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Abstract. In this text, we provide a fully rigorous and complete proof of E.H. Lieb’s
statement that (topological) entropy of square ice (or six-vertex model, XXZ spin chain
for anisotropy parameter � = 1/2) is equal to 3

2 log2(4/3).
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1. Introduction
1.1. Computing entropy of multidimensional subshifts of finite type. This work is the
consequence of a renewal of interest from the fields of symbolic dynamics to entropy
computation methods developed in quantum and statistical physics for lattice models. This
interest comes from constructive methods for multidimensional subshifts of finite type
(some equivalent formulation in symbolic dynamics of lattice models) that are involved
in the characterization by Hochman and Meyerovitch [HM10] of the possible values of
topological entropy for these dynamical systems (where the dynamics are provided by
the action of the Z

2 shift action) with a recursion-theoretic criterion. The consequences
of this theorem are not only that entropy may be algorithmically uncomputable for a
multidimensional subshift of finite type (SFT), which was previously proved for cellular
automata [HKC92], but also strong evidence that the study of these systems as a class
is intertwined with computability theory. Moreover, it is an important tool to localize
sub-classes for which the entropy is computable in a uniform way, as ones defined by
strong dynamical constraints [PS15]. Some current research attempts have been made to
understand the frontier between the uncomputability and the computability of entropy for
a multidimensional SFT. For instance, approaching the frontier from the uncomputable
domain, the author, together with Sablik [GS17], proved that the characterization of
Hochman and Meyerovitch stands under a relaxed form of the constraint studied in [PS15],
which includes notably all exactly solvable models considered in statistical and quantum
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physics. To approach the frontier from the computable domain, it is natural to attempt to
understand (in particular, prove) and extend the computation methods developed for these
models.

1.2. Content of this text. Our study in the present text focuses on square ice (or
equivalently, the six-vertex model or the XXZ spin chain for anisotropy parameter
� = 1/2). Since it is central among exactly solvable models in quantum physics [B82], this
work will serve as a ground for further connections between entropy computation methods
and constructive methods coming from symbolic dynamics. The entropy of square ice was
argued by Lieb [L67] to be exactly 3

2 log2(
4
3 ). However, his proof was not complete, as it

relied on a non-verified hypothesis (the condensation of Bethe roots, see §6). Moreover,
various other arguments involved in Lieb’s argumentation and later developments have not
yet received full rigorous treatment. In this text, we fill the holes and propose a (complete)
proof of the following theorem.

THEOREM 1. The entropy of square ice is equal to 3
2 log2(

4
3 ).

For completeness, we include some exposition of what can be considered as background
material. The proof is thus self-contained, except for the use of the coordinate Bethe ansatz,
for which we rely on another paper by Duminil-Copin et al. [DGHMT18].

One can find an overview of the proof in §3, presented after some definitions related to
symbolic dynamics and representations of square ice in §2.

2. Background: square ice and its entropy
2.1. Subshifts of finite type
2.1.1. Definitions. Let A be some finite set, called the alphabet. For all d ≥ 1, the set
AZ

d
, whose elements are called configurations, is a topological space with the infinite

power of the discrete topology on A. Let us denote by σ the shift action of Zd on this space
defined by the following equality for all u ∈ Z

d and x element of the space: (σ u(x))v =
xv+u. A compact subset X of this space is called a d-dimensional subshift when this subset
is stable under the action of the shift, which means that for all u ∈ Z

d , σ u(X) ⊂ X. For
any finite subset U of Zd , an element p of AU is called a pattern on the alphabet A and
on support U. We say that this pattern appears in a configuration x when there exists
a translate V of U such that xV = p. We say that it appears in another pattern q on a
support containing U such that the restriction of q on U is p. We say that it appears in a
subshift X when it appears in a configuration of X. Such a pattern is also called globally
admissible for X. For all d ≥ 1, the number of patterns on support U(d)N ≡ �1, N�d that
appear in a d-dimensional subshift X is denoted by NN(X). When d = 2, the number of
patterns on support U(2)M ,N ≡ �1, M�× �1, N� that appear in X is denoted by NM ,N(X). A
d-dimensional subshift X defined by forbidding patterns in some finite set F to appear in
the configurations, formally

X = {x ∈ AZ
d

: for all U ⊂ Z
d , xU /∈ F},

is called a subshift of finite type (SFT). In a context where the set of forbidden patterns
defining the SFT is fixed, a pattern is called locally admissible for this SFT when no
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FIGURE 1. Illustration of Definition 2 for N = 3.

forbidden pattern appears in it. A morphism between two Z
d -subshiftsX, Z is a continuous

map ϕ : X→ Z such that ϕ ◦ σ v = σ v ◦ ϕ for all v ∈ Z
d (the map commutes with the

shift action). An isomorphism is an invertible morphism.

2.1.2. Topological entropy

Definition 1. Let X be a d-dimensional subshift. The topological entropy of X is defined
as

h(X) ≡ inf
N≥1

log2(NN(X))

Nd
.

It is a well-known fact in topological dynamics that this infimum is a limit:

h(X) = lim
N≥1

log2(NN(X))

Nd
.

It is a topological invariant, meaning that when there is an isomorphism between two
subshifts, these two subshifts have the same entropy [LM95].

