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Active diffusion of substances in binary immiscible and incompressible fluids with
different densities occurs universally in nature and industry, but relevant mathematical
models and numerical simulation have been studied scarcely so far. In this paper, a
thermodynamically consistent phase-field model is established to describe the activated
solute transport in binary fluids with different densities. A mixed free-energy function
for multiple solutes is proposed, which leads to different solute chemical potentials in
binary solvent fluids, thus it has the ability to characterize the solubility difference of
the solutes in two solvents. The two-phase flow is governed by a general hydrodynamic
phase-field model that can account for general average velocity and different densities. The
proposed model is derived rigorously using the second law of thermodynamics. Moreover,
a general multi-component solute diffusion model is established using the Maxwell–Stefan
approach, which involves the crossing influences between different solutes. To solve the
model effectively, an efficient, linearized and decoupled numerical method is proposed
for the model as well. The proposed numerical method can preserve the thermodynamical
consistency, i.e. obeying an energy dissipation law at the discrete level, as well as guarantee
the mass conservation law for the solutes and solvent fluids. Numerical experiments are
carried out to show that the proposed model and numerical method can simulate various
processes of the solute active diffusion in two-phase solvent fluids.

Key words: multiphase flow

† Email addresses for correspondence: jishengkou@163.com, wangxiuhua163email@163.com

© The Author(s), 2023. Published by Cambridge University Press 955 A41-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

mailto:jishengkou@163.com
mailto:wangxiuhua163email@163.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.8&domain=pdf
https://doi.org/10.1017/jfm.2023.8


J. Kou, A. Salama and X. Wang

1. Introduction

In the normal diffusion process, solutes move from a region of higher concentration to
a region of lower concentration if the solution is dilute (Wesselingh & Krishna 2000).
The normal diffusion obeys Fick’s law of diffusion, so it is also called Fickian diffusion.
Fick’s law is usually applicable for the solute diffusion in the single-phase fluid that may
consist of multiple solvents. When the solvent consists of two-phase immiscible fluids, the
solute movement from one fluid with lower solute concentration to the other with higher
solute concentration may take place due to different solubility characteristics of the solute
in two solvent fluids. This is called active diffusion, which is a universal phenomenon
in nature and industry (Hass & Fine 2010; Drechsler et al. 2017; von den Driesch et al.
2020; Guzmán-Lastra, Löwen & Mathijssen 2021; Watson et al. 2020). For example, as
an important greenhouse gas, CO2 released through human activities has been raising the
global temperature, and in turn the temperature increase makes more CO2 originally stored
in oceans transfer into the atmosphere. This thermally activated diffusion process of CO2
influences drastically the global climate change (Watson et al. 2020). In biology, mass
transfer between cells is often accomplished via a delicate process of active diffusion
and advection (Drechsler et al. 2017). As a common phenomenon occurring in biology
and material science, mass transfer through semi-permeable or conducting interfaces
(Johansson et al. 2005; Gong, Gong & Huang 2014) can be attributed to specific active
diffusion; an example is the regulation of intracellular ion concentrations in living cells
despite the changes of concentrations in extracellular spaces. In industry, the removal and
extraction of one material can be achieved by the use of its preference for specific solvents
(Hass & Fine 2010).

Due to its critical importance, mathematical models and numerical simulation of solute
diffusion in multiple solvent fluids have been an attractive topic. In the works of Gong et al.
(2014) and Wang et al. (2020a), the immersed boundary methods have been developed
to model and simulate mass transfer through permeable interfaces interacting with the
surrounding fluids under large moving deformations, and in particular, an additional
equation has been introduced to describe the temporal evolution of advective and diffusive
fluxes across the interfaces. A thermodynamically consistent phase-field model (Qin et al.
2022) has been proposed to describe mass transfer across permeable moving interfaces; it
considers the restricted diffusion problems where the diffusive flux across the interfaces
depends on the conductance and concentration difference on each side. The above works
follow with interest the active diffusion of mass transfer through porous membranes, in
which the membranous interfaces have a critical influence on forming the contrast of
concentrations of the substances in internal and external parts of the interfaces. There
have been only a few works that use the phase-field models to describe universal active
diffusion processes of solutes in two immiscible and incompressible fluids with different
densities. This work concerns modelling and numerical simulation of such active diffusion
problems using a thermodynamically consistent phase-field model.

The phase-field approach (Anderson, McFadden & Wheeler 1998; Kim 2012) has
been employed extensively to model a variety of multiphase fluid and fluid–structure
problems through the use of diffuse interfaces (Cahn & Hilliard 1958; Cahn & Allen
1977; Boyer 2002; Shen & Yang 2010; Gomez & Hughes 2011; Shen, Yang & Wang
2013; Guo et al. 2017; Yu & Yang 2017; Zhu et al. 2019). A key ingredient of phase-field
models is to introduce proper free-energy functionals to characterize phase properties
and behaviours. This allows a phase-field model to satisfy a specific energy dissipation
law that is a direct consequence of the second law of thermodynamics for the isothermal
system (Kou & Sun 2018a,b). The phase-field approach has been applied successfully to
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model the solute transport in two-phase flow. One main focus of attention is to model
surfactants soluble in two fluids (e.g. oil and water) (van der Sman & van der Graaf
2006; Engblom et al. 2013; Garcke, Lam & Stinner 2014; Zhu et al. 2019). Surfactants
can reduce the interfacial tension, thereby greatly affecting the dynamics of binary fluids;
for instance, the use of surfactants can enhance the oil recovery rate significantly. van
der Sman & van der Graaf (2006) proposed a diffuse interface model with surfactant
adsorption based on a free-energy functional. Garcke, Lam & Stinner (2014) derived the
comprehensive phase-field models of two-phase flow incorporating a soluble surfactant in
a thermodynamically consistent way, which can provide deep understanding of impacts of
surfactants on coalescence and segregation of droplets. A thermodynamically consistent
model of two-phase flows with soluble surfactants and moving contact line has been
derived further by Zhu et al. (2019). Although the solute transport is usually described
by the convection–diffusion equations, modelling of the solute active diffusion demands
specific free-energy functions. In order to characterize the active diffusion of solutes,
we propose a mixed free-energy function for the solutes, which takes different energy
parameters in different solvent fluids. This leads to a contrast between the solute chemical
potentials in binary fluids despite the same solute concentrations. In other words, at the
equilibrium state, the solute chemical potentials are equal in binary solvent fluids, whereas
the solute concentration in one solvent fluid may be higher than that in the other fluid.
Thus the proposed mixed free-energy has the ability to reflect the solubility difference
of the solutes in two fluids. Moreover, we consider the solute composed of multiple
substances and establish a general multi-component solute diffusion model using the
Maxwell–Stefan approach (Wesselingh & Krishna 2000), which takes into consideration
the crossing influences between different solutes.

For real two-phase flow, there is generally a density contrast between two different
fluids, so general phase-field models should take this property into consideration. Several
phase-field models with different densities have been developed in the literature (Anderson
et al. 1998; Lowengrub & Truskinovsky 1998; Boyer 2002; Ding, Spelt & Shu 2007; Shen
& Yang 2010; Shen et al. 2013; Liu, Shen & Yang 2015; Roudbari et al. 2018; Haddada &
Tierra 2022). There are two kinds of models used popularly in the literature. The first is the
model (Abels, Garcke & Grün 2012) that uses the volume-averaged velocity and involves a
mass diffusion flux in the momentum balance equation to guarantee the thermodynamical
consistency. The others are the models based on the mass-averaged velocity (Shen et al.
2013; Aki et al. 2014; Li & Wang 2014), which are the models used most commonly
due to the feature that the standard mass conservation equation can be derived naturally
using the mass-averaged velocity. The above models have different formulations due to
different choices of averaged velocities. Recently, a general phase-field model has been
proposed by Kou et al. (2020b), which features a unified formulation for different averaged
velocities, but the solute transport has never been considered. In this paper, the proposed
model is established combining the solute transport equations with the general phase-field
model (Kou et al. 2020b) to account for two fluids with different densities. Moreover,
the proposed model is proved rigorously to follow an energy dissipation law, thus it is
thermodynamically consistent.

It is quite challenging to develop efficient energy-stable numerical methods for the
phase-field models with different densities. There have been great efforts made for this
topic in recent years (Shen & Yang 2010; Grün & Klingbeil 2014; Chen & Shen 2016;
Guo et al. 2017; Yu & Yang 2017; Gong et al. 2018; Roudbari et al. 2018; Yang &
Zhao 2019). It is recognized universally that numerical methods need to preserve the
energy dissipation law at the discrete level so as to remove any restriction on the time
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step size as well as reduce spurious numerical solutions in practical simulations. In
addition, mass conservation is required essentially for numerical methods as well since
the large density contrast between binary fluids may cause serious mass loss (Yue, Zhou
& Feng 2007; Aland & Voigt 2012; Ding & Yuan 2014; Wang et al. 2015; Guo et al.
2017). The energy-stable and mass-conservative numerical methods (Guo et al. 2017) have
been developed for the quasi-incompressible model (Lowengrub & Truskinovsky 1998).
An energy-stable finite element numerical scheme (Grün & Klingbeil 2014) has been
designed for the model proposed by Abels et al. (2012). Several energy-stable numerical
approximations of two classes of hydrodynamic phase-field models (Shen & Yang 2010;
Abels et al. 2012) have been proposed by Gong et al. (2018). In the proposed model, the
solute concentrations are fully coupled with the phase variable and velocity. Moreover, the
model consists of a highly nonlinear system of partial differential equations. Hence it is
a challenge to design efficient numerical methods for the proposed model. In this paper,
we propose an energy-stable and mass-conservative numerical method for the proposed
model through decoupling the tight relationships between the solute concentrations, the
phase variable and velocity. Moreover, the proposed scheme is linearized and decoupled,
thus it is easy to implement.

We now highlight the main contributions of this paper as follows.

(i) A thermodynamically consistent phase-field model for the activated solute transport
in binary fluids is derived using the second law of thermodynamics. The solute
transport equations are coupled with the general model of binary immiscible solvent
fluids with different densities.

(ii) A mixed free-energy function for multiple solutes is proposed to characterize the
solubility difference of the solutes in two solvents. Different from the solute free
energies (van der Sman & van der Graaf 2006; Engblom et al. 2013; Garcke, Lam
& Stinner 2014; Zhu et al. 2019), the proposed free energy yields different solute
chemical potentials in binary solvent fluids, thus it has the ability to describe the
active diffusion processes.

(iii) The modified Maxwell–Stefan equations are presented to take into consideration the
crossing influences between different solutes, and the resulting diffusion coefficient
matrix is symmetric positive definite and consistent with Onsager’s reciprocal
principle and the second law of thermodynamics.

(iv) An efficient, linearized, decoupled and energy-stable numerical method is developed
to solve the proposed model. The method is proved to conserve the masses of
both solutes and solvents as well as preserve the energy dissipation law at the
semi-discrete and fully discrete levels.

The rest of this paper is organized as follows. In § 2, we introduce the free-energy
functionals and derive the phase-field model with active diffusion using the second law
of thermodynamics. In § 3, we design a linearized, decoupled, mass-conservative and
energy-stable numerical method. A series of numerical experiments is carried out in § 4 to
verify and validate the proposed model and numerical method. Finally, some concluding
remarks are provided in § 5.

2. Mathematical model

In this section, we introduce the free energies and then derive a thermodynamically
consistent model of active diffusion in two-phase immiscible and incompressible fluids.
The immiscible and incompressible two-phase fluids are the solvents, and the solute is a
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multi-component mixture consisting of N chemical substances. We use φ to denote the
phase variable, which stands for the volume fraction of one phase, thereby taking values
between 0 and 1. Let cl be the concentration of solute component l, where 1 ≤ l ≤ N. We
also denote c = [c1, . . . , cN]T and c = ∑N

l=1 cl.

