r, μ) = ur|r=1 + ∂ur

∂r

∣∣∣∣
r=1

(r − 1)+ · · · = −2Bn(r − 1)Pn(μ)+ · · · ,

uθ (r, μ) = uθ |r=1 + ∂uθ
∂r

∣∣∣∣
r=1

(r − 1)+ · · · = Bn Vn(μ)+ · · · .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B2)

We define the temporary variable y = r − 1 (not to be confused with the y-coordinate in
the inertial (x, y, z) space). The region y � 1 represents a thin boundary layer around the
spherical surface. Since the concentration boundary layer is expected to be thinner as Pe
increases, we rescale r − 1 = y = Pe−m Y , where Y is a new variable.

Next, we substitute the linearized flow field u from (B2) into the advection–diffusion
equation (2.4), and use the new variable r − 1 = Pe−m Y . Keeping only the leading-order
terms, we obtain the advection operator u · ∇:

ur
∂

∂r
= −2BnPnY

∂

∂Y
, uθ

1
r
∂

∂θ
= −BnVn

√
1 − μ2 1

Pe−m Y + 1
∂

∂μ
. (B3a,b)

Similarly, rewriting the Laplacian operator using the new variable r − 1 = Pe−m Y , we
arrive at

∇2 = Pe2m ∂2

∂Y2 + 2 Pem

Pe−m Y + 1
∂

∂Y
+ 1
(Pe−m Y + 1)2

∂

∂μ

(
(1 − μ2)

∂

∂μ

)
. (B4)

The leading-order term in the Laplacian operator scales with Pe2m, while the leading-order
term in the advection operator scales with Pe0. Matching order on both sides of
the advection–diffusion equation, we have 2m = 1. Thus m = 1/2, and we have
r − 1 = Pe−1/2 Y .

We now substitute (B3) and (B4), with m = 1/2 into the dimensionless
advection–diffusion equation (2.5), and keeping only the leading-order terms, we arrive
at

−Bn

(
2PnY

∂c
∂Y

+ Vn

√
1 − μ2 ∂c

∂μ

)
= ∂2c
∂Y2 . (B5)

We define a similarity variable Z = Y/g(μ) such that by the chain rule,

∂

∂Y
= 1

g
∂

∂Z
,

∂

∂μ
= g′ ∂

∂g
= −Zg′

g
∂

∂Z
. (B6a,b)

We substitute into (B5) and rearrange terms to arrive at the ordinary differential equation

∂2c
∂Z2 + Bn

(
2Png2 − 1

n(n + 1)
(1 − μ2)P′

ngg′
)

Z
∂c
∂Z

= 0. (B7)
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For a similarity solution to exist, the term 2μg2 − (1 − μ2)gg′ needs to be equal to a
constant. Setting the value of this constant to 2, the problem becomes that of solving

d2c
dZ2 + 2Z

dc
dZ

= 0, Bn

(
2Png2 − 1

n(n + 1)
P′

n(1 − μ2) (g2)′
)

= 2. (B8a,b)

For the first mode, n = 1 and P1 = μ, the solution is in the form

c(Z) = C1 erf(Z)+ C2, g2(μ) = C3 − 12μ+ 4μ3

3B1(μ2 − 1)2
. (B9a,b)

Here, C1, C2 and C3 are unknown constants to be determined from the boundary
conditions c(Z = 0) = 1, c(Z → ∞) = 0, and from the condition that at μ = 1, the
concentration field and the function g(μ) must be bounded (Magar et al. 2003). Put
together, we get that C3 = 8, C2 = 1 and C1 = −1. Thus the asymptotic solution of the
concentration field in the limit of large Péclet number, Pe � 1, is given by

c(Z) = 1 − erf(Z) = erfc(Z), (B10)

where

Z = Pe1/2 r − 1
g(μ)

, g(μ) =
√

8 − 12μ+ 4μ3

3B1(1 − μ2)2
. (B11)

The Sherwood number at large Pe is given by

Shmode 1 = −1
2

∫ 1

−1

∂c
∂r

∣∣∣∣
r=1

dμ = 1
2

Pe1/2
∫ 1

−1

2√
π

e−Z2 1
g

∣∣∣∣
r=1

dμ

= 1√
π

Pe1/2
∫ 1

−1

√
3B1(1 − μ2)2

8 − 12μ+ 4μ3 dμ =
√

4B1

3π
Pe1/2. (B12)

Similarly, for the second mode, n = 1 and P2 = 1
2 (3μ

2 − 1), we obtain the solution

Z = Pe1/2 r − 1
g(μ)