Definition 2. Let X be a bidimensional subshift (d = 2). For all n ≥ 1, we denote by XN
the subshift obtained from X by restricting to the width N infinite strip {1, . . . , N} × Z.
Formally, this subshift is defined on alphabet AN and by that z ∈ XN if and only if there
exists x ∈ X such that for all k ∈ Z, zk = (x1,k , . . . , xN ,k). See Figure 1.

In the following, we will use the following proposition.

PROPOSITION 1. The entropy of X can be computed through the sequence (h(XN))N :

h(X) = lim
N

h(XN)

N
.

We include a proof of this statement, for completeness.

Proof. From the definition of XN ,

h(X) = lim
N

lim
M

log2(NM ,N(X))

NM
.
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We prove this via an upper bound on the lim supN and a lower bound on the lim infN of
the sequence in this formula.

Upper bound by decomposing squares into rectangles. Since for any M , N , k, the set
U
(2)
kM ,kN is the union ofMN translates of U(2)k , a pattern on support U(2)kM ,kN can be seen as

an array of patterns on U
(2)
k . As a consequence,

NkM ,kN(X) ≤ (Nk,k(X))
MN ,

and using this inequality, we get

lim
M

log2(NM ,N(X))

NM
= lim

M

log2(NkM ,kN (X))

k2NM

≤ lim
M

log2(Nk,k(X))

k2 = log2(Nk,k(X))

k2 .

As a consequence, for all k,

lim sup
N

lim
M

log2(NM ,N(X))

NM
≤ log2(Nk,k(X))

k2 ,

and this implies

lim sup
N

lim
M

log2(NM ,N(X))

NM
≤ h(X), (1)

by taking k→+∞ in the last inequality.
Lower bound by decomposing rectangles into squares. For all M , N , by considering a

pattern on U
(2)
MN ,NM as an array of patterns on U

(2)
M ,N , we get that

NMN ,NM(X) ≤ (NM ,N(X))
MN .

Thus,

h(X) = lim
M

log2(NMN ,NM(X))

M2N2 ≤ lim
M

log2(NM ,N(X))

MN
.

As a consequence,

h(X) ≤ lim inf
N

lim
M

log2(NM ,N(X))

NM
. (2)

The two inequalities in equations (1) and (2) imply that the sequence (h(XN)/N)N
converges and that the limit is h(X).

In the following, for all N and M, we assimilate patterns of XN on U
(1)
M with patterns of

X on U
(2)
M ,N .

2.2. Representations of square ice. The square ice can be defined as an isomorphic class
of subshifts of finite type, whose elements can be thought of as various representations
of the same object. The most widely used is the six-vertex model (whose name derives
from the fact that the elements of the alphabet represent vertices of a regular grid) and is
presented in §2.2.1. In this text, we will use another representation, presented in §2.2.2,
whose configurations consist of drifting discrete curves, representing possible particle

https://doi.org/10.1017/etds.2022.6 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.6


A complete proof that square ice entropy is 3
2 log2(4/3) 1851

FIGURE 2. An example of locally and thus globally admissible pattern of the six-vertex model.

trajectories. In §2.2.3, we provide a proof that one can restrict to a subset of the total
set of patterns considered to compute entropy of square ice.

2.2.1. The six-vertex model. The six-vertex model is the subshift of finite type described
as follows.

Symbols: , , , , , .

Local rules: Considering two adjacent positions in Z
2, the arrows corresponding to the

common edge of the symbols on the two positions have to be directed the same way. For
instance, the pattern is allowed, while is not.

Global behavior: The symbols draw a lattice whose edges are oriented in such a way that
all the vertices have two incoming arrows and two outgoing ones. This is called an Eulerian
orientation of the square lattice. See an example of an admissible pattern in Figure 2.

Remark 1. The name of square ice of the considered class of SFT appears clearly when
considering the following application on the alphabet of the six-vertex model to local
configurations of dihydrogen monoxide:

2.2.2. Drifting discrete curves. From the six-vertex model, we derive another represen-
tation of square ice through an isomorphism, which consists in transforming the letters via
an application πs on the alphabet of the six-vertex model, described as follows:

For instance, the pattern in Figure 2 corresponds, after application of πs , to that in
Figure 3. In this SFT, the local rules consist in forcing that any segment of the curve in a
symbol extends in the positions that it directs to (in the fifth symbol in the above list, we
consider that there are only two segments).
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FIGURE 3. Representation of pattern in Figure 2.

In the following, we denote by Xs this SFT.

Remark 2. One can see straightforwardly that locally admissible patterns of this SFT are
always globally admissible, since any locally admissible pattern can be extended into a
configuration by extending the curves in a straight way.

2.2.3. Entropy of Xs and cylindrical stripes subshifts of square ice. Consider some
alphabet A, and X a bidimensional subshift of finite type on this alphabet. For all
N ≥ 1, we set �N = Z/(NZ)× Z. Let us also denote by πN : �1, N�× Z→ �N and
φN : A�1,N�×Z→ A�N the canonical projections. Formally, for all u ∈ �1, N�× Z and
x ∈ A�1,N�×Z,

(φN(x))πN (u) = xu.

We say that a pattern p on support U ⊂ �1, N�× Z appears in a configuration x on
�N when there exists a configuration in XN whose image by πN is x, and there exists an
element u ∈ �N such that for all v ∈ U, xu+πN(v) = xv.

Notation 1. Let us denote byXN the set of configurations inXN whose image by φN does
not contain any forbidden pattern for X (in other words, this pattern can be wrapped on an
infinite cylinder without breaking the rules defining X).