2.1. Free energies
In order to describe the active diffusion of the solute mixture in binary fluids, we introduce
the free-energy function

A(c, φ) =
N∑

l=1

φαlcl(ln(cl)− 1 − γl)+
N∑

l=1

(1 − φ)βlcl(ln(cl)− 1 − δl), (2.1)

where αl, βl, γl and δl are the energy parameters. The solute chemical potentials are defined
as the partial derivatives of the free-energy function:

μc,l(c, φ) = ∂A(c, φ)
∂cl

= φαl(ln(cl)− γl)+ (1 − φ)βl(ln(cl)− δl), (2.2)

μcφ(c) = ∂A(c, φ)
∂φ

=
N∑

l=1

αlcl(ln(cl)− 1 − γl)−
N∑

l=1

βlcl(ln(cl)− 1 − δl). (2.3)

Physically, αlcl(ln(cl)− 1 − γl) and βlcl(ln(cl)− 1 − δl) represent the solute component
free-energy functions in two different solvent fluids, each of which results from the
ideal gas equation of state and is usually used to describe the conventional diffusion
process in the respective bulk fluid. The parameters rely generally on the solubility of
the component in two fluids under specific physical and chemical conditions, and they
usually take different values for different solvent fluids. When the solute concentrations
are homogeneous in binary fluids, there may still be contrasts of solute chemical potentials
in two fluids, which make the solutes transfer from one solvent fluid to the other. This leads
to the so-called active diffusion. At the equilibrium state, the chemical potentials of each
solute component in binary fluids are the same, but the solute concentrations in two fluids
may be different. This is the underlying mechanics that the mixed free energy is able to
characterize the active diffusion of each solute in binary fluids.

Patankar (2016) established the equations for the solute equilibrium and the phase
equilibrium. The logarithmic chemical potentials were introduced by Patankar (2016) to
formulate the equilibrium equations, and the chemical potentials (2.2) can be viewed as
their extensions with considerations of binary solvents and multiple solutes. Typically, the
chemical potentials of a substance in two solvents must be equal at equilibrium (Patankar
2016). As a result, the equilibrium condition can be expressed as

αl(ln(c1
l )− γl) = βl(ln(c2

l )− δl), l = 1, . . . ,N, (2.4)

where c1
l and c2

l are the equilibrium concentrations of solute l in two bulk solvents. If
αl /=βl or γl /= δl, then at the equilibrium state, there will be a solute concentration
contrast in two bulk solvents.

We now discuss several special cases of a single-component solute and also omit the
subscripts in (2.1)–(2.3). Since the parameters α and β usually rely on the temperature,
the thermally activated diffusion can be modelled taking different values for α and β. The
parameters γ and δ reflect the equilibrium-state solute concentrations in two solvent fluids,
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so they can be adjusted to characterize the contrast of ion concentrations in intracellular
and extracellular regions. In particular, if the solute has the same diffusion properties in
two solvent fluids, then the proposed active diffusion can be reduced to Fick’s diffusion. As
a matter of fact, taking α = β = 1 and γ = δ = 0, the chemical potential (2.2) becomes
μc = ln(c), and we deduce from (2.32), which will be derived in § 2.2, that the diffusion
flux J c is proportional to the concentration gradient as

J c = −Dc ∇μc = −Dc ∇ ln(c) = −D∇c, (2.5)

which is Fick’s diffusion law, and D becomes the Fickian diffusion coefficient. Thus the
proposed active diffusion model is an extension of Fick’s diffusion in the two immiscible
fluid solvents.

The free-energy functional F(φ,∇φ) for the phase variable is composed of two terms:

F(φ,∇φ) = σ

ε
f (φ)+ 1

2
εσ |∇φ|2, (2.6)

where σ represents the interfacial tension between binary fluids, and ε is the interface
thickness. The bulk free energy for the phase variable can be expressed commonly by the
double-well potential

f (φ) = φ2(1 − φ)2, (2.7)

or the logarithmic Flory–Huggins energy potential

f (φ) = φ ln(φ)+ (1 − φ) ln(1 − φ)+ θ(φ − φ2), (2.8)

where θ > 2 is the energy parameter (Wells, Kuhl & Garikipati 2006; Wang, Kou & Cai
2020b). The chemical potential of the phase variable is defined as the variational derivative
of the free-energy functional F:

μφ = σ

ε
f ′(φ)− εσ �φ. (2.9)

2.2. Model derivation
In what follows, we will derive the complete phase-field model using the second law of
thermodynamics. Here, for a regular spatial domain Ω , we use the traditional notations
to denote by (·, ·) and ‖ · ‖ the inner product and the norm of L2(Ω), (L2(Ω))d and
(L2(Ω))d×d, where d is the spatial dimension.

We start with the model derivation on the basis of the following mass conservation
equations and incompressibility of fluids:

∂cl

∂t
+ ∇ · (ucl)+ ∇ · J c,l = 0, 1 ≤ l ≤ N, (2.10)

∂φ

∂t
+ ∇ · (uφ)+ ∇ · Jφ = 0, (2.11)

∇ · u + λ∇ · Jφ = 0, (2.12)

where u is the mixture-averaged velocity, and J c,l and Jφ are the diffusion fluxes that will
be determined later. In (2.12), λ = 1 − ς , where ς is a dimensionless parameter.

In practice, there are several measures to quantify the flow rate of multiphase
multi-component flow. The measured velocity of multiphase multi-component flow
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is usually some kind of averaged velocity – for instance, mass-averaged velocity,
volume-averaged velocity and molar-averaged velocity, depending upon the experimental
methodology favoured in different scientific and industrial fields. We note that (2.12) can
account for different averaged velocities. Indeed, φ stands for the volume fraction of one
phase, and let φ2 denote the volume fraction of the other phase; then we have φ + φ2 = 1
due to the immiscibility. Similar to (2.11), we have the mass balance equation

∂φ2

∂t
+ ∇ · (uφ2)+ ∇ · Jφ2 = 0. (2.13)

If u is the volume-averaged velocity, then adding (2.11) and (2.13) together should yield

∇ · u = 0, (2.14)

which implies that Jφ + Jφ2 = 0, namely, Jφ2 = −Jφ ; in this case, λ = 0 and ς = 1. Let
�1 and �2 stand for the respective densities of two fluids, and ρ = φ�1 + (1 − φ)�2. If u
is the mass-averaged velocity, then we have

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.15)

which implies that �1Jφ + �2Jφ2 = 0 or Jφ2 = −(�1/�2)Jφ ; in this case, λ = 1 − �1/�2,
ς = �1/�2, and adding (2.11) and (2.13) together yields

∇ · u +
(

1 − �1

�2

)
∇ · Jφ = 0. (2.16)

From the above analysis, we can assume the relation Jφ2 = −ςJφ in general for
different averaged velocities. For instance, ς = 1 yields the volume-averaged velocity,
while ς = �1/�2 implies the mass-averaged velocity. Moreover, ς = n1/n2 implies the
mole-averaged velocity, where n1 and n2 stand for mole densities of two fluids. As a
result, different choices of ς can represent different types of averaged velocities, and
consequently, (2.12) is quite general.

We assume that the solution is dilute and the dissolved substances in binary fluids have
no perceptible effect on the volume and density of the mixture. The mixture density is
expressed as ρ = φ�1 + (1 − φ)�2, where �1 and �2 stand for the respective densities of
the two fluids. The mass conservation equation of the mixture can be derived from (2.11)
and (2.12) as

∂ρ

∂t
+ ∇ · (ρu + χJφ) = 0, (2.17)

where χ = �1 − ς�2.
As pointed out by Brenner (2009a,b, 2013), the general physical principles will not be

violated if the mass velocity vm appearing in the continuity equation differs from the
momentum velocity va appearing in the momentum balance equation, and the kinetic
energy velocity vk appearing in the energy equation. This finding yields the bi-velocity
hydrodynamical models (Brenner 2009a,b, 2013). In this work, we take va = vk = u and
define a general mass velocity vm = u + χρ−1Jφ . Then (2.17) is rewritten as

∂ρ

∂t
+ ∇ · (ρvm) = 0, (2.18)

which is the general continuity equation. We will show that the proposed model with the
above choices of different velocities obeys the second law of thermodynamics.
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We define the total solute free energy (A), total phase free energy (F ), total kinetic
energy (U ) and total gravitational potential energy (G) in the domain Ω as

A =
∫
Ω

A(c, φ) dx, F =
∫
Ω

F(φ,∇φ) dx, U = 1
2

∫
Ω

ρ |u|2 dx, G =
∫
Ω

ρgz dx,

(2.19a–d)

where g is the gravitational acceleration and z is the height above a given reference plane.
The entropy equation for an isothermal fluid system (Kou & Sun 2018a,b) can be

expressed as

T
∂S
∂t

= −∂(A + F + U + G)
∂t

−
∫
Ω

∇ · (u · σ ) dx, (2.20)

where S is the total entropy, T is the temperature, and the last term represents the work
done by the stress tensor (σ ).

For the boundary conditions, we assume that all boundary terms will vanish when
integrating by parts is performed – for example, the periodic boundary conditions and
homogeneous Neumann boundary conditions.

Taking into account (2.10) and (2.11), we derive the variance of total solute free energy
with time as

∂A
∂t

=
N∑

l=1

(
μc,l,

∂cl

∂t

)
+
(
μcφ,

∂φ

∂t

)

= −
N∑

l=1

(μc,l,∇ · (ucl)+ ∇ · J c,l)− (μcφ,∇ · (uφ)+ ∇ · Jφ)

=
N∑

l=1

(u, cl ∇μc,l)+ (u, φ∇μcφ)+
N∑

l=1

(J c,l,∇μc,l)+ (Jφ,∇μcφ). (2.21)

The variance of total phase free energy with time is

∂F
∂t

=
(
σ

ε
f ′(φ)− εσ �φ,

∂φ

∂t

)

=
(
μφ,

∂φ

∂t

)
= −(μφ,∇ · (uφ)+ ∇ · Jφ)

= (u, φ∇μφ)+ (Jφ,∇μφ). (2.22)
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The variance equations of kinetic energy and gravitational potential energy with time are
derived using (2.17) as

∂U
∂t

=
(
ρ
∂u
∂t
,u
)

+ 1
2

(
∂ρ

∂t
, |u|2

)

=
(
ρ
∂u
∂t
,u
)

− 1
2

(
∇ · (ρu)+ χ ∇ · Jφ, |u|2

)

=
(
ρ
∂u
∂t

+ ρu · ∇u + χ Jφ · ∇u,u
)
, (2.23)

∂G
∂t

=
(
∂ρ

∂t
, gz

)
= − (∇ · (ρu)+ χ ∇ · Jφ, gz

)
= (ρu + χ Jφ, g ∇z)

= −(u, ρg)− (Jφ, χg), (2.24)

where g = −∇z. We split the total stress σ into two parts:

σ = pI + σ irrev, (2.25)

where p is the reversible part, i.e. the pressure, I is the identity tensor, and σ irrev is the
irreversible part. Thanks to (2.12), we derive

(σ ,∇u) = ( p,∇ · u)+ (σ irrev,∇u)

= −( p, λ∇ · Jφ)+ (σ irrev,∇u)

= (λ∇p, Jφ)+ (σ irrev,∇u). (2.26)

Substituting (2.21)–(2.24) and (2.26) into (2.20), we can deduce that

T
∂S
∂t

= −(Jφ,∇μφ + ∇μcφ + λ∇p − χg)−
N∑

l=1

(J c,l,∇μc,l)− (σ irrev,∇u)

−
(
ρ
∂u
∂t

+ (ρu + χJφ) · ∇u + ∇ · σ + φ∇(μφ + μcφ)

+
N∑

l=1

cl ∇μc,l − ρg,u

)
. (2.27)

Galilean invariance yields from (2.27) that

ρ
∂u
∂t

+ (ρu + χJφ) · ∇u + ∇ · σ + φ∇(μφ + μcφ)+
N∑

l=1

cl ∇μc,l − ρg = 0. (2.28)

For the irreversible system, in terms of Newtonian fluid theory, we have

σ irrev = −η(φ) (∇u + ∇uT), (2.29)

where η is the fluid viscosity depending on φ. The diffusion flux Jφ should take the form

Jφ = −Mφ(φ)
(∇(μφ + μcφ)+ λ∇p − χg

)
, (2.30)
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where Mφ(φ) is the coefficient dependent on φ. For the solute mixture, there exists an
N × N phenomenological coefficient matrix

D = (Dl,m)
N
l,m=1, (2.31)

such that

J c,l = −
N∑

m=1

Dl,m ∇μc,m, l = 1, . . . ,N. (2.32)

According to the famous Onsager’s reciprocal principle, D should be symmetric.
Substituting (2.28), (2.29), (2.30) and (2.32) into (2.27), we deduce that

T
∂S
∂t

=
∥∥∥Mφ(φ)

1/2 (∇(μφ + μcφ)+ λ∇p − χg
)∥∥∥2

+
N∑

l=1

N∑
m=1

(Dl,m ∇μc,m,∇μc,l)+ 1
2

∥∥∥η(φ)1/2 (∇u + ∇uT)

∥∥∥2
. (2.33)

To obey the second law of thermodynamics, i.e. T(∂S/∂t) ≥ 0, the matrix D should be
symmetric positive semi-definite.

