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In analytical electron microscopy, energy dispersive X-ray spectroscopy (EDX) has long been able to 
assess elemental composition on the micron scale, measuring elemental concentration ratios with a 
sensitivity approaching a few atomic percent [1].  Improvements in detector design and source brightness 
have achieved EDX mapping in scanning transmission electron microscopy (STEM) at atomic resolution 
[2].  However, relative concentration may be less informative than the absolute number of atoms at this 
scale, where structures of interest include nanoparticles and crystal defects.  Counting atoms was achieved 
in high-angle annular dark-field STEM imaging through absolute scale comparison between experiment 
and simulation [3].  Is this feasible in atomic resolution STEM EDX? 
 
The number of X-ray counts N is given by 
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with R the probe position, I the beam current, T the probe live dwell time, Fion the fraction of incident 
electrons causing ionization events (depending on probe-position, thickness and electron scattering 
through the material; a correction for X-ray absorption Xabs can also be included), ω the fluorescence yield, 
Ω the detector solid angle, and Deff the detector efficiency [4].  Absolute scale comparison between 
experiment and theory thus has two aspects: (i) characterising the experimental geometry and (ii) 
simulating electron scattering through the crystal [4,5]. 
 
First proof-of-principle work achieved good agreement in absolute scale comparison between experiment 
and simulation for the mean EDX signal through careful characterization of the experimental geometry, 
but had insufficient count rate to form atomic resolution images [4].  Using an FEI Titan G2 at 200 keV 
with a four windowless silicon-drift detector (SuperX) system, subsequent work showed good quantitative 
agreement at atomic resolution, albeit after repeat-unit averaging in crystalline SrTiO3 [5].  Figure 1 shows 
2D maps at select thicknesses, and plots of the peak, mean and minimum signals for several thicknesses 
(peak and minimum counts are averages within a 0.1 nm radius of the atomic column and minimum 
positions, respectively).  Some discrepancies are evident, and possible causes will be discussed [6]. 
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Figure 1.  Quantitative comparison of experimental and simulated EDX signals for the Sr K, Ti K, and Sr 
L-shell peaks. Left: STEM images for thicknesses 15.6 nm and 28.1 nm. The probe-forming aperture 
semiangle is 19.5 mrad. The simulations include a Gaussian effective source distribution with full-width-
half-maximum 0.21 nm. The scale bar applies to all images. Right: Peak, mean and minimum X-ray counts 
as a function of sample thickness, comparing experiment (symbols) and simulation (lines). The 
experimental error bars represent only the error arising from counting statistics. 
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