Similarly, we call (M , N)-cylindrical pattern of X a pattern on UM ,N that can be
wrapped on a finite cylinder Z/NZ× {1, . . . , M}. Let us prove a preliminary result on
the entropy of square ice, which relates the entropy of Xs to the sequence (h(X

s

N))N .

LEMMA 1. The subshift Xs has entropy equal to

h(Xs) = lim
N

h(X
s

N)

N
.

Remark 3. To prove this lemma, we use a technique that first appeared in a work of
Friedland [F97], which relies on a symmetry of the alphabet and rules of the SFT.

Proof. (1) Lower bound: Since for all N, X
s

N ⊂ XsN , then h(X
s

N) ≤ h(XsN). We deduce
by Proposition 1 that

lim sup
N

h(X
s

N)

N
≤ h(Xs).
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(2) Upper bound: Consider the transformation τ on the six-vertex model alphabet that
consists in a horizontal symmetry of the symbols and then the inversion of all the arrows.
The symmetry can be represented as follows:

The inversion is represented by

As a consequence, τ is

We define then a horizontal symmetry operation TN (see Figure 4 for an illustration) on
patterns p whose support is some U

(2)
M ,N , with M ≥ 1.

For all such M and p, TM(p) has also support U(2)M ,N and for all (i, j) ∈ U
(2)
M ,N ,

TN(p)i,j = τ(pN−i,j ).
We define also the applications ∂rN (respectively, ∂lN , ∂tN ) that acts on patterns of the

six-vertex model whose support is some U
(2)
M ,N , M ≥ 1 and such that for all M ≥ 1 and

p on support U(2)M ,N , ∂rN(p) (respectively, ∂lN (p)) is a length M (respectively, M, N) word
and for all j between 1 and M (respectively, M), ∂rN(p)j (respectively, ∂lN (p)j ) is the east
(respectively, west) arrow in the symbol pN ,j (respectively, p1,j ). For instance, if p is the
pattern on the left in Figure 4, then ∂rN(p) (respectively, ∂lN (p)) is the word:

←←→← (respectively,→→→→).
For the purpose of notation, we denote also by πs the application that transforms

patterns of the six-vertex model into patterns of Xs via the application of πs letter by
letter. Let us consider the transformation T s

N ≡ πs ◦ TN ◦ π−1
s on patterns of Xs on some

U
(2)
M ,N . We also denote by ∂l,sN ≡ ∂lN ◦ π−1

s , ∂r ,sN ≡ ∂rN ◦ π−1
s . Let us prove some properties

of these transformations. For any word w on the alphabet {←,→} or {↑, ↓}, we denote by
w the word obtained by exchanging the two letters in the word w.
(a) Preservation of global admissibility: For any p globally admissible, TN(p) is also

locally admissible, and as a consequence globally admissible; indeed, it is sufficient
to check that for all u, v in the alphabet, if uv is not a forbidden pattern in the
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T3

FIGURE 4. Illustration of the definition of T3: the pattern on the left (on support U(2)3,4) is transformed into the
pattern on the right via this transformation.

six-vertex model, then τ(v)τ (u) is also not a forbidden pattern and that if u
v is not

forbidden, then τ(u)
τ(v)

is also not forbidden.
The first assertion is verified because uv is not forbidden if and only if the arrows

of these symbols attached to their adjacent edge are pointing in the same direction,
and this property is preserved when changing uv into τ(v)τ (u). The second one is
verified for a similar reason.

(b) Gluing patterns: Let us consider any N , M ≥ 1 and p, p′ two patterns of Xs on
support U(2)M ,N , such that ∂r ,sN (p) = ∂r ,sN (p′) and ∂l,sN (p) = ∂l,sN (p′). Let us denote by

pattern p′′ on support U(2)M ,2N such that the restriction of p′′ on U
(2)
M ,N is p and the

restriction on (0, N)+ U
(2)
M ,N is TN(p′).

• This pattern is admissible (locally and thus globally). Indeed, this is sufficient
to check that gluing the two patterns p and p′ does not make forbidden patterns
appear, and this comes from that for all letter u, uτ(u) is not forbidden. This can
be checked directly, letter by letter.

• Moreover, p′′ is in NM(X2N). Indeed, this pattern can be wrapped on a cylinder,
and this comes from the fact that if u is a symbol of the six-vertex model, τ(u)u
is not forbidden.

(3) From the gluing property to an upper bound: Given w = (wl , wr ) as some pair of
words on {→,←}, we denote by Nw

M ,N the number of patterns of Xs on support U(2)M ,N

such that ∂l,sN = wl and ∂r ,sN = wr . Since TN is a bijection, denoting w = (wl , wr ), we
have

Nw
M ,N = Nw

M ,N .

From the last point, for all w,

NM(X
s

2N) ≥ Nw
M ,N .Nw

M ,N = (Nw
M ,N)

2

(NM(X
s

2N))
1/2 ≥ Nw

M ,N .

By summing over all possible w:

22M · (NM(X
s

2N))
1/2 =

∑
w
(NM(X

s

2N))
1/2 ≥

∑
w

Nw
M ,N = NM ,N(X

s).

As a consequence, for all N,

2+ 1
2
h(X

s

2N) ≥ h(XsN).
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This implies that

lim inf
N

h(X
s

2N)

2N
≥ lim inf

N

h(XsN)

N
= h(Xs).