2.3. Model equations
The proposed model can be summarized as follows:

∂cl

∂t
+ ∇ · (ucl)+ ∇ · J c,l = 0, l = 1, . . . ,N, (2.34a)

J c,l = −
N∑

m=1

Dl,m ∇μc,m, l = 1, . . . ,N, (2.34b)

∂φ

∂t
+ ∇ · (uφ)+ ∇ · Jφ = 0, (2.34c)

Jφ = −Mφ(φ)
(∇(μφ + μcφ)+ λ∇p − χg

)
, (2.34d)

∇ · u + λ∇ · Jφ = 0, (2.34e)

∂(ρu)
∂t

+ ∇ · ((ρu + χJφ
)⊗ u) = −∇p − φ∇(μφ + μcφ)

−
N∑

l=1

cl ∇μc,l + ∇ · η(φ) (∇u + ∇uT)+ ρg. (2.34f )

In (2.34), λ = 1 − ς , χ = �1 − ς�2, and ς is a given dimensionless parameter that
represents the type of averaged velocity. The chemical potentials μc, μcφ and μφ are given
in (2.2), (2.3) and (2.9), respectively. Here, we take η(φ) = φη1 + (1 − φ)η2, where η1
and η2 are the viscosities of the two solvent fluids. As (2.34) shows, if cl = 0 in both
phases, then the system (2.34) reduces to the regular phase-field model for which ample
verification exercises can be found in our previous work (Kou et al. 2020b). Equation
(2.34f ) is the conservative form of the momentum balance equation, which is obtained by
combining (2.28) and (2.17).
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Phase-field modelling of activated solute transport

A simple form of D is taken as a diagonal matrix with the principal diagonal
elements Dl,l = Dlcl, where Dl > 0. A general choice of D can be obtained using the
Maxwell–Stefan approach, which takes into consideration the crossing influences between
different solutes.

The solute transport equations are generally expressed as

∂cl

∂t
+ ∇ · (ulcl) = 0, l = 1, . . . ,N, (2.35)

where ul is the velocity of solute l. Let us define J c,l = cl(ul − u); then we get (2.34a).
The modified Maxwell–Stefan equations can be formulated as

cl(ul − u)
cDl,f

+
N∑

m=1,m /= l

clcm(ul − um)

c2Dl,m
= −cl ∇μc,l, l = 1, . . . ,N, (2.36)

where c = ∑N
l=1 cl, Dl,f > 0 and Dl,m = Dm,l > 0. In (2.36), the first term represents the

friction between solute l and the solvent fluids, which is usually ignored in the classical
Maxwell–Stefan model (Wesselingh & Krishna 2000), the second term stands for the
friction between solute l and the other solutes, and the right-hand side is the driving force
of solute l. Equation (2.36) describes the balance between the drag and driving forces for
each solute.

We assume that cl > 0, 1 ≤ l ≤ N, and define a matrix L = (Ll,m)
N
l,m=1 as

Ll,l = cl

cDl,f
+

N∑
m=1,m /= l

clcm

c2Dl,m
, Ll,m = − clcm

c2Dl,m
, m /= l. (2.37)

Due to Dl,m = Dm,l and cl > 0, L is symmetric positive definite, and so is its inverse
matrix L−1. Consequently, ul − u, l = 1, . . . ,N, can be determined uniquely by (2.36).
Taking into account J c,l = cl(ul − u), we derive a full diffusion coefficient matrix from
(2.36) as

D = diag(c)L−1 diag(c), (2.38)

which is symmetric positive definite and consistent with Onsager’s reciprocal principle
and the second law of thermodynamics.

If the interfacial effects on solutes are considered, then the diffusion coefficients Dl,f
and Dl,m in (2.36) should be expressed as phase-dependent functions; for instance, Dl,f
(Qin et al. 2022) can be defined generally as

1
Dl,f (φ)

= φ2(1 − φ)2

εK
+ 1 − φ

Ql,0
+ φ

Ql,1
, (2.39)

where K is the interface permeability, and Ql,0 and Ql,1 are the diffusion coefficients of
solute l in two bulk solvents.
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The derivations of the model imply the following energy dissipation law:

∂(A + F + U + G)
∂t

= −
N∑

l=1

N∑
m=1

(Dl,m ∇μc,m,∇μc,l)

−
∥∥∥Mφ(φ)

1/2 (∇(μφ + μcφ)+ λ∇p − χg
)∥∥∥2

− 1
2

∥∥∥η(φ)1/2 (∇u + ∇uT)

∥∥∥2

≤ 0, (2.40)

which shows that total free energy of a closed isothermal system will be decreasing with
time.

We denote by L∗, U∗ and M∗ the characteristic length, the characteristic velocity
and the characteristic diffusion constant, and denote by c∗ the reference concentration.
Furthermore, we introduce the following dimensionless quantities:

x̂ = x
L∗
, t̂ = tU∗

L∗
, û = u

U∗
, ρ̂ = ρ

�1
, η̂ = η

η1
, p̂ = p

�1U2∗
, ĉl = cl

c∗
.

(2.41a–g)

Omitting the hats, we can write the dimensionless system of the model (2.34) as

∂cl

∂t
+ ∇ · (ucl)+ 1

Pec
∇ · J c,l = 0, l = 1, . . . ,N, (2.42a)

J c,l = −
N∑

m=1

Dl,m ∇μc,m, l = 1, . . . ,N, (2.42b)

∂φ

∂t
+ ∇ · (uφ)+ ∇ · Jφ = 0, (2.42c)

Jφ = −Mφ(φ)

Peφ

(∇(μφ + μcφ)+ λ∇p − χg
)
, (2.42d)

μφ = 1
We

(
1

Cn
f (φ)− Cn�φ

)
, (2.42e)

∇ · u + λ∇ · Jφ = 0, (2.42f )

∂(ρu)
∂t

+ ∇ · ((ρu + χJφ)⊗ u
) = 1

Re
∇ · η(φ) (∇u + ∇uT)

− ∇p − φ∇(μφ + μcφ)−
N∑

l=1

cl ∇μc,l + 1
Fr2 ρg, (2.42g)

where λ = 1 − ς , χ = 1 − ς(�2/�1), g is the unit vector with the gravitational
direction, ρ = φ + (1 − φ)(�2/�1) and η(φ) = φ + (1 − φ)(η2/η1). Here, ς remains a
dimensionless parameter relating to u, cl is the dimensionless concentration with the range
(0, 1), Pec = Peφ = L∗U∗/M∗ is the diffusional Péclet number, We = �1U2∗L∗/σ is the
Weber number, Cn = ε/L∗ is the Cahn number as a measure of the interfacial thickness,
Re = �1U∗L∗/η1 is the Reynolds number, and Fr = U∗/

√
gL∗ is the Froude number that

describes the relative strength between the gravitational and inertial forces.
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Phase-field modelling of activated solute transport

3. Numerical method

In this section, we propose an efficient, linear, decoupled, energy-stable and
mass-conservative numerical method for the proposed model.

The total simulation time [0, tf ] is divided as 0 = t0 < t1 < t2 < · · · < tf , and the time
step size is denoted by τk = tk+1 − tk. The proposed scheme allows us to use non-uniform
and adaptive time step sizes, and as a result, τk is not constant in general. The value of a
function v at time tk is denoted by vk.

3.1. Discrete chemical potentials
An important ingredient of designing energy-stable numerical methods is to derive the
discrete chemical potentials that ensure certain energy dissipation inequalities. The energy
factorization approach (Kou, Sun & Wang 2020a; Wang et al. 2020b; Wang, Kou & Gao
2021) can produce efficient, linear and energy-stable numerical schemes.

We now derive the discrete chemical potentials for the active solute diffusion. The
concavity of ln(cl) implies that

ln(ck+1
l )− ln(ck

l ) ≤ 1
ck

l
(ck+1

l − ck
l ). (3.1)

Using (3.1), we deduce that

ck+1
l ln(ck+1

l )− ck
l ln(ck

l ) = ln(ck
l ) (c

k+1
l − ck

l )+ ck+1
l (ln(ck+1

l )− ln(ck
l ))

≤ ln(ck
l ) (c

k+1
l − ck

l )+ ck+1
l

ck
l
(ck+1

l − ck
l ). (3.2)

Using (3.2), we derive the energy difference as

A(ck+1, φk+1)− A(ck, φk) =
N∑

l=1

αlφ
k(ck+1

l ln(ck+1
l )− ck

l ln(ck
l ))

−
N∑

l=1

αlφ
k(1 + γl)(ck+1

l − ck
l )

+
N∑

l=1

αlck+1
l

(
ln(ck+1

l )− 1 − γl

)
(φk+1 − φk)

+
N∑

l=1

βl(1 − φk)
(

ck+1
l ln(ck+1

l )− ck
l ln(ck

l )
)

−
N∑

l=1

βl(1 − φk)(1 + δl)(ck+1
l − ck

l )

−
N∑

l=1

βlck+1
l

(
ln(ck+1

l )− 1 − δl)(φ
k+1 − φk

)

≤
N∑

l=1

αlφ
k

(
ln(ck

l )+ ck+1
l

ck
l

− 1 − γl

)
(ck+1

l − ck
l )
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+
N∑

l=1

βl(1 − φk)

(
ln(ck

l )+ ck+1
l

ck
l

− 1 − δl

)
(ck+1

l − ck
l )

+
N∑

l=1

αlck+1
l

(
ln(ck+1

l )− 1 − γl

)
(φk+1 − φk)

−
N∑

l=1

βlck+1
l

(
ln(ck+1

l )− 1 − δl

)
(φk+1 − φk). (3.3)

Based on (3.3), we define the discrete chemical potentials as

μk+1
c,l = αlφ

k

(
ln(ck

l )+ ck+1
l

ck
l

− 1 − γl

)

+ βl(1 − φk)

(
ln(ck

l )+ ck+1
l

ck
l

− 1 − δl

)
, 1 ≤ l ≤ N, (3.4)

μk+1
cφ =

N∑
l=1

αlck+1
l

(
ln(ck+1

l )− 1 − γl

)
−

N∑
l=1

βlck+1
l

(
ln(ck+1

l )− 1 − δl

)
, (3.5)

which satisfy the inequality

A(ck+1, φk+1)− A(ck, φk) ≤
N∑

l=1

μk+1
c,l (c

k+1
l − ck

l )+ μk+1
cφ (φk+1 − φk). (3.6)

For the bulk phase free-energy function, we assume that the time discrete scheme is
linear and satisfies the energy inequality

f (φk+1)− f (φk) ≤ �(φk, φk+1) (φk+1 − φk), (3.7)

where �(φk, φk+1) represents the discrete chemical potential function that is linear with
respect to φk+1. For instance, the logarithmic Flory–Huggins energy potential has such a
discrete chemical potential (Wang et al. 2020b) as

�(φk, φk+1) = ln(φk)− ln(1 − φk)+ φk+1

φk − 1 − φk+1

1 − φk + θ(1 − φk+1 − φk). (3.8)

A fine discrete chemical potential for the double-well potential can be found in Wang et al.
(2021). For the gradient free energy, we have

1
2

(
‖∇φk+1‖2 − ‖∇φk‖2

)
=
(
∇φk+1,∇(φk+1 − φk)

)
− 1

2‖∇(φk+1 − φk)‖2

≤
(
∇φk+1,∇(φk+1 − φk)

)
= −(�φk+1, φk+1 − φk), (3.9)

which suggests the implicit discrete chemical potential −�φk+1. Therefore, we define the
discrete form of chemical potential μφ as

μk+1
φ = σ

ε

(
�(φk, φk+1)− ε2�φk+1

)
. (3.10)
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Phase-field modelling of activated solute transport