, g(μ) =
√

1 + μ4 − 2μ2

B2(1 − μ2)2μ2 . (B13)

The Sherwood number at large Pe is

Shmode 2 =
√

B2

π
Pe1/2. (B14)

B.2. Small Pe limit
At small Péclet number, we expand the concentration field as

c = Pe0c0 + Pe1c1 + Pe2c2 + · · · (B15)

We substitute the expanded concentration into the dimensionless advection–diffusion
equation (2.5), and we arrive at the following system of equations, to be solved at each
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order in Pe:

Order 0 0 = ∇2c0, c0|r=1 = 1, c0|r→∞ = 0,

Order 1 u · ∇c0 = ∇2c1, c1|r=1 = 0, c1|r→∞ = 0,

Order 2 u · ∇c1 = ∇2c2, c2|r=1 = 0, c2|r→∞ = 0.

⎫⎪⎬
⎪⎭ (B16)

At leading order, the solution is simply c0 = 1/r. To find the solution at higher orders, we
substitute the velocity field (B1) into the higher-order equations in (B16). At order Pe1, we
get

−Bn

(
1

rn+2 − 1
rn

)
1
r2 Pn(μ) = ∇2c1, c1(r = 1) = 0. (B17)

Recall that the Legendre polynomials satisfy the Legendre differential equation
(d/dμ)[(1 − μ2)P′

m] + m(m + 1)Pm = 0. Expanding c1 in terms of Legendre polynomials
c1(r, μ) = ∑∞

m=0 Rm(r)Pm(μ), and substituting back into the above equation, we get

−Bn

(
1

rn+2 − 1
rn

)
Pn(μ) =

∞∑
m=0

(
d
dr

(
r2 dRm

dr

)
− m(m + 1)Rm

)
Pm(μ). (B18)

By equating the Legendre polynomials on both sides in the above equation, we get that
only the term Rn(r) survives:

−Bn

(
1

rn+2 − 1
rn

)
= r2R′′

1n + 2rR′
1n − 6R1n. (B19)

For the first mode, solving the above ordinary differential equations with n = 1, taking
into consideration the boundary conditions, we get the solution for c1:

c1(r, μ) =
(

3
4

r−2 − 1
4

r−3 − 1
2

r−1
)

B1μ. (B20)

Repeating the same procedure at order Pe2, we get

∇2c2 = B2
1

(
4 − 9r + 2r2 + 3r3

12r7 P0(μ)− (r − 1)(5 − 4r − 9r2 + 6r3)

8r7
2
3

P2(μ)

)
.

(B21)

We expand c2 = ∑∞
m=0 Rm(r)Pm(μ) in terms of a Legendre polynomial expansion with

unknown Rm(r), and substitute back in the above equation. We get that only the terms
R0(r) and R2(r) survive, such that the general solution for c2(r, μ) is given by

c2(r, μ) = R0(r)P0(μ)+ R2(r)P2(μ). (B22)

One can readily verify that the ordinary differential equation governing R0(r) is given by

r2R′′
0 + 2rR′

0 = B2
1

4 − 9r + 2r2 + 3r3

12r5 . (B23)

The solution to this equation, taking into account the boundary conditions, is of the form

R0(r) = B2
1

(
− 77

720r
+ 1

60r5 − 1
16r4 + 1

36r3 + 1
8r2

)
. (B24)
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Optimal feeding in swimming and attached ciliates

It turns out that for computing the Sherwood number below, only R0(r) is needed, as shown
in

−1
2

∫ 1

−1

∂c2

∂r

∣∣∣∣
r=1

dμ = −1
2

∞∑
m=0

dRm

dr

∣∣∣∣
r=1

∫ 1

−1
Pm(μ) dμ = dRm

dr

∣∣∣∣
r=1

δm0, (B25)

implementing the property of Legendre polynomials
∫ 1
−1 Pm(μ) dμ = 2δm0. We thus need

not calculate R2(r). For the first mode, Sh in the small Pe limit is given by

Shmode 1 = −1
2

∫ 1

−1

∂c0

∂r

∣∣∣∣
r=1

dμ− 1
2

(∫ 1

−1

∂c1

∂r

∣∣∣∣
r=1

dμ

)
Pe − 1

2

(∫ 1

−1

∂c2

∂r

∣∣∣∣
r=1

dμ

)
Pe2

= 1 + 43B2
1

720
Pe2. (B26)

Similarly, we can compute the Sherwood number for surface velocity containing only the
second mode by replacing the velocity field with n = 2:

Shmode 2 = 1 + 41B2
2

25 200
Pe2. (B27)

Appendix C. Spectral method

We solve (2.5) using the Legendre spectral method; see e.g. Michelin & Lauga (2011).
To this end, we first expand the concentration field c(r, μ) in terms of the Legendre
polynomials Pm(μ) as

c(r, μ) =
∞∑

m=0

Cm(r)Pm(μ), (C1)

where Cm(r) are unknown coefficients associated with Legendre basis functions Pm(μ).
We substitute (C1) into (2.5) and project the governing equation onto the kth Legendre
polynomial Pk(μ), to arrive at an infinite set of coupled boundary-value ordinary
differential equations for the unknown coefficients Ck(r), k = 0, . . . ,∞:

Pe
∞∑

n=1

∞∑
m=0

Bn

(
Emnk fnr

∂Cm

∂r
− Fmnk fnθ

Cm

r

)

= ∂2Ck

∂r2 + 2
r
∂Ck

∂r
− k(k + 1)

r2 Ck, Ck|r=a=1 = δ0k, Ck|r=∞ = 0. (C2)

Here, the coefficients Emnk and Fmnk are obtained by projection, using the orthogonality
property of the Legendre polynomials:

Emnk = 2k + 1
2

∫ 1

−1
PnPmPk dμ, Fmnk = 2k + 1

2n(n + 1)

∫ 1

−1
(1 − μ2)P′

nP′
mPk dμ.

(C3a,b)
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The terms fnr and fnθ are the r components of the flow field:

Sessile ciliated sphere fnr = 1
rn+2 − 1

rn , fnθ = n
rn+2 − n − 2

rn ,

Motile ciliated sphere f1r = 2
3

(
−1 + 1

r3

)
, f1θ = 2

3

(
2 + 1

r3

)
,

fnr = 1
rn+2 − 1

rn (n ≥ 2),

fnθ = n
rn+2 − n − 2

rn (n ≥ 2).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C4)

In the numerical calculation, we truncate the number of modes in the expansion (B16)
of the concentration field to account for a finite number M of modes. To reach the
far-field boundary condition, we used a non-uniform radial mesh such that the grid is
denser near the sphere surface and more sparse in the far field. Specifically, we used
the exponential function r = es(ζ ), where ζ ∈ [0, 1], and s(ζ ) = w1ζ

3 + w2ζ
2 + w3ζ is a

third-order polynomial of ζ with constants w1,w2,w3 chosen for getting converged results.
To express (C2) in terms of the transformed variable ζ , we used the chain rule:

dCk

dr
= dCk

dζ
dζ
dr
,

d2Ck

dr2 =
(

dζ
dr

)2 d2Ck

dζ 2 + d2ζ

dr2
dCk

dζ
. (C5a,b)

Considering N velocity modes and M concentration modes, the differential equations in
(C2) can be rewritten as

Pe
N∑

n=1

M∑
m=0

Bn

(
Emnk fnr

dCm

dζ
dζ
dr

− Fmnk fnθ
Cm

r

)

−
(

dζ
dr

)2 d2Ck

dζ 2 − d2ζ

dr2
dCk

dζ
− 2

r
dζ
dr

dCk

dζ
+ k(k + 1)

r2 Ck = 0. (C6)

We discretized the spatial derivatives using the centre difference scheme

dCm,j

dζ
= Cm,j+1 − Cm,j−1

2�ζ
,

d2Cm,j

dζ 2 = Cm,j+1 − 2Cm,j + Cm,j−1

(�ζ)2
. (C7a,b)

We computed the concentration field and Sherwood number for various Péclet numbers,
and tested the convergence of the results as a function of mesh size �ζ , computational
domain R, and the number of modes M in the concentration expansion at Pe = 100.
To test the effect of mesh size on the convergence of our simulations, we fixed the
number of modes M and computational domain size R, and varied the mesh size as
δζ = 1

100 ,
1

200 ,
1

400 ,
1

800 . We computed the relative error of the Sherwood number as a
function of mesh size δζ ; the results converged as the mesh size got smaller. Consistent
with the second-order accuracy of the discretization (C7), we obtained a convergence
rate close to 2. When testing the convergence as a function of the number of modes M
in the concentration expansion and the computational domain size R, we found that a
higher number of concentration modes and larger computational domain size are needed
for higher Péclet numbers. Also, because the concentration field becomes more front and
back asymmetric as Péclet increases, a denser mesh is required to capture the rapid change
near the surface.
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Optimal feeding in swimming and attached ciliates