For similar reasons,

lim inf
N

h(X
s

2N+1)

2N + 1
≥ lim inf

N

h(XsN)

N
= h(Xs),

and thus,

lim inf
N

h(X
s

N)

N
≥ lim inf

N

h(XsN)

N
= h(Xs).

3. Overview of the proof
In the following, we provide a complete proof of the following theorem.

THEOREM 2. The entropy of square ice is equal to

h(Xs) = 3
2 log2

( 4
3

)
.

The proof of Theorem 2 can be summarized as follows. Some of the terms will be
defined in the text; however, this overview will provide us with a way in which to situate
every argument in the overall strategy, which consists of:
(1) finding a formula for h(X

s

N) for all N (in practice for all N odd);
(2) then using Lemma 1 to compute h(Xs).
• The first point is done using the transfer matrix method, which allows us to express

h(X
s

N) with a formula involving a sequence of numbers defined implicitly through a
system of nonlinear equations called Bethe equations. This method itself consists of
several steps.
(1) Formulation with transfer matrices [§4]: it is usual, when dealing with uni-

dimensional subshifts of finite type, to express their entropy as the greatest
eigenvalue of the adjacency matrix, which tells which couples of symbols (which
are rows of symbols in the case of stripe subshifts) can be adjacent. In this text,
we use the adjacency matrix V ∗N of a subshift which is isomorphic to XN , and
see the matrix of a linear operator on 
N = C

2 ⊗ · · · ⊗ C
2.

(2) Lieb path—transport of information through analyticity [§4]: In quantum
physics, transfer matrices, which are complexifications of the adjacency matri-
ces in a local way (in the sense that the coefficient relative to a couple of
rows is the product of some coefficients in C relative to the symbols in the
two rows) are used to derive properties of the system. In this text, we will see
the adjacency matrix as a particular value of an analytic path of such transfer
matrices, t ∈ R �→ VN(t) such that for all t, VN(t) is an irreducible non-negative
and symmetric matrix, and such that VN(1) = V ∗N—we will call such a path a
Lieb path in the following. The analyticity is used here to gain some information
on the whole path, including on VN(1), from information on a segment of the
path. This part is contained in §4 and is a detailed exposition of notions defined
in the article of Lieb [L67].
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(3) Coordinate Bethe ansatz [§5]: We use the coordinate Bethe ansatz (due orig-
inally to Hans Bethe and exposed recently in [DGHMT18] and related in
the present text), which consists in a clever guess on the form of potential
eigenvectors, and actually provides some candidates, for the matrices VN(t). In
practice, we apply this on each of the subspaces
(n)N of a decomposition of
N :


N =
N⊕
n=0



(n)
N .

The candidate eigenvectors and eigenvalues depend each on a solution
(pj )j=1...n of a nonlinear system of equations, with parameter t, called Bethe
equations.

It is shown that the system of Bethe equations admits a unique solution for
each n,N and t, which we denote by (pj (t))j for all t ∈ (0,

√
2), in a context

where n, N are fixed, using convexity arguments on an auxiliary function. The
analyticity of the Lieb path and the convexity of the auxiliary function ensure
together that t �→ (pj (t))j is analytic. This part completes the proof of an
argument left incomplete in [YY66a]. To identify the greatest eigenvalue of
VN(t) for all t, we use the fact that VN(

√
2) commutes with some Hamiltonian

HN that is completely diagonalized (following [LSM61]). The consequence of
this fact is that VN(

√
2) and HN have a common base of eigenvectors. The

candidate eigenvector provided by the Bethe ansatz on this point is proved
not to be null and associated to the maximal eigenvalue of HN on 
(n)N . By
Perron–Frobenius theorem, the vector has positive coordinates, and by the same
theorem (uniqueness part), it is an eigenvector of VN(

√
2) and is associated with

the maximal eigenvalue of this matrix on 
(n)N . By continuity, this is true also
for t in a neighborhood of

√
2, and by analyticity, this identity is true for all

t ∈ (0,
√

2).
• The second point is derived in two steps:

(1) Asymptotic condensation of Bethe roots [§6]: The sequences (pj (t))j are
transformed into sequences (αj (t))j through an analytic bijection. The values
of these second sequences are in R and are called Bethe roots.

We first prove that the sequences of Bethe roots are condensed according
to a density function ρt over R, relative to any continuous decreasing and
integrable function f : (0, +∞)→ (0, +∞), which means that the Cesàro
mean of the finite sequence (f (αj (t)))j converges towards

∫
ρt (x)f (x) dx.

This part involves rigorous proofs, some simplifications and adaptations of
arguments that appeared in [K18]. The density ρt is defined as the solution of
a Fredholm integral equation which can be thought of as the asymptotic version
of Bethe equations. This equation is solved through Fourier analysis, following
a computation done in [YY66b].

(2) Computation of integrals [§7]: The condensation property proved in the last
point implies that the formula obtained for 1

N
h(X

s

N) converges to an integral
involving ρ1. The formula obtained for ρ1 allows the computation of this integral,
via loop integrals techniques. This part is a detailed version of computations
exposed in [L67].
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N

w

u

q1[u] . . . qn[u]

v

q1[v] . . . qn[v]

FIGURE 5. Illustration for the definition of the notation uR[w]v.

For the purpose of clarity, we will begin each section with a paragraph beginning with
� relating the section to this overview.

4. A Lieb path for square ice
� In this section, we define the matrices V ∗N [§4.1], the Lieb paths t �→ VN(t) that we will
use in the following [§4.2] and prove that VN(1) = V ∗N [§4.3].