3.2. Semi-implicit time marching scheme
On the basis of the chemical potentials given in (3.4), (3.5) and (3.10), we propose a
semi-implicit scheme for the model (2.34) as

ck+1
l − ck

l
τk

+ ∇ · (ck
l uk

†)+ ∇ · J k+1
c,l = 0, l = 1, . . . ,N, (3.11a)

J k+1
c,l = −

N∑
m=1

Dk
l,m ∇μk+1

c,m , l = 1, . . . ,N, (3.11b)

uk
† = uk −

N∑
m=1

τk

ρk ck
m ∇μk+1

c,m , (3.11c)

φk+1 − φk

τk
+ ∇ · (φkuk

�)+ ∇ · J k+1
φ = 0, (3.11d)

uk
� = uk

† − τk

ρk

(
φk ∇(μk+1

φ + μk+1
cφ )+ ∇pk+1 − ρkg

)
, (3.11e)

J k+1
φ = −Mφ(φ

k)
(
∇(μk+1

φ + μk+1
cφ )+ λ∇pk+1 − χg

)
, (3.11f )

∇ · uk
� + λ∇ · J k+1

φ = 0, (3.11g)

ρk+1uk+1 − ρkuk
�

τk
+ ∇ ·

(
(ρkuk

� + χJ k+1
φ )⊗ uk+1

)
− ∇ · η(φk) (∇uk+1 + ∇uk+1T

) = 0, (3.11h)

where ρk = φk�1 + (1 − φk)�2.
The resulting system can be solved sequentially using the decoupling relationships

between unknowns. First, since the concentrations ck+1 are decoupled from φk+1, pk+1 and
uk+1, we solve all solute concentrations ck+1 together by substituting (3.11b) and (3.11c)
into (3.11a). Second, taking into account the property that φk+1 and pk+1 are decoupled
from uk+1, we can substitute (3.11e) and (3.11f ) into (3.11d) and (3.11g) to compute φk+1

and pk+1 simultaneously. Finally, uk+1 is solved by (3.11h). The purpose of coupling the
phase variable and pressure is to ensure the mass conservation of the solvent fluids. In
addition to the decoupling relationships between different unknowns, the scheme (3.11) is
totally linearized, so it is easy to implement in practice.

We consider the following homogeneous boundary conditions on the boundary ∂Ω:

u = 0, ∇(μφ + μcφ + χgh) · n = 0,

∇( p + �2gh) · n = 0, ∇μc,l · n = 0, ∇φ · n = 0,

}
(3.12)

where n denotes an outward unit vector normal to ∂Ω .
The proposed scheme has the ability to guarantee the mass conservation law for both

solutes and solvent fluids without any additional treatments.
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THEOREM 3.1. The scheme (3.11) conserves the total masses of both solutes and solvent
fluids as∫

Ω

ck+1
l dx =

∫
Ω

ck
l dx = · · · =

∫
Ω

c0
l dx, k ≥ 0, l = 1, . . . ,N, (3.13)∫

Ω

ρk+1 dx =
∫
Ω

ρk dx = · · · =
∫
Ω

ρ0 dx, k ≥ 0. (3.14)

Proof . Integrating (3.11a) over Ω and taking into account the boundary conditions, we
obtain ∫

Ω

ck+1
l − ck

l
τk

dx = 0, k ≥ 0, l = 1, . . . ,N, (3.15)

which yields (3.13) by induction. Let ψk = 1 − φk. Combining (3.11d) and (3.11g) yields

ψk+1 − ψk

τk
+ ∇ · (ψkuk

�)− ς ∇ · J k+1
φ = 0. (3.16)

Multiplying (3.11d) by �1, and (3.16) by �2, and then summing them, we obtain the total
mass balance equation

ρk+1 − ρk

τk
+ ∇ · (ρkuk

�)+ χ ∇ · J k+1
φ = 0, (3.17)

where χ = �1 − ς�2. Integrating (3.17) over Ω and taking into account the boundary
conditions, we get (3.14) by induction. �

We now prove that the proposed scheme follows a discrete energy dissipation law. The
total discrete energy is defined as

Ek = Ak + Fk + Uk + Gk, (3.18)

where

Ak =
∫
Ω

A(ck, φk) dx, Fk =
∫
Ω

F(φk,∇φk) dx,

Uk = 1
2

∫
Ω

ρk |uk|2 dx, Gk =
∫
Ω

ρkgz dx.

⎫⎪⎪⎬
⎪⎪⎭ (3.19)

THEOREM 3.2. Given that (3.7) holds, the scheme (3.11) satisfies the following discrete
energy dissipation law:

Ek+1 − Ek

τk
≤ −

N∑
l=1

N∑
m=1

(Dk
l,m ∇μk+1

c,m ,∇μk+1
c,l )

−
∥∥∥Mφ(φ

k)1/2
(
∇(μk+1

φ + μk+1
cφ )+ λ∇pk+1 − χg

)∥∥∥2

− 1
2

∥∥∥η(φk)1/2 (∇uk+1 + ∇uk+1T
)

∥∥∥2
. (3.20)

955 A41-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.8


Phase-field modelling of activated solute transport

Proof . Using (3.6), (3.11a) and (3.11d), we deduce that

Ak+1 − Ak

τk
≤

N∑
l=1

(
μk+1

c,l ,
ck+1

l − ck
l

τk

)
+
(
μk+1

cφ ,
φk+1 − φk

τk

)

≤ −
N∑

l=1

(
∇ · (uk

†ck
l )+ ∇ · J c,l, μ

k+1
c,l

)

−
(
∇ · (uk

∗φ
k), μk+1

cφ

)
− (∇ · J k+1

φ , μk+1
cφ )

≤
N∑

l=1

(uk
†, ck

l ∇μk+1
c,l )+

N∑
l=1

(J c,l,∇μk+1
c,l )

+ (uk
∗, φ

k ∇μk+1
cφ )+ (J k+1

φ ,∇μk+1
cφ ). (3.21)

It is deduced from (3.7) and (3.9) that

Fk+1 − Fk ≤ (μk+1
φ , φk+1 − φk). (3.22)

Substituting (3.11d) into (3.22), we obtain

Fk+1 − Fk

τk
≤ −

(
∇ · (uk

�φ
k)+ ∇ · J k+1

φ , μk+1
φ

)
≤ (uk

�, φ
k ∇μk+1

φ )+ (J k+1
φ ,∇μk+1

φ ). (3.23)

Using (3.17), we derive the variation of gravitational potential energy as

Gk+1 − Gk

τk
= 1
τk
(ρk+1 − ρk, gz)

= −
(
∇ · (ρkuk

�)+ χ∇ · J k+1
φ , gz

)
= (uk

�ρ
k, g ∇z)+ (J k+1

φ , χg ∇z)

= −(uk
�, ρ

kg)− (J k+1
φ , χg). (3.24)

Summing (3.21), (3.23) and (3.24) together and taking into account (3.11f ), we obtain

Ak+1 + Fk+1 + Gk+1 − Ak − Fk − Gk

τk

≤
N∑

l=1

(uk
†, ck

l ∇μk+1
c,l )+

(
uk
�, φ

k ∇(μk+1
φ + μk+1

cφ )− ρkg
)

+
(

J k+1
φ ,∇(μk+1

φ + μk+1
cφ )− χg

)

−
N∑

l=1

N∑
m=1

(Dk
l,m ∇μk+1

c,m ,∇μk+1
c,l ). (3.25)
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In order to estimate the kinetic energy, we introduce the following intermediate kinetic
energies:

Uk
† = 1

2 (ρ
k, |uk

†|2), Uk
� = 1

2 (ρ
k, |uk

�|2). (3.26)

The difference between Uk
† and Uk is estimated as

Uk
† − Uk

τk
= 1
τk

(
ρk(uk

† − uk),uk
†

)
− 1

2τk

(
ρk, |uk

† − uk|2
)

≤ 1
τk

(
ρk(uk

† − uk),uk
†

)

= −
N∑

l=1

(ck
l ∇μk+1

c,l ,uk
†), (3.27)

where we have used (3.11c). Using (3.11e), we derive the difference between Uk
� and Uk

† as

Uk
� − Uk

†

τk
= 1
τk

(
ρk(uk

� − uk
†),uk

�

)
− 1

2τk

(
ρk, |uk

� − uk
†|2
)

≤ 1
τk

(
ρk(uk

� − uk
†),uk

�

)
= −

(
φk ∇(μk+1

φ + μk+1
cφ )+ ∇pk+1 − ρkg,uk

�

)
. (3.28)

Using (3.11g), we deduce that

(uk
�,∇pk+1) = −(∇ · uk

�, pk+1)

= (λ∇ · J k+1
φ , pk+1)

= −(J k+1
φ , λ∇pk+1). (3.29)

It is deduced from (3.28) and (3.29) that

Uk
� − Uk

†

τk
= −

(
φk∇(μk+1

φ + μk+1
cφ )− ρkg,uk

�

)
+ (J k+1

φ , λ∇pk+1). (3.30)

For a, b, c, d ∈ R and c ≥ 0, we have

ab2 − cd2 = 2b(ab − cd)− c(b − d)2 − b2(a − c) ≤ 2b(ab − cd)− b2(a − c). (3.31)

The difference between Uk+1 and Uk
� is estimated using (3.31) as

Uk+1 − Uk
� = 1

2

(
ρk+1, |uk+1|2

)
− 1

2

(
ρk, |uk

�|2
)

≤
(
ρk+1uk+1 − ρkuk

�,uk+1
)

− 1
2

(
ρk+1 − ρk, |uk+1|2

)
. (3.32)
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Phase-field modelling of activated solute transport

Substituting (3.11h) and (3.17) into (3.32) yields

Uk+1 − Uk
�

τk
≤ −

(
∇ ·

(
(ρkuk

� + χJ k+1
φ )⊗ uk+1

)
,uk+1

)
+
(
∇ · η(φk) (∇uk+1 + ∇uk+1T

),uk+1
)

+ 1
2

(
∇ · (ρkuk

�)+ χ ∇ · J k+1
φ , |uk+1|2

)
= −

(
(ρkuk

� + χJ k+1
φ ) · ∇uk+1,uk+1

)
+
(
∇ · η(φk) (∇uk+1 + ∇uk+1T

),uk+1
)

− 1
2

(
∇ · (ρkuk

�)+ χ ∇ · J k+1
φ , |uk+1|2

)
= −1

2

∥∥∥η(φk)1/2 (∇uk+1 + ∇uk+1T
)

∥∥∥2
, (3.33)

where we have used the identities

(ρkuk
� · ∇uk+1,uk+1)+ 1

2(∇ · ρkuk
�, |uk+1|2) = 0, (3.34)

(J k+1
φ · ∇uk+1,uk+1)+ 1

2 (∇ · J k+1
φ , |uk+1|2) = 0. (3.35)

Combining (3.27), (3.30) and (3.33) yields

Uk+1 − Uk

τk
= Uk+1 − Uk

� + Uk
� − Uk

† + Uk
† − Uk

τk

≤ −
N∑

l=1

(ck
l ∇μk+1

c,l ,uk
†)−

(
φk ∇(μk+1

φ + μk+1
cφ )− ρkg,uk

�

)

+ (J k+1
φ , λ∇pk+1)− 1

2

∥∥∥η(φk)1/2 (∇uk+1 + ∇uk+1T
)

∥∥∥2
. (3.36)

Finally, combining (3.25) and (3.36) yields (3.20). �

3.3. Fully discrete scheme
For the spatial discretization, we employ the finite difference/volume methods on staggered
grids (Tryggvason, Scardovelli & Zaleski 2011; Kou, Sun & Wang 2018) and treat the
convection terms by the upwind strategy. We consider a rectangular domainΩ = [0, Lx] ×
[0, Ly], where Lx > 0 and Ly > 0. The velocity vector is expressed as u = [u, v]T. For
simplification in presentation, we use a uniform division of Ω as 0 = x0 < x1 < · · · <
xnx = Lx and 0 = y0 < y1 < · · · < yny = Ly, where nx and ny are positive integers. The
mesh size is denoted by h = xi+1 − xi = yj+1 − yj, where the subscripts 0 ≤ i < nx and
0 ≤ j < ny are integers. The midpoints are defined as xi+1/2 = xi + 1

2 h and yj+1/2 = yj +
1
2 h. The basic idea of the staggered grids is that different variables are discretized on
different grids that are shifted by half a grid point. In order to represent different discrete
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variables, we define the following discrete function spaces:

Sc = {c : (xi+1/2, yj+1/2) 
→ R, 0 ≤ i ≤ nx − 1, 0 ≤ j ≤ ny − 1}, (3.37a)

Su = {u : (xi, yj+1/2) 
→ R, 0 ≤ i ≤ nx, 0 ≤ j ≤ ny − 1}, (3.37b)

Sv = {v : (xi+1/2, yj) 
→ R, 0 ≤ i ≤ nx − 1, 0 ≤ j ≤ ny}, (3.37c)

Spu = {ψ : (xi, yj) 
→ R, 1 ≤ i ≤ nx − 1, 0 ≤ j ≤ ny}, (3.37d)

Spv = {ϕ : (xi, yj) 
→ R, 0 ≤ i ≤ nx, 1 ≤ j ≤ ny − 1}. (3.37e)

For a discrete function c ∈ Sc, we write ci+1/2,j+1/2 = c(xi+1/2, yj+1/2) in its component
form. The other functions in the above function spaces are denoted likewise. Taking the
homogeneous Neumann boundary conditions into consideration, we further define subsets
of Su and Sv as

S0
u = {u ∈ Su | u0,j+1/2 = unx,j+1/2 = 0, 0 ≤ j ≤ ny − 1}, (3.38a)

S0
v = {v ∈ Sv | vi+1/2,0 = vi+1/2,ny = 0, 0 ≤ i ≤ nx − 1}. (3.38b)

For the purpose of treating conveniently the boundary conditions for the momentum
balance equation, we introduce two extended discrete function spaces:

Se
u =

⎧⎪⎨
⎪⎩u : (xi, yj+1/2) 
→

⎧⎪⎨
⎪⎩

R, 1 ≤ i ≤ nx − 1, 0 ≤ j ≤ ny − 1
0, i ∈ {0, nx}, 0 ≤ j ≤ ny − 1
0, 1 ≤ i ≤ nx − 1, j ∈ {−1, ny}

⎫⎪⎬
⎪⎭ , (3.39a)

Se
v =

⎧⎪⎨
⎪⎩v : (xi+1/2, yj) 
→

⎧⎪⎨
⎪⎩

R, 0 ≤ i ≤ nx − 1, 1 ≤ j ≤ ny − 1
0, 0 ≤ i ≤ nx − 1, j ∈ {0, ny}
0, i ∈ {−1, nx}, 1 ≤ j ≤ ny − 1

⎫⎪⎬
⎪⎭ . (3.39b)

We now introduce the discrete operators, which will be used to formulate the fully
discrete equations. For c ∈ Sc, we define the difference operators

dc
xci,j+1/2 = 1

h
(ci+1/2,j+1/2 − ci−1/2,j+1/2), 1 ≤ i ≤ nx − 1, 0 ≤ j ≤ ny − 1, (3.40a)

dc
yci+1/2,j = 1

h
(ci+1/2,j+1/2 − ci+1/2,j−1/2), 0 ≤ i ≤ nx − 1, 1 ≤ j ≤ ny − 1, (3.40b)

where dc
xc ∈ S0

u and dc
yc ∈ S0

v . For c ∈ Sc, we define the average values of c as

c̄i,j+1/2 =

⎧⎪⎨
⎪⎩

1
2(ci+1/2,j+1/2 + ci−1/2,j+1/2), 1 ≤ i ≤ nx − 1, 0 ≤ j ≤ ny − 1,
ci+1/2,j+1/2, i = 0, 0 ≤ j ≤ ny − 1,
ci−1/2,j+1/2, i = nx, 0 ≤ j ≤ ny − 1,

(3.41a)

c̄i+ 1
2 ,j

=

⎧⎪⎨
⎪⎩

1
2 (ci+1/2,j+1/2 + ci+1/2,j−1/2), 0 ≤ i ≤ nx − 1, 1 ≤ j ≤ ny − 1,
ci+1/2,j+1/2, j = 0, 0 ≤ i ≤ nx − 1.
ci+1/2,j−1/2, j = ny, 0 ≤ i ≤ nx − 1.

(3.41b)

The upwind strategy is applied to treat the convection terms, and for this purpose, we
introduce the upwind values of c ∈ Sc in the presence of the velocity components u ∈ S0

u
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and v ∈ S0
v as

ĉi,j+1/2 =
{

ci−1/2,j+1/2, ui,j+1/2 ≥ 0,
ci+1/2,j+1/2, ui,j+1/2 < 0,

(3.42a)

ĉi+ 1
2 ,j

=
{

ci+1/2,j−1/2, vi+1/2,j ≥ 0,
ci+1/2,j+1/2, vi+1/2,j < 0.

(3.42b)

For u ∈ Su and v ∈ Sv , we define the difference operators

du
x ui+1/2,j+1/2 = 1

h
(ui+1,j+1/2 − ui,j+1/2), (3.43a)

dvyvi+1/2,j+1/2 = 1
h
(vi+1/2,j+1 − vi+1/2,j). (3.43b)

For u ∈ Se
u and v ∈ Se

v , we define the difference and average operators

du
y ui,j = 1

h
(ui,j+1/2 − ui,j−1/2), dvxvi,j = 1

h
(vi+1/2,j − vi−1/2,j), (3.44a,b)

au
xui+1/2,j+1/2 = 1

2
(ui,j+1/2 + ui+1,j+1/2), au

yui,j = 1
2
(ui,j−1/2 + ui,j+1/2), (3.45a,b)

avyvi+1/2,j+1/2 = 1
2
(vi+1/2,j + vi+1/2,j+1), avxvi,j = 1

2
(vi−1/2,j + vi+1/2,j). (3.46a,b)

We can see that du
x u ∈ Sc, dvyv ∈ Sc, du

y u ∈ Spu and dvxv ∈ Spv .
We are ready to present the fully discrete scheme. At each time step, we seek ck+1

l ∈ Sc,
φk+1 ∈ Sc, pk+1 ∈ Sc, uk+1 ∈ Se

u and vk+1 ∈ Se
v for given ck

l ∈ Sc, φk ∈ Sc, uk ∈ Se
u and

vk ∈ Se
v . The fully discrete chemical potentials μk+1

c,l , μ
k+1
cφ ∈ Sc still take the pointwise

forms given (3.4) and (3.5). Fully discrete intermediate velocity components uk
† ∈ S0

u and
vk

† ∈ S0
v are expressed as

uk
† = uk −

N∑
l=1

τk

ρ̄k ĉk
l dc

xμ
k+1
c,l , vk

† = vk −
N∑

l=1

τk

ρ̄k ĉk
l dc

yμ
k+1
c,l . (3.47a,b)

Let D̄k
l,m = Dl,m(φ̄

k, c̄k). The solute concentration equations are fully discretized as

ck+1
l − ck

l
τk

+ du
x (u

k
†ĉk

l + Jk+1
c,l,x)+ dvy (v

k
†ĉk

l + Jk+1
c,l,y) = 0, l = 1, . . . ,N, (3.48)

where Jk+1
c,l,x ∈ Su and Jk+1

c,l,y ∈ Sv are defined as

Jk+1
c,l,x = −

N∑
m=1

D̄k
l,mdc

xμ
k+1
c,m , Jk+1

c,l,y = −
N∑

m=1

D̄k
l,mdc

yμ
k+1
c,m . (3.49a,b)

Let g = [gx, gy]. The fully discrete solvent transport equation is expressed as

φk+1 − φk

τk
+ du

x (u
k
�φ̂

k + Jk+1
φ,x )+ dvy (v

k
�φ̂

k + Jk+1
φ,y ) = 0, (3.50)
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where

uk
� = uk

† − τk

ρ̄k

(
φ̂kdc

x(μ
k+1
φ + μk+1

cφ )+ dc
xpk+1 − ρ̂kgx

)
, (3.51)

vk
� = vk

† − τk

ρ̄k

(
φ̂kdc

y(μ
k+1
φ + μk+1

cφ )+ dc
ypk+1 − ρ̂kgy

)
, (3.52)

Jk+1
φ,x = −Mφ(φ̄

k)
(

dc
x(μ

k+1
φ + μk+1

cφ + λpk+1)− χgx

)
, (3.53)

Jk+1
φ,y = −Mφ(φ̄

k)
(

dc
y(μ

k+1
φ + μk+1

cφ + λpk+1)− χgy

)
, (3.54)

μk+1
φ = σ

ε

(
�(φk, φk+1)− ε2

(
du

x (d
c
xφ

k+1)+ dvy (d
c
yφ

k+1)
))
. (3.55)

The fully discrete form of (3.11g) is expressed as

du
x (u

k
� + λJk+1

φ,x )+ dvy (v
k
� + λJk+1

φ,y ) = 0. (3.56)

In order to discretize the momentum balance equation, we define Uk
u ∈ Sc, Uk

v ∈ Spv ,
Vk

u ∈ Spu and Vk
v ∈ Sc as

Uk
u = au

x(ρ̂
kuk

∗ + χJk+1
φ,x ), Uk

v = au
y(ρ̂

kuk
∗ + χJk+1

φ,x ), (3.57a)

Vk
u = avx(ρ̂

kvk
∗ + χJk+1

φ,y ), Vk
v = avy(ρ̂

kvk
∗ + χJk+1

φ,y ). (3.57b)

For u ∈ Se
u and v ∈ Se

v , we also define their upwind values as

ûi+1/2,j+1/2 =
{

ui,j+1/2, Uu,i+1/2,j+1/2 ≥ 0,
ui+1,j+1/2, Uu,i+1/2,j+1/2 < 0, (3.58a)

ûi,j =
{

ui,j−1/2, Vu,i,j ≥ 0,
ui,j+1/2, Vu,i,j < 0, (3.58b)

v̂i+1/2,j+1/2 =
{
vi+1/2,j, Vv,i+1/2,j+1/2 ≥ 0,
vi+1/2,j+1, Vv,i+1/2,j+1/2 < 0, (3.58c)

v̂i,j =
{
vi−1/2,j, Uv,i,j ≥ 0,
vi+1/2,j, Uv,i,j < 0. (3.58d)

For ψ ∈ Spu ∪ Spv , we define the difference operators

dp
xψi+ 1

2 ,j
= 1

h
(ψi+1,j − ψi,j), dp

yψi,j+1/2 = 1
h
(ψi,j+1 − ψi,j). (3.59a,b)

Let ηk = η(φk) ∈ Sc, and let η̄k
i,j be the average values of ηk at the vertices (xi, yj). We

denote

Ψ k+1 = 2ηkdu
x uk+1, Υ k+1 = 2ηkdvyv

k+1, Θk+1 = η̄k(du
y uk+1 + dvxv

k+1),

(3.60a–c)

where Ψ k+1 ∈ Sc, Υ k+1 ∈ Sc and Θk+1 ∈ Spu ∪ Spv . The fully discrete scheme for the
momentum balance equation (3.11h) is expressed as

ρ̄k+1uk+1 − ρ̄kuk
�

τk
+ dc

x(U
k
uûk+1)+ dp

y (V
k
uûk+1) = dc

xΨ
k+1 + dp

yΘ
k+1, (3.61)

ρ̄k+1vk+1 − ρ̄kvk
�

τk
+ dp

x (U
k
vv̂

k+1)+ dc
y(V

k
v v̂

k+1) = dp
xΘ

k+1 + dc
yΥ

k+1. (3.62)
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In what follows, we prove that the fully discrete scheme conserves the masses of both
solutes and solvent fluids as well as following a discrete energy dissipation law. To this
end, we define the following discrete inner products:

(c, c′)c = h2
nx−1∑
i=0

ny−1∑
j=0

ci+1/2,j+1/2c′
i+1/2,j+1/2, c, c′ ∈ Sc, (3.63a)

(ψ,ψ ′)pu = h2
nx−1∑
i=1

ny∑
j=0

ψi,jψ
′
i,j, ψ,ψ ′ ∈ Spu, (3.63b)

(ϕ, ϕ′)pv = h2
nx∑

i=0

ny−1∑
j=1

ϕi,jϕ
′
i,j, ϕ, ϕ′ ∈ Spv, (3.63c)

(u, u′)u = h2
nx−1∑
i=1

ny−1∑
j=0

ui,j+1/2u′
i,j+1/2, u, u′ ∈ Su ∪ S0

u ∪ Se
u, (3.63d)