Appendix D. Optimization method

To search for optimal surface motions that maximize feeding in the sessile sphere
model, we considered an optimization method based on variational analysis and steepest
ascent (Michelin & Lauga 2011). The problem consists of a partial differential equation
constrained optimization problem, where the goal is to find optimal Bn that maximize the
Sherwood number, subject to the concentration field c satisfying the advection–diffusion
equation and surface velocity satisfying the constant energy constraint:

max
Bn,c

Sh(Bn, c),

subject to L[c] = 0 and
N∑

n=1

2B2
n

n(n + 1)
= 1.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(D1)

Here, the linear operator L = Pe u · ∇ − ∇2 is that of the advection–diffusion equation
along with the corresponding boundary conditions.

We use a variational approach to derive an adjoint system of equations. Given a surface
motion, we consider small variations δBn in the coefficients associated with each mode.
The corresponding small variations in the velocity field and concentration field are given
by δu and δc, and result in a variation in Sh in (2.8):

δSh = − 1
4π

∫
S
∇δc · n̂ dS. (D2)

The concentration variation δc must satisfy

Pe (u + δu) · ∇(c + δc) = ∇2(c + δc), (c + δc)(r = 1) = 1, (c + δc)(r → ∞) = 0.
(D3)

Subtracting the partial differential equation for c and keeping the leading order in δc, we
arrive at

Pe (δu · ∇c + u · ∇δc) = ∇2δc, δc(r = 1) = 0, δc(r → ∞) = 0. (D4)

Multiplying the above equation with a test function g(r, μ) and integrating over the entire
fluid domain, we get

Pe
∫

V
(g δu · ∇c + gu · ∇δc) dV =

∫
V

g ∇2δc dV. (D5)

Using integration by parts and standard vector calculus identities, together with the
appropriate boundary conditions and continuity property of the fluid, we obtain

−Pe
∫

V
c δu · ∇g dV +

∫
S
(g ∇δc) · n̂ dS =

∫
V
δc(Pe u · ∇g + ∇2g) dV. (D6)

Following a standard argument, we get that the test function g must satisfy the partial
differential equation and boundary conditions

Pe u · ∇g + ∇2g = 0, g(r = 1) = 1, g(r → ∞) = 0, (D7)

and the consistency equation∫
S
∇δc · n̂ dS = Pe

∫
V

c δu · ∇g dV. (D8)
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From (D2) and (D8), we get that the variation in Sh is given by

δSh = − 1
4π

∫
S
∇δc · n̂ dS = − Pe

4π

∫
V

c δu · ∇g dV = −Pe
2

∫ ∞

1

∫ 1

−1
c(δu · ∇g)r2 dr dμ.

(D9)

We expand the test function g(r, μ) in terms of Legendre polynomials in μ,

g(r, μ) =
∞∑

m=0

Gm(r)Pm(μ), (D10)

and substitute back into (D9) with the perturbation from surface velocity δu(r = 1) =
(δBn)Vneθ . We arrive at an expression for the gradient of nutrient uptake at each mode:

δSh
δBn

= −Pe
∞∑

m=0

∞∑
k=0

1
2k + 1

∫ ∞

1

[
Ck fnrG′

mEmnk − CkGm fnθ
r

Fmnk

]
r2 dr. (D11)

We now consider a finite number of velocity modes, and express the input surface velocity
as βn Vn(μ), where βn = √

2/n(n + 1)Bn. The weighted coefficients βn associated with
each velocity mode must satisfy the constraint on the energy dissipation rate, that is,∑

n β
2
n = 1.

Starting from an initial vector β0 = (β1, β2, . . . , βn, . . .) of weighted coefficients, our
goal is to find the optimal value of β that simultaneously maximizes Sh and satisfies the
constraint ‖β( j)‖ = 1 at each iteration j in the optimization process. Thus to get the value
of β( j) at subsequent iterations j > 0, we project the feeding gradient onto the constraint
space ‖β( j)‖ = 1 using the linear projection (I − β( j) ⊗ β( j)), where I is the identity
matrix. That is, the steepest ascent direction of Sh with respect to weighted coefficients
βn at the jth iteration is given by

∇d Sh = ∇β Sh − (β( j) · ∇β Sh)β( j). (D12)

The optimization process consists of updating β( j+1) following the gradient ascent
direction, where α is step size that can be adjusted in each iteration:

β( j+1) = β( j) + α∇dSh

‖β( j) + α∇dSh‖ . (D13)
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