4.1. The interlacing relation and the matrices V ∗N . � The definition of the matrix V ∗N
relies on a relation between words on {0, 1} having length N. In this section, we prove
the properties of this relation which will be translated later into properties of the matrices
VN(t), and in particular V ∗N .

In the following, for a square matrix M, we will denote by M[u, v] its entry on (u, v).
Moreover, we denote by {0, 1}∗N the set of length N words on {0, 1}.

Notation 2. Consider u, v two words in {0, 1}∗N , and w some (N , 1)-cylindrical pattern of
the subshift X. We say that the pattern w connects u to v, and we denote this by uR[w]v,
when for all k ∈ �1, N�, uk = 1 (respectively, vk = 1) if and only if w has an incoming
(respectively, outgoing) curve on the bottom (respectively, top) of its kth symbol. This
notation is illustrated in Figure 5.

Definition 3. Let us denote by R ⊂ {0, 1}N × {0, 1}N the relation defined by uRv if and
only if there exists an (N , 1)-cylindrical pattern w of the discrete curves shift Xs such that
uR[w]v.

Notation 3. Let N ≥ 1 be an integer and t > 0. Let us denote by 
N the space
C

2 ⊗ · · ·⊗ C
2, the tensor product of N copies of C2, whose canonical basis elements

are denoted indifferently by ε = |ε1 · · · εN 〉 or the words ε1 · · · εN , for (ε1, . . . , εN) ∈
{0, 1}N , according to quantum mechanics notation, to distinguish them from the coordinate
definition of vectors of 
N . For the definition of the matrices, we order the elements of
this basis with the lexicographic order.

Definition 4. Let us define V ∗N ∈M2N (C) the matrix such that for all ε, η ∈ 0, 1∗N ,
VN [ε, η] is the number of w such that εR[w]η.
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q1[u]

q1[v]

FIGURE 6. Illustration of (impossible) crossing situation, which would imply non-authorized symbols.

Notation 4. For all u ∈ {0, 1}∗N , we denote by |u|1 the number of k ∈ �1, N� such that
uk = 1. If |u|1 = n, we denote by q1[u] < · · · < qn[u] the integers such that uk = 1 if
and only if k = qi[u] for some i ∈ �1, n�.

Let us also notice that uRv implies that the number of 1 symbols in u is equal to the
number of 1 symbols in v.

Definition 5. We say that two words u, v in {0, 1}∗N such that |u|1 = |v|1 ≡ n are
interlaced when one of the two following conditions is satisfied:

q1[u] ≤ q1[v] ≤ q2[u] ≤ · · · ≤ qn[u] ≤ qn[v],

q1[v] ≤ q1[u] ≤ q2[v] ≤ · · · ≤ qn[v] ≤ qn[u].

PROPOSITION 2. For two length N words u, v, we have uRv if and only if |u|1 = |v|1 ≡ n
and u, v are interlaced.

Proof. (⇒): assume that uR[w]v for some w.
First, since w is an (N , 1)-cylindrical pattern, each of the curves that cross its bottom

side also crosses its top side, which implies that |u|1 = |v|1.
We assume that q1[u] ≤ q1[v] (the other case is processed similarly).

(1) The position q1[u] is connected to q1[v] or q1[u] = q1[v]: Let us assume that
q1[u] �= q1[v] and q1[u] is not connected to q1[v]. Then because uR[w]v, another
curve would have to connect another position qk[u], k �= 1 of u to q1[v]. Since
qk[u] > q1[u] (by definition), this curve would cross the left border of w. It would
imply that in the q1[u]th symbol of w, two pieces of curves would appear: one
horizontal, corresponding to the curve connecting the position qk[u] to q1[v], and
the one that connects q1[u] to another position in u, which is not possible, by the
definition of the alphabet of Xs . This is illustrated in Figure 6.

(2) q1[v] ≤ q2[u] ≤ q2[v]: In both cases, this derives from similar arguments.
(3) Repetition: We can then repeat these arguments to obtain:

q1[u] ≤ q1[v] ≤ q2[u] ≤ · · · ≤ qn[u] ≤ qn[v],

meaning that u and v are interlaced.
(⇐): if |u|1 = v1 and u, v are interlaced, then we define w by connecting qi[u] to qi[v]

for all i ∈ �1, n�. We thus have directly uR[w]v.
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PROPOSITION 3. When uRv and u �= v, there exists a unique w such that uR[w]v. When
u = v, there are exactly two possibilities, either the word w that connects qi[u] to itself for
all i, or the one connecting qi[u] to qi+1[u] for all i.

Proof. Consider words u �= v and w, such that uR[w]v. Because of Proposition 2, u and
v are interlaced. Let us assume that we have (the other case is processed similarly)

q1[u] ≤ q1[v] ≤ q2[u] ≤ · · · ≤ qn[u] ≤ qn[v].

Because the words are different, there is some j such that the position qj [u] is connected
to qj [v]. This forces that the position qj+1[u] is connected to qj+1[v] if j < n. If n, q1[u]
is connected to q1[v]. By repeating this, we obtain that for all i, qi[u] is connected to qi[v].
This determines w, which implies that there is a unique w such that uR[w]v.

When u = v, it is clear that there is a unique w connecting position qi[u] to qi[v] for
all i. Any other w connecting u to v connects qi[u] to qj [v] for some j �= i. This j is forced
to be i + 1 (for similar arguments as in the first point of the proof of Proposition 2) and
for similar arguments as above, this forces that qi[u] to qi+1[v] for all i ≤ n and connects
qn[u] to q1[v].