(v, v′)v = h2
nx−1∑
i=0

ny−1∑
j=1

vi+1/2,jv
′
i+1/2,j, v, v′ ∈ Sv ∪ S0

v ∪ Se
v. (3.63e)

In addition, for ψ,ψ ′ ∈ Spu ∪ Spv , we define

(ψ,ψ ′)puv = h2
nx−1∑
i=1

ny−1∑
j=1

ψi,jψ
′
i,j. (3.64)

The following summation-by-parts formulas are obtained by direct calculations (Kou et al.
2018):

(u, dc
xc)u = −(du

x u, c)c, u ∈ S0
u ∪ Se

u, c ∈ Sc, (3.65a)

(v, dc
yc)v = −(dvyv, c)c, v ∈ S0

v ∪ Se
v, c ∈ Sc, (3.65b)

(dp
yψ, u)u = −(ψ, du

y u)pu, u ∈ Se
u, ψ ∈ Spu, (3.65c)

(dp
xϕ, v)v = −(ϕ, dvxv)pv, v ∈ Se

v, ϕ ∈ Spv. (3.65d)

THEOREM 3.3. The fully discrete scheme conserves total masses of solutes and solvent
fluids as

(ck+1
l , 1)c = (ck

l , 1)c = · · · = (c0
l , 1)c, k ≥ 0, l = 1, . . . ,N, (3.66)

(ρk+1, 1)c = (ρk, 1)c = · · · = (ρ0, 1)c, k ≥ 0. (3.67)
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Proof . Taking the discrete inner product of (3.48), we obtain

1
τk
(ck+1

l − ck
l , 1)c +

(
du

x (u
k
†ĉk

l + Jk+1
c,l,x), 1

)
c
+
(

dvy (v
k
†ĉk

l + Jk+1
c,l,y), 1

)
c
= 0. (3.68)

Applying (3.65a) and (3.65b) to (3.68) yields

1
τk
(ck+1

l − ck
l , 1)c = 0, (3.69)

which leads to (3.66) by induction. From (3.50), we can derive the mass balance equation
of solvents as

ρk+1 − ρk

τk
+ du

x (u
k
�ρ̂

k + χJk+1
φ,x )+ dvy (v

k
�ρ̂

k + χJk+1
φ,y ) = 0, (3.70)

where χ = �1 − ς�2. Taking the discrete inner product of (3.70) and then using (3.65a)
and (3.65b), we can obtain (3.67) by induction. �

We now prove that the fully discrete scheme follows a discrete energy dissipation law.
The total discrete energy is defined as

Ek
h = Ak

h + Fk
h + Uk

h + Gk
h, (3.71)

where

Ak
h =

(
A(ck, φk), 1

)
c
, Fk

h = σ

ε

(
f (φk), 1

)
c
+ εσ

2

(
(dc

xφ
k, dc

xφ
k)u + (dc

yφ
k, dc

yφ
k)v

)
,

Uk
h = 1

2
(ρ̄kuk, uk)u + 1

2
(ρ̄kvk, vk)v, Gk

h = (ρk, gz)c.

⎫⎪⎬
⎪⎭

(3.72)

THEOREM 3.4. Given that (3.7) holds, the fully discrete scheme satisfies the following
discrete energy dissipation law:

Ek+1
h − Ek

h
τk

≤ −
N∑

l=1

N∑
m=1

(D̄k
l,mdc

xμ
k+1
c,m , dc

xμ
k+1
c,l )u −

N∑
l=1

N∑
m=1

(D̄k
l,mdc

yμ
k+1
c,m , dc

yμ
k+1
c,l )v

−
(

Mφ(φ̄
k)−1Jk+1

φ,x , Jk+1
φ,x

)
u
−
(

Mφ(φ̄
k)−1Jk+1

φ,y , Jk+1
φ,y

)
v

− 2(ηkdu
x uk+1, du

x uk+1)c − 2(ηkdvyv
k+1, dvyv

k+1)c

−
(
η̄k(du

y uk+1 + dvxv
k+1), du

y uk+1 + dvxv
k+1
)

puv
. (3.73)
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Phase-field modelling of activated solute transport

Proof . Taking into account (3.6), (3.48) and (3.50), and applying (3.65a) and (3.65b), we
deduce that

Ak+1
h − Ak

h
τk

≤
N∑

l=1

(
μk+1

c,l ,
ck+1

l − ck
l

τk

)
c

+
(
μk+1

cφ ,
φk+1 − φk

τk

)
c

= −
N∑

l=1

(du
x (u

k
†ĉk

l + Jk+1
c,l,x)+ dvy (v

k
†ĉk

l + Jk+1
c,l,y), μ

k+1
c,l )c

−
(

du
x (u

k
�φ̂

k + Jk+1
φ,x )+ dvy (v

k
�φ̂

k + Jk+1
φ,y ), μ

k+1
cφ

)
c

=
N∑

l=1

(uk
†ĉk

l + Jk+1
c,l,x, dc

xμ
k+1
c,l )u +

N∑
l=1

(vk
†ĉk

l + Jk+1
c,l,y, dc

yμ
k+1
c,l )v

+ (uk
�φ̂

k + Jk+1
φ,x , dc

xμ
k+1
cφ )u + (vk

�φ̂
k + Jk+1

φ,y , dc
yμ

k+1
cφ )v. (3.74)

Noticing that

1
2(d

c
xφ

k+1, dc
xφ

k+1)u − 1
2 (d

c
xφ

k, dc
xφ

k)u ≤
(

dc
xφ

k+1, dc
x(φ

k+1 − φk)
)

u

= −
(

du
x (d

c
xφ

k+1), φk+1 − φk
)

c
, (3.75)

1
2
(dc

yφ
k+1, dc

yφ
k+1)v − 1

2 (d
c
yφ

k, dc
yφ

k)v ≤
(

dc
yφ

k+1, dc
y(φ

k+1 − φk)
)
v

= −
(

dvy (d
c
yφ

k+1), φk+1 − φk
)

c
, (3.76)

we deduce that

Fk+1
h − Fk

h
τk

≤
(
μk+1
φ ,

φk+1 − φk

τk

)
c

= −
(

du
x (u

k
�φ̂

k + Jk+1
φ,x )+ dvy (v

k
�φ̂

k + Jk+1
φ,y ), μ

k+1
φ

)
c

= (uk
�, φ̂

kdc
xμ

k+1
φ )u + (Jk+1

φ,x , dc
xμ

k+1
φ )u

+ (vk
�, φ̂

kdc
yμ

k+1
φ )v + (Jk+1

φ,y , dc
yμ

k+1
φ )v. (3.77)

The variation of gravitational potential energy with time steps is estimated using (3.70) as

Gk+1
h − Gk

h
τk

= 1
τk
(ρk+1 − ρk, gz)c

= −
(

du
x (ρ̂

kuk
� + χJk+1

φ,x ), gz
)

c
−
(

dvy (ρ̂
kvk
� + χJk+1

φ,y ), gz
)

c

= −(uk
�, ρ̂

kgx)u − (Jk+1
φ,x , χgx)u − (vk

�, ρ̂
kgy)v − (Jk+1

φ,y , χgy)v. (3.78)

To estimate the variation of the kinetic energy with time steps, we introduce the following
intermediate kinetic energies:

Uk
h† = 1

2 (ρ̄
kuk

†, uk
†)u + 1

2 (ρ̄
kvk

†, v
k
†)v, (3.79a)

Uk
h� = 1

2 (ρ̄
kuk
�, uk

�)u + 1
2(ρ̄

kvk
�, v

k
�)v. (3.79b)
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The difference between Uk
h† and Uk is estimated using (3.47a,b) as

Uk
h† − Uk

τk
≤ 1
τk

(
ρ̄k(uk

† − uk), uk
†

)
u
+ 1
τk

(
ρ̄k(vk

† − vk), vk
†

)
v

= −
N∑

l=1

(ĉk
l dc

xμ
k+1
c,l , uk

†)u −
N∑

l=1

(ĉk
l dc

yμ
k+1
c,l , v

k
†)v. (3.80)

Using (3.51) and (3.52), we derive the difference between Uk
h� and Uk

† as

Uk
h� − Uk

h†

τk
≤ 1
τk

(
ρ̄k(uk

� − uk
†), uk

�

)
u
+ 1
τk

(
ρ̄k(vk

� − vk
†, v

k
�

)
v

= −
(
φ̂kdc

x(μ
k+1
φ + μk+1

cφ )+ dc
xpk+1 − ρ̂kgx, uk

�

)
u

−
(
φ̂kdc

y(μ
k+1
φ + μk+1

cφ )+ dc
ypk+1 − ρ̂kgy, v

k
�

)
v
. (3.81)

Using (3.56), we deduce that

(dc
xpk+1, uk

�)u + (dc
ypk+1, vk

�)v = −( pk+1, du
x uk
� + dvyv

k
�)c

= (λpk+1, du
x Jk+1
φ,x + dvy Jk+1

φ,y )c

= −(λdc
xpk+1, Jk+1

φ,x )u − (λdc
ypk+1, Jk+1

φ,y )v. (3.82)

It follows from (3.81) and (3.82) that

Uk
h� − Uk

h†

τk
= −

(
φ̂kdc

x(μ
k+1
φ + μk+1

cφ )− ρ̂kgx, uk
�

)
u
+ (λdc

xpk+1, Jk+1
φ,x )u

−
(
φ̂kdc

y(μ
k+1
φ + μk+1

cφ )− ρ̂kgy, v
k
�

)
v

+ (λdc
ypk+1, Jk+1

φ,y )v. (3.83)

The difference between Uk+1
h and Uk

h� is estimated using (3.31) as

Uk+1
h − Uk

h� = 1
2(ρ̄

k+1uk+1, uk+1)u − 1
2 (ρ̄

kuk
�, uk

�)u

+ 1
2(ρ̄

k+1vk+1, vk+1)v − 1
2(ρ̄

kvk
�, v

k
�)v

≤ (ρ̄k+1uk+1 − ρ̄kuk
�, uk+1)u − 1

2(ρ̄
k+1 − ρ̄k, |uk+1|2)u

+ (ρ̄k+1vk+1 − ρ̄kvk
�, v

k+1)v − 1
2 (ρ̄

k+1 − ρ̄k, |vk+1|2)v. (3.84)
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Taking into account (3.61) and (3.62), we deduce that

1
τk
(ρ̄k+1uk+1 − ρ̄kuk

�, uk+1)u = −
(

dc
x(U

k
uûk+1)+ dp

y (V
k
uûk+1), uk+1

)
u

+ (dc
xΨ

k+1 + dp
yΘ

k+1, uk+1)u

= (Uk
uûk+1, du

x uk+1)c + (Vk
uûk+1, du

y uk+1)pu

− (Ψ k+1, du
x uk+1)c − (Θk+1, du

y uk+1)pu, (3.85)

1
τk
(ρ̄k+1vk+1 − ρ̄kvk

�, v
k+1)v = −

(
dp

x (U
k
vv̂

k+1)+ dc
y(V

k
v v̂

k+1), vk+1
)
v

+ (dp
xΘ

k+1 + dc
yΥ

k+1, vk+1)v

= (Uk
vv̂

k+1, dvxv
k+1)pv + (Vk

v v̂
k+1, dvyv

k+1)c

− (Υ k+1, dvyv
k+1)c − (Θk+1, dvxv

k+1)pv. (3.86)

Taking into account two averaged forms of the discrete mass balance equations

ρ̄k+1 − ρ̄k

τk
+ dc

xUk
u + dp

y Vk
u = 0, (3.87a)

ρ̄k+1 − ρ̄k

τk
+ dp

x Uk
v + dc

yVk
v = 0, (3.87b)

we deduce that

1
2τk

(
ρ̄k+1 − ρ̄k, |uk+1|2

)
u

= −1
2

(
dc

xUk
u + dp

y Vk
u, |uk+1|2

)
u

= (Uk
uūk+1, du

x uk+1)c + (Vk
uūk+1, du

y uk+1)pu, (3.88)

1
2τk

(
ρ̄k+1 − ρ̄k, |vk+1|2

)
v

= −1
2

(
dp

x Uk
v + dc

yVk
v, |vk+1|2

)
v

= (Uk
vv̄

k+1, dvxv
k+1)pv + (Vk

v v̄
k+1, dvyv

k+1)c, (3.89)

where ū and v̄ are the average values of u and v on the boundaries of their respective grid
cells. Substituting (3.85)–(3.89) into (3.84) yields