4.2. The Lieb path t �→ VN(t). � In this section, we define the matrices VN(t). This
definition is similar to that of V ∗N , and relies in particular on the interlacing relation and
on an additional parameter t. We prove here properties of matrices VN(t), symmetry and
irreducibility, which derive from properties of the relation R. These properties are essential
to apply later the Perron–Frobenius theorem, which we recall here.

Notation 5. For all N and (N , 1)-cylindrical pattern w, let us denote by |w| the number of
symbols

,

in this pattern. For instance, for the word w in Figure 5, |w| = 6.

Definition 6. For all t ≥ 0, let us define VN(t) ∈M2N (C) the matrix such that for all
ε, η ∈ {0, 1}∗N ,

VN(t)[ε, η] =
∑

εR[w]η

t |w|.

It is immediate that V ∗N is equal to VN(1).
For all N and n ≤ N , let us denote by 
(n)N ⊂ 
N the vector space generated by the

ε = |ε1 · · · εN 〉 such that |ε|1 = n.

PROPOSITION 4. For all N and n ≤ N , the matrix VN(t) stabilizes the vector subspaces


(n)
N :

VN(t).

(n)
N ⊂ 
(n)N .

Proof. This is a direct consequence of Proposition 2, since if VN(t)[ε, η] �= 0 for ε, η, two
elements of the canonical basis of 
N , then |ε|1 = |η|1.

https://doi.org/10.1017/etds.2022.6 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.6


1860 S. Gangloff

Let us recall that a non-negative matrix A is called irreducible when there exists
some k ≥ 1 such that all the coefficients of Ak are positive. Let us also recall the
Perron–Frobenius theorem for symmetric, non-negative and irreducible matrices.

THEOREM 2. (Perron–Frobenius) Let A be a symmetric, non-negative and irreducible
matrix. Then A has a positive eigenvalue λ such that any other eigenvalue μ of A satisfies
|μ| ≤ λ. Moreover, there exists some eigenvector u for the eigenvalue λ with positive
coordinates such that if v is another eigenvector (not necessarily for λ) with positive
coordinates, then v = α.u for some α > 0.

Let us prove the uniqueness of the positive eigenvector up to a multiplicative constant.

Proof. Let us denote by u ∈ 
N the Perron–Frobenius eigenvector and v ∈ 
N another
vector whose coordinates are all positive, associated to the eigenvalue μ. Then

μut .v = (Au)t .v = utAv = λut .v.

Thus, since ut .v > 0, then μ = λ, and by (usual version of) Perron–Frobenius, there exists
some α ∈ R such that v = α.u. Since v has positive coordinates, α > 0.

LEMMA 2. The matrix VN(t) is symmetric, non-negative (all its coefficients are
non-negative numbers) when t ≥ 0 and for all n ≤ N , its restriction to 
(n)N is irreducible
whenever t > 0.

Proof. The non-negativity of the matrix is immediate when t ≥ 0 is immediate. Let us
prove the other properties.

Symmetry: since the interlacing relation is symmetric, for all ε, η ∈ {0, 1}∗N , we have
that VN(t)[ε, η] > 0 if and only if VN(t)[η, ε] > 0. When this is the case, and ε �= η

(the case ε = η is trivial), there exists a unique (Proposition 3) w connecting ε to η.
The coefficient of this word is exactly t2(n−|{k:εk=ηk=1}|), where n = |{k : εk = 1}| = |{k :
ηk = 1}|, and this coefficient is indifferent to the exchange of ε and η. This implies that
VN(t)[ε, η] = VN(t)[η, ε]. As a consequence, VN(t) is symmetric.

Irreducibility: Let ε, η be two elements of the canonical basis of 
N such that |ε|1 =
|η|1 = n. We shall prove that V N

n

N (t)[ε, η] > 0.
(1) Interlacing case: If we have εRη, then VN(t)[ε, η] > 0. Since VN(t)[η, η] > 0 and

VN(t) is non-negative, for all k ≥ 1,

VN(t)
k[ε, η] ≥ VN(t)[ε, η](VN(t)[η, η])k−1 > 0.

In particular, VN(t)N
n
[ε, η] > 0.

(2) Non-interlacing case:
• Decreasing the interlacing degree: If we do not have the relation εRη, let us

denote by ω(ε, η) the following quantity (interlacing degree):

ω(ε, η) = max
i

#{j : qj [ε] ∈ �qi[η], qi+1[η]�}.
Since the relation εRη does not hold, ω(ε, η) ≥ 2. Let us also denote by λ(ε, η)

the number of integers i such that i realizes the maximum in the definition of
ω(ε, η).
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Let us see that there exists some ε′ such that εRε′ and λ(ε′, η) < λ(ε, η) if
λ(ε, η) ≥ 2 and otherwise ω(ε′, η) < ω(ε, η).

Since |ε|1 = |η|1, there exist i and i′ such that #{j : qj [ε] ∈ �qi[η], qi+1[η]�}
is maximal and #{j : qj [ε] ∈ �qi′[η], qi′+1[η]�} is equal to 0. Let us assume that
i < i′ (the other case is processed similarly). We can also assume that there is no
i′′ such that i < i′′ < i′ such that #{j : qj [ε] ∈ �qi′′[η], qi′′+1[η]�} is equal to 0.

Let us denote j0 and j1 such that qj0 [ε] and qj1 [ε] are respectively the maxima
of the sets �qi[η], qi+1[η]� and �qi′[η], qi′+1[η]�. There is a word w which
connects qj [ε] to qj+1[ε] for all j ∈ �j0, j1 − 1�, and fixes qj [ε] for all other j.
The words w thus connects ε to ε′ which satisfies the above properties.

• A sequence with decreasing interlacing degree: As a consequence, since
ω(ε, η) ≤ N , one can construct a finite sequence of words ε(k), k = 1 . . . m
such that m ≤ Nn, ε(1) = ε, ε(m) and η are interlaced, and for all k < m,
ε(k)Rε(k+1). This means that for all k < m, VN [ε(k), ε(k+1)] > 0 and
VN [ε(m), η] > 0. As a consequence, VN(t)N

n
[ε, η] > 0.

This implies that VN(t) is irreducible on 
(n)N for all n ≤ N .

4.3. Relation between h(Xs) and the matrices VN(1). � We know that the entropy of
Xs can be obtained out of the sequence h(X

s

N). In this section, we prove that the h(X
s

N) is
related to the eigenvalues of VN(1), which enables us to use linear algebra to compute the
entropy of Xs .

Notation 6. For all N and n ≤ N , let us denote byX
s

n,N the subset (which is also a subshift)
of X

s

N which consists in the set of configurations of X
s

N such that the number of curves
that cross each of its rows is n, and Xn,N the subset of XN such that the number of arrows
pointing south in the south part of the symbols in any raw is n.

Notation 7. Let us denote, for all N and n ≤ N , by λn,N(t) the greatest eigenvalue of VN(t)
on 
(n)N .

PROPOSITION 5. For all N and n ≤ N , h(X
s

n,N) = log2(λn,N(1)).

Proof. Correspondence between elements of X
s

n,N and trajectories under action of VN(1):
Since for all N, n ≤ N and ε, η in the canonical basis of 
(n)N , VN(1)[ε, η] is the number
of ways to connect ε to η by an (N , 1)-cylindrical pattern, and that there is a natural
invertible map from the set of (M , N)-cylindrical patterns to the sequences (wi)i=1...M

of (N , 1)-cylindrical patterns such that there exists some (εi )i=1...M+1 such that for all i,
|εi | = n and for all i ≤ M , εiR[wi]εi+1,

‖(VN(1)M


(n)
N

)‖1 = NM(X
s

n,N).

Gelfand’s formula: It is known (Gelfand’s formula) that ‖(VN(1)M


(n)
N

)‖1/M1 → λn,N(1).

As a consequence of the first point, h(X
s

n,N) = log2(λn,N(1)).

PROPOSITION 6. For all N, h(Xs) = limN(1/N) maxn≤N h(X
s

n,N).
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Proof. We have the decomposition

X
s

N =
N⋃
n=0

X
s

n,N .

Moreover, these subshifts are disjoint. As a consequence,

h(X
s

N) = max
n≤N h(X

s

n,N).

From this, we deduce the statement.

LEMMA 3. For all N ≥ 1 and n ≤ N , h(X
s

n,N) = h(XsN−n,N).

Proof. For the purpose of notation, we also denote by πs the application from Xn,N to
X
s

n,N that consists in an application of πs letter by letter. This map is invertible. Let us
consider the application T n,N from Xn,N to XN−n,N that inverts all the arrows. This map
is an isomorphism, and thus the map πs ◦Xn,N ◦ π−1

s is also an isomorphism from X
s

n,N

to X
s

N−n,N . As a consequence, the two subshifts have the same entropy:

h(X
s

n,N) = h(XsN−n,N).

The following corollary is a straightforward consequence of Lemma 3.

COROLLARY 1. The entropy of Xs is given by the following formula:

h(Xs) = lim
N

1
2N

max
n≤N log2(λn,2N(1)).

LEMMA 4. We deduce that

h(Xs) = lim
N

1
2N

max
2n+1≤N

log2(λ2n+1,2N(1)).

Proof. Let us fix some integer N and for all n between 1 and N/2+ 1, and consider the
application that the set of patterns of X

s

n,N on U
(1)
M associates a pattern of X

s

n−1,N on U
(1)
M

by suppressing the curve that crosses the leftmost symbol in the bottom row of the pattern
crossed by a curve [see the schema in Figure 7].

For each pattern of X
s

n−1,N , the number of patterns in its preimage by this transforma-
tion is bounded from above by NM . As a consequence, for all M:

NM(X
s

n−1,N).N
M ≥ NM(X

s

n,N),

and thus

h(X
s

n−1,N)+ log2(N) ≥ h(Xsn,N).

As a consequence,

h(Xs) = lim
N

1
2N

max( max
2n+1≤N

h(X
s

2n+1,2N), max
2n≤N

h(X
s

2n,2N))
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FIGURE 7. Illustration of the curve suppressing operation; the leftmost position of the bottom row crossed by a
curve is colored gray on the left pattern.

≤ lim
N

1
2N

max( max
2n+1≤N

h(X
s

2n+1,2N), max
2n≤N

h(X
s

2n−1,2N)+ log2(N))

≤ lim
N

1
2N

max
2n+1≤N

h(X
s

2n+1,2N).

Moreover, it is straightforward that

h(Xs) ≥ lim
N

1
2N

max
2n+1≤N

h(X
s

2n+1,2N),

thus we have the following equality:

h(Xs) = lim
N

1
2N

max
2n+1≤N

log2(λ2n+1,2N(1)).