Uk+1
h − Uk

h�
τk

≤
(

Uk
u(û

k+1 − ūk+1), du
x uk+1

)
c
+
(

Vk
u(û

k+1 − ūk+1), du
y uk+1

)
pu

+
(

Uk
v(v̂

k+1 − v̄k+1), dvxv
k+1
)

pv
+
(

Vk
v(v̂

k+1 − v̄k+1), dvyv
k+1
)

c

− (Ψ k+1, du
x uk+1)c − (Θk+1, du

y uk+1)pu

− (Υ k+1, dvyv
k+1)c − (Θk+1, dvxv

k+1)pv. (3.90)
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In terms of the upwind rules, we can estimate the first four terms of (3.90) as(
Uk

u(û
k+1 − ūk+1), du

x uk+1
)

c
= −(h |Uk

u| du
x uk+1, du

x uk+1)c ≤ 0, (3.91)(
Vk

u(û
k+1 − ūk+1), du

y uk+1
)

pu
= −(h |Vk

u | du
y uk+1, du

y uk+1)pu ≤ 0, (3.92)(
Uk
v(v̂

k+1 − v̄k+1), dvxv
k+1
)

pv
= −(h |Uk

v| dvxv
k+1, dvxv

k+1)pv ≤ 0, (3.93)(
Vk
v(v̂

k+1 − v̄k+1), dvyv
k+1
)

c
= −(h |Vk

v | dvyv
k+1, dvyv

k+1)c ≤ 0. (3.94)

As a consequence of (3.91)–(3.94), the inequality (3.90) can be simplified as

Uk+1
h − Uk

h�
τk

≤ −(Ψ k+1, du
x uk+1)c − (Θk+1, du

y uk+1)pu

− (Υ k+1, dvyv
k+1)c − (Θk+1, dvxv

k+1)pv

= −2(ηkdu
x uk+1, du

x uk+1)c − 2(ηkdvyv
k+1, dvyv

k+1)c

−
(
η̄k(du

y uk+1 + dvxv
k+1), du

y uk+1
)

pu

−
(
η̄k(du

y uk+1 + dvxv
k+1), dvxv

k+1
)

pv
, (3.95)

where the last equality is obtained using (3.60a–c). Taking into account(
η̄k(du

y uk+1 + dvxv
k+1), du

y uk+1
)

pu
+
(
η̄k(du

y uk+1 + dvxv
k+1), dvxv

k+1
)

pv

≥
(
η̄k(du

y uk+1 + dvxv
k+1), du

y uk+1 + dvxv
k+1
)

puv
, (3.96)

we combine (3.80), (3.83) and (3.95) to obtain

Uk+1
h − Uk

h
τk

= Uk+1
h − Uk

h�
τk

+ Uk
h� − Uk

h†

τk
+ Uk

h† − Uk
h

τk

≤ −
N∑

l=1

(ĉk
l dc

xμ
k+1
c,l , uk

†)u −
N∑

l=1

(ĉk
l dc

yμ
k+1
c,l , v

k
†)v

−
(
φ̂kdc

x(μ
k+1
φ + μk+1

cφ )− ρ̂kgx, uk
�

)
u
+ (λdc

xpk+1, Jk+1
φ,x )u

−
(
φ̂kdc

y(μ
k+1
φ + μk+1

cφ )− ρ̂kgy, v
k
�

)
v

+ (λdc
ypk+1, Jk+1

φ,y )v

− 2(ηkdu
x uk+1, du

x uk+1)c − 2(ηkdvyv
k+1, dvyv

k+1)c

−
(
η̄k(du

y uk+1 + dvxv
k+1), du

y uk+1 + dvxv
k+1
)

puv
. (3.97)

Finally, we deduce (3.73) by combining (3.74), (3.77), (3.78) and (3.97). �

4. Numerical results

In this section, numerical experiments are performed to verify and validate the proposed
model and numerical scheme.
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Figure 1. Phase variable in Example 1.

4.1. Example 1
In this example, we consider the single-solute problems with the Dirichlet boundary
conditions in the one-dimensional domain Ω = [0, 1]. The velocity is set to be zero, and
the solute transport equation is simplified as

ck+1 − ck

τk
− ∇ · ck ∇μk+1

c = 0. (4.1)

We take τk = 0.01. Let ε be the interface width. The phase variable is time-independent
and given by the formula

φ(x) = 1
2

(
tanh

(
x − 0.5√

2ε

)
+ 1

)
, x ∈ [0, 1], (4.2)

which is also illustrated in figure 1.
In the first case, we take α = β = 1, γ = ln(0.1) and δ = ln(0.5). The boundary

condition μc = 0 is imposed on both endpoints, while the homogeneous initial
concentration c0 = 0.3 is taken in the entire domain. In terms of the boundary condition,
the solute concentrations in the bulk solvent fluids are calculated as

c0 = exp(δ) = 0.5, φ = 0, (4.3)

c1 = exp(γ ) = 0.1, φ = 1. (4.4)

For ε = 0.01, figure 2 illustrates dynamics of the solute concentration with time, showing
that the system converges rapidly to a steady state. Figure 3 gives a comparison of the
numerical solutions at the equilibrium state with the exact solutions, as well as the
numerical errors that are the absolute values of the difference between numerical and exact
solutions. The results demonstrate that the numerical solutions are in perfect agreement
with the exact solutions. The sharp-interface limit of the proposed model can be derived
via formal asymptotic analysis as in the literature (e.g. Garcke, Lam & Stinner 2014; Qin
et al. 2022), and it will be our ongoing work. Here, we show the sharp-interface limit by
numerical results in figure 4, which clearly indicates that the concentrations will approach
the sharp-interface limit as the interface width ε approaches zero.
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Figure 2. Diffusion of the solute concentration at different times in Example 1.
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Figure 3. Comparison of numerical results with the exact solution in Example 1: (a) profiles of numerical
and exact solutions; (b) errors between numerical and exact solutions.
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Figure 4. Concentration profiles with different values of ε in Example 1.
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In the second case, we take the time-independent boundary conditions μc = 0.5 at x =
0, and μc = 0.1 at x = 1. The parameters are taken as α = 1, 2, β = 2, 1, γ = ln(0.1) and
δ = ln(0.2). At the steady state of this case, we have

− d
dx

(
c

dμc

dx

)
= 0, (4.5)

which implies that there exists a constant ι > 0 such that

− c
dμc

dx
= ι. (4.6)

In the two bulk fluids, i.e. φ = 1 and φ = 0, we have

dc
dx

=

⎧⎪⎨
⎪⎩

− ι

α
, φ = 1,

− ι

β
, φ = 0.

(4.7)

On the other hand, the solute concentrations within two solvent fluids are expressed as

c0 = exp
(

0.5
β

+ ln(0.2))
)
, φ = 0, (4.8)

c1 = exp
(

0.1
α

+ ln(0.1)
)
, φ = 1. (4.9)

Combining (4.7)–(4.9) yields

c(x) =

⎧⎪⎨
⎪⎩

− ι

α
x + c1, φ = 1,

− ι

β
(x − 1)+ c0, φ = 0,

(4.10)

where c0 and c1 are given in (4.8) and (4.9). Figure 5 depicts numerical results of
the steady-state concentrations, which accord with the above theoretical analysis. It also
indicates that the model has the ability to reflect the heterogeneity in binary solvent fluids
through different choices of parameters.

4.2. Example 2
In this example, we simulate the single-solute problems with the Neumann boundary
conditions and without velocity fields in the one-dimensional domain Ω = [0, 1]. The
phase variable is given by the formula

φ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

(
1 + tanh

(
x − 0.25√

2ε

))
, x ∈ [0, 0.5],

1
2

(
1 − tanh

(
x − 0.75√

2ε

))
, x ∈ (0.5, 1],

(4.11)

where ε is the interface width. Here, we take ε = 0.01 for all tested cases in this example.
The phase variable is illustrated in figure 6. The discrete solute transport equation takes
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Figure 5. Concentration profiles with different α and β.
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Figure 6. Phase variable in Example 2.

the form

ck+1 − ck

τk
− d

dx

(
ck dμk+1

c

dx

)
= 0, (4.12)

associated with the boundary condition dμc/dx = 0 on the endpoints. We take τk = 0.001.
The total solute mass is conserved. The fluid system will reach an equilibrium state as the
total free energy within this system is dissipated with time.

In the first case, we take α = β = 1, γ = ln(0.1) and δ = ln(0.5). The initial
concentration is c0 = 0.3 in the entire domain. Figure 7 illustrates the dynamics of
chemical potential and concentration with time, while the total energy dissipation is
depicted in figure 8. The normal diffusion makes the solute spread homogeneously in
space, and it usually occurs in the single-phase fluid. The active diffusion generally stems
from different chemical and physical characteristics of two solvent fluids that play a
major role in dissolving a specific solute. The underlying mechanics of such scenarios
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Figure 7. Dynamics of the solute chemical potential and concentration at different times in Example 2:
(a) solute chemical potential; (b) solute concentration.

is described by the free energy and chemical potential. Although the initial concentration
is uniform in space, the active diffusion still takes place due to the driving force resulting
from the chemical potential gradient in the space occupied by two solvent fluids, and total
energy will be dissipated in this process until an equilibrium state is reached. Let μ̄c be the
equilibrium-state chemical potential, which is uniform and constant in space. For a specific
phase variable φ, the equilibrium-state solute concentration, denoted by cφ , depends on the
phase variable and satisfies

φα
(
ln(cφ)− γ

)+ (1 − φ)β
(
ln(cφ)− δ

) = μ̄c. (4.13)

Solving (4.13) gives the analytical formulation of cφ as

cφ = exp
(
μ̄c + φαγ + (1 − φ)βδ

φα + (1 − φ)β

)
. (4.14)

Here, μ̄c can be calculated analytically through solving the total mass conservation
equation ∫

Ω

cφ dx =
∫
Ω

c0 dx. (4.15)

In figure 9, we compare the numerical and exact solutions of the solute concentration at
the equilibrium state as well as showing the numerical errors (i.e. the absolute values of
the difference between numerical and exact solutions). Numerical results are in agreement
with the exact solutions.

In the second test, we take different values of parameters α, β, γ and δ. The initial
concentration is still set to be c0 = 0.3 in the entire domain. Figure 10 depicts the profiles
of the solute concentrations at the equilibrium states with different parameters. Equation
(4.14) shows that the solute concentrations at different equilibrium states can be achieved
through the appropriate choices of the four parameters. This conclusion is verified clearly
by figure 10. The proposed free energy and chemical potential have the capability of
describing different active diffusion processes.

4.3. Example 3
In this example, we simulate the dynamical process of a single solute in binary solvent
fluids to show the convergence of the proposed scheme. The spatial domain is the square
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Figure 8. Energy dissipation curves in Example 2.
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Figure 9. Comparison of numerical results with the exact solution in Example 2: (a) numerical and exact
solutions; (b) numerical errors.
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Figure 10. Profiles of the solute concentrations at the equilibrium states in Example 2: (a) cases with
γ = δ = 0 and different values of α and β; (b) cases with α = β = 1 and different values of γ and δ.
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Figure 11. Initial phase variable in Example 3.

domain Ω = [0, 1]2, which is divided by a uniform square mesh with 50 × 50 grid cells.
The parameters in the model are chosen as Mφ = 1, Re = 102, Cn = 0.03, We = 1, Peφ =
103, �1/�2 = 10 and η1/η2 = 10. The gravity effect is neglected in this example. The
initial phase variable is given as

φ0(x, y) =
{
φ∗, a ≤ x ≤ 1 − a, a ≤ y ≤ 1 − a,

φ∗, elsewhere,
(4.16)

where a = 0.37, φ∗ = 0.0735 and φ∗ = 0.9335. The initial phase variable is also
illustrated in figure 11. The initial solute concentration is c0 = 0.2 in the entire domain.
The reference velocity parameter is chosen as ς = 1. For the solute transport equation,
we take Pec = 1, D1,f = 1, α = β = 1, γ = ln(0.5) and δ = ln(0.1). The initial velocity
is zero. The total simulation time is tf = 0.1. Contours of the phase variable and solute
concentration at t = 0.1 are shown in figure 12. From figures 11 and 12, we can see that
the interfacial tension between two bulk fluids makes the square droplet shrink into a circle,
and meanwhile, a large amount of solute transfers from the surrounding into the droplet
due to the active diffusion.

Due to strong nonlinearity and complication of the model, we cannot derive the
analytical solutions, thus we use the solutions computed with a very small time step size
τk = 2−4s, s = 10−3, as the approximate analytical solutions, which are denoted by c̃, φ̃,
ũ and Ẽ . We define the discrete norms for the errors ec, eφ , eu and eE as follows:

‖ec‖h = max
k

⎛
⎝h2

nx−1∑
i=0

ny−1∑
j=0

|ck
i+1/2,j+1/2 − c̃i+1/2,j+1/2(tk)|2

⎞
⎠

1/2

, (4.17)

‖eφ‖h = max
k

⎛
⎝h2

nx−1∑
i=0

ny−1∑
j=0

|φk
i+1/2,j+1/2 − φ̃i+1/2,j+1/2(tk)|2

⎞
⎠

1/2

, (4.18)
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Figure 12. Contours of the phase variable and solute concentration at t = 0.1 in Example 3: (a) phase
variable; (b) solute concentration.

τk ‖ec‖h Rate ‖eφ‖h Rate ‖eu‖h Rate ‖eE‖h Rate

s 6.569 × 10−3 — 1.831 × 10−2 — 4.958 × 10−2 — 8.698 × 10−3 —
2−1s 3.544 × 10−3 0.89 1.071 × 10−2 0.77 3.576 × 10−2 0.47 6.420 × 10−3 0.44
2−2s 1.594 × 10−3 1.15 5.105 × 10−3 1.07 2.070 × 10−2 0.79 3.898 × 10−3 0.72
2−3s 5.382 × 10−4 1.57 1.794 × 10−3 1.51 8.178 × 10−3 1.34 1.581 × 10−3 1.30

Table 1. Temporal errors and convergence rates of the scheme.

‖eu‖h = max
k

⎛
⎝h2

nx−1∑
i=1

ny−1∑
j=0

|uk
i,j+1/2 − ũi,j+1/2(tk)|2

+ h2
nx−1∑
i=0

ny−1∑
j=1

|vk
i+1/2,j − ṽi+1/2,j(tk)|2

⎞
⎠

1/2

, (4.19)

‖eE‖h = max
k

|Ek
h − Ẽ(tk)|. (4.20)

Numerical errors and convergence rates are displayed in table 1. It is evidently shown that
the proposed scheme has first-order convergence in time.

4.4. Example 4
In this example, we simulate the dynamical process of two solutes in binary solvent fluids
with a large density contrast. The spatial domain is Ω = [0, 1]2. The parameters in the
model are chosen as Mφ = 1, Re = 102, Cn = 0.02, We = 1, Peφ = 103, �1/�2 = 100
and η1/η2 = 100. The gravity effect is not considered in this example. The initial solute
concentrations are uniform in space with c0

1 = c0
2 = 0.2, while the initial phase variable is
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Figure 13. Adaptive time step sizes in Example 4.

given as

φ0(x, y) = min
(

max
(
φ̂(x, y), φ∗

)
, φ∗

)
, (4.21)

φ̂(x, y) = max ((1 + tanh ((0.15 − r1)/Cn)) /2, (1 + tanh ((0.15 − r2)/Cn)) /2) ,
(4.22)

r1 =
√
(x − 0.4)2 + ( y − 0.6)2, r2 =

√
(x − 0.6)2 + ( y − 0.4)2, (4.23)

where φ∗ = 0.0735 and φ∗ = 0.9335. The solvent mixture is composed of two fluids with
a large density contrast. There is an irregular droplet consisting mostly of the heavier fluid
in the domain at the initial time. The reference velocity parameter is chosen as ς = 10. The
initial velocity is zero. The solute mixture is composed of two different substances. For
the solute transport equation, we take Pec = 1 and D1,f = D2,f = D1,2 = 1. The solute
diffusion matrix is calculated by (2.37) and (2.38). For the solute energy parameters,
we take α1 = α2 = 1, β1 = β2 = 1, γ1 = ln(0.5), γ2 = ln(0.1), δ1 = ln(0.1) and δ2 =
ln(0.5).

The proposed scheme allows us to use non-uniform time step sizes. Here, we employ the
adaptive time-stepping strategy (Qiao, Zhang & Tang 2011) to adjust the time step sizes

τk = max

⎛
⎝τmin,

τmax√
1 + rw2

k

⎞
⎠ , wk = Ek

h − Ek−1
h

τk−1
, (4.24a,b)

where Ek
h is the total free energy, τmin and τmax are the preset lower and upper bounds of

the time step sizes, and r is a positive constant. In this example, we take τmin = 5 × 10−4,
τmax = 5 × 10−3 and r = 10. Figure 13 depicts the adaptive time step sizes calculated by
(4.24a,b).

The phase variables at different times are illustrated in figure 14, while the solute
concentrations are shown in figures 15 and 16. The results show that driven by the
interfacial tension between two bulk fluids, the droplets merge together and then shrink
into a circle, and meanwhile, the active diffusion as well as the fluid flow makes a large
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(a) (b)

(d ) (e)

(c)

Figure 14. Phase variable contours at different times in Example 4: (a) k = 0, (b) k = 20, (c) k = 50,
(d) k = 150, and (e) k = 400.

amount of solute 1 transfer to the droplets from the surrounding fluid, whereas solute 2 is
moving from the droplets to the surrounding fluid.

The normalized total free energy is defined as

Ek
r = Ek

h

|E0
h | . (4.25)

Figure 17 depicts the normalized total energy dissipation curve, showing that total energy
is always decreasing with time. The normalized total solvent mass is defined as

ρk
r = (ρk, 1)c − (ρ0, 1)c

(ρ0, 1)c
. (4.26)

The normalized total solute concentrations are defined as

ck
r,l = (ck

l , 1)c − (c0
l , 1)c

(c0
l , 1)c

, l = 1, 2. (4.27)

Figure 18 illustrates the profiles of ρk
r and ck

r,l, and shows that the proposed method is
capable of conserving total masses of solutes and solvent fluids except for roundoff errors.

4.5. Example 5
This example takes into consideration the gravity effect on the solute transport in two
different droplets. The spatial domain is still Ω = [0, 1]2. The initial phase variable is
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Figure 15. Dynamics of the concentration of solute 1 in Example 4: (a) k = 20, (b) k = 30, (c) k = 50,
(d) k = 100, (e) k = 150, and ( f ) k = 400.

given as

φ0(x, y) = min
(

max
(
φ̂(x, y), φ∗

)
, φ∗

)
, (4.28)

φ̂(x, y) = max ((1 + tanh ((0.15 − r1)/Cn)) /2, (1 + tanh ((0.12 − r2)/Cn)) /2) ,
(4.29)

r1 =
√
(x − 0.5)2 + ( y − 0.83)2, r2 =

√
(x − 0.5)2 + ( y − 0.5)2, (4.30)

where φ∗ = 0.045 and φ∗ = 0.936. The initial velocity is zero. The reference velocity
parameter is chosen as ς = 1. The parameters in the fluid flow equations are chosen as
Mφ = 1, Re = 103, Cn = 0.02, We = 1, Peφ = 103, �1/�2 = 103, η1/η2 = 103 and Fr =
1
5 . In this example, we want to demonstrate the effects of solutes on the dynamics of
solvents, so we simulate two cases with different single solutes. For the solute energy
parameters, we take α = β = 50, γ = ln(0.5), δ = ln(0.1) in case 1, and α = β = 50,
γ = ln(0.1), δ = ln(0.5) in case 2. The solute diffusion parameters are taken as Pec = 102

and D1,f = 1 for both cases. The initial solute concentrations in both cases are given as

c0(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

0.5, y ≤ 1
3
,

0.1, y >
1
3
.

(4.31)

To compare the results of the two cases, we use the uniform time step size τk = 2 × 10−3

for both cases.
The phase variables of the two cases at different times are shown in figures 19 and 21.

The solute concentrations of the two cases are illustrated in figures 20 and 22. In both
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Figure 16. Dynamics of the concentration of solute 2 in Example 4: (a) k = 20, (b) k = 30, (c) k = 50,
(d) k = 100, (e) k = 150, and ( f ) k = 400.
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Figure 17. Energy dissipation profile in Example 4.

cases, the motion of two droplets is driven by the interfacial tension, gravity and the solute
chemical potentials. The droplets are moving downwards due to the gravity effect and large
density contrast, and meanwhile, they are merging into a large droplet due to the interfacial
tension. During the dynamical process of case 1, the solute concentration in the droplets
is increasing with time due to the active diffusion, whereas in case 2, the solute behaves
in the opposite pattern. It is observed clearly from figures 19 and 21 that the solutes have a
significant effect on the motion of solvents; actually, in case 1, the solute dissolving in the
droplets drags the downward motion of the droplets against gravity.
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Figure 18. Mass conservation profiles of solvents and solutes in Example 4: (a) solvent mass conservation;
(b) solute mass conservation.
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Figure 19. Phase variable contours of case 1 at different times in Example 5: (a) k = 0, (b) k = 100,
(c) k = 200, (d) k = 300, (e) k = 400, and ( f ) k = 500.

In this example, the gravitational potential energy is included in the total free energy.
In figure 23, we plot the dissipation curves of the normalized total energy Ek

r defined
in (4.25), which show that the total free energies of both cases are always dissipated with
time. Figures 24 and 25 illustrates the profiles of ρk

r and ck
r defined in (4.26) and (4.27). The

mass loss always falls within roundoff errors. Therefore, the proposed method performs
very well in not only energy stability but also mass conservation.
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Figure 20. Solute concentrations of case 1 at different times in Example 5: (a) k = 0, (b) k = 100,
(c) k = 200, (d) k = 300, (e) k = 400, and ( f ) k = 500.
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Figure 21. Phase variable contours of case 2 at different times in Example 5: (a) k = 0, (b) k = 100,
(c) k = 200, (d) k = 300, (e) k = 400, and ( f ) k = 500.
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Figure 22. Solute concentrations of case 2 at different times in Example 5: (a) k = 0, (b) k = 100,
(c) k = 200, (d) k = 300, (e) k = 400, and ( f ) k = 500.
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Figure 23. Energy dissipation profiles in Example 5: (a) case 1; (b) case 2.

5. Conclusions

A thermodynamically consistent phase-field model has been proposed to describe the
activated solute transport in binary solvent fluids. A key ingredient of the model is
to introduce the mixed free-energy function for the multiple solutes, which is able to
characterize the solubility difference of solutes in two solvent fluids through different
solute chemical potentials in binary fluids. A general multi-component solute diffusion
model is established using the Maxwell–Stefan approach, which takes into account
the crossing influences between different solutes. It remains to support the free-energy
function through molecular scale simulations or experimental data in the future. The
hydrodynamics of two solvent fluids is described by a general phase-field model, which
accounts for general average velocity and different densities. The model is derived
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Figure 24. Solvent mass conservation profiles in Example 5: (a) case 1; (b) case 2.
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Figure 25. Solute mass conservation profiles in Example 5: (a) case 1; (b) case 2.

rigorously using the second law of thermodynamics. The model system is highly nonlinear
and strongly coupled. To simulate the model efficiently, we have proposed a linearized,
decoupled and energy-stable numerical method. The spatial discretization is constructed
using the finite difference/volume methods on staggered grids with the upwind strategy.
Both semi-discrete and fully discrete schemes are proved to follow an energy dissipation
law at the discrete level as well as ensuring the mass conservation law for solutes and
solvents. Numerical experiments have been performed to demonstrate that the proposed
model and numerical method can simulate different processes of the solute active diffusion
in two-phase solvent fluids.

The proposed model has potential applications in many relevant fields, such as
geological carbon sequestration with active diffusion due to the heterogeneity in
underground formations, intracellular ion mass transfer, and the removal and extraction
of specific substances in industrial and environmental technologies. The modified
Maxwell–Stefan model can be applicable to general multi-component diffusion processes
of free fluid flow and porous media flow. The proposed numerical method can provide
guidance for designing efficient numerical methods for the other multiphase flow
problems, for instance, the electrical ion transport in two-phase fluids coupled with
electromagnetic fields.
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