5. Coordinate Bethe ansatz
� Let us remember that we proved in the last section that the entropy ofXs can be computed
out of the eigenvalues of the matrices V2N(1). Ideally, we would like to diagonalize these
matrices, which is in fact very difficult. The purpose of the (coordinate) Bethe ansatz [§5.2]
is to provide instead candidate eigenvectors for the matrix V2N(t) for all t on all 
(n)2N ,
whose formulation relies on some solution of the system of Bethe equations (Ej )[t , n, N],
j ≤ n (see §5.2). We prove the existence unicity and analyticity relative to the parameter
t of the solutions of the system in §5.3. For the statement of the ansatz, we need to
introduce some auxiliary functions [§5.1] which are involved in its formulation, and prove
some properties they satisfy which will be useful in particular to prove the existence and
analyticity of the solutions of the system of Bethe equations (Ej )[t , n, N], j ≤ n. We
will prove that the candidate eigenvalue corresponding to the candidate eigenvector is the
maximal eigenvalue of V2N(t) on 
(2n+1)

2N for 2n+ 1 ≤ N , for t close to
√

2, in §5.5. This
relies on the diagonalization of the Hamiltonian mentioned in the overview [§5.4]. The
analyticity of the solutions to the system of Bethe equations implies that this is true for all
t ∈ (0,

√
2).

5.1. Auxiliary functions. � The purpose of the present section is to introduce the
functions � and κ (respectively, Notation 8 and Notation 9) which will be used in the
statement of the ansatz and then through the whole article. The reader may skip the details
of computations done in this section. We provide them because they were not properly
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proven and may ultimately help to understand under which conditions it is possible to use
an argument similar to Bethe ansatz in order to compute entropy for other multidimensional
SFT.

5.1.1. Notation. Let us denote by μ : (−1, 1)→ (0, π) the inverse of the function cos :
(0, π)→ (−1, 1). For all t ∈ (0,

√
2), we will set �t = (2− t2)/2, μt = μ(−�t) and

It = (−(π − μt), (π − μt)).

Notation 8. Let us denote by � the unique analytic function (t , x, y) �→ �t(x, y) from
the set {(t , x, y) : x, y ∈ It } to R such that �√2(0, 0) = 0 and for all t , x, y,

exp(−i�t (x, y)) = exp(i(x − y)) · e
−ix + eiy − 2�t
e−iy + eix − 2�t

.

By a unicity argument, one can see that for all t , x, y, �t(x, y) = −�t(y, x). As a
consequence, for all x, �t(x, x) = 0. For the same reason, �t(x, −y) = −�t(−x, y)
and �t(−x, −y) = −�t(x, y). Moreover, �t and all its derivatives can be extended by
continuity on I 2

t \{(x, x) : x ∈ ∂It }. For the purpose of notation, we will also denote by�t
the extended function. We will use the following.

COMPUTATION 1. For all y �= (π − μt), �t((π − μt), y) = 2μt − π .

Proof. From the definition of μt , �t = − cos(μt ) = −(eiμt + e−iμt )/2. As a conse-
quence, from the definition of �t ,

exp(−i�t ((π − μt), y)) = ei(π−μt−y) · eiy − eiμt − 2�t
e−iy − e−iμt − 2�t

= ei(π−μt−y) · e
iy + e−iμt
e−iy + eiμt .

As a consequence,

exp(−i�t ((π − μt), y)) = ei(π−μt−y) · e
iy

eiμt

1+ e−i(μt+y)
e−i(y+μt ) + 1

= ei(π−2μt ).

This yields the statement as a consequence.

Notation 9. Let us denote by κ the unique analytic map (t , α) �→ κt (α) from (0,
√

2)× R

to R such that κ√2/2(0) = 0 and for all t , α,

eiκt (α) = eiμt − eα
eiμt+α − 1

.

With the argument of uniqueness, we have that for all t , α, κt (−α) = −κt (α), and as a
consequence, κt (0) = 0. We also set for all t , α, β,

θt (α, β) = �t(κt (α), κt (β)).

5.1.2. Properties of the auxiliary functions. � In this section, we prove some properties
of the functions � and κ (computation of derivatives, invertibility, and a relation between
� and κ), which will be used later.
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Computation of the derivative κ ′t .

COMPUTATION 2. Let us fix some t ∈ (0,
√

2). For all α ∈ R,

κ ′t (α) =
sin(μt )

cosh(α)− cos(μt )
.

Proof. Computation of cos(κt (α)) and sin(κt (α)): By definition of κ (for the first equality,
we multiply both numerator and denominator by (e−iμt+α − 1)),

eiκt (α) = (e−iμt+α − 1)(eiμt − eα)
|eiμt+α − 1|2 = eα − e2αe−iμt − eiμt + eα

(cos(μt )eα − 1)2 + (sin(μt )eα)2
.

Thus by taking the real part,

cos(κt (α)) = 2eα − (e2α + 1) cos(μt )
cos2(μt )e2α − 2 cos(μt )eα + 1+ (1− cos2(μt ))e2α ,

cos(κt (α)) = 2eα − (e2α + 1) cos(μt )
e2α − 2 cos(μt )eα + 1

= 1− cos(μt ) cosh(α)
cosh(α)− cos(μt )

,

where we factorized by 2eα for the second equality. As a consequence,

cos(κt (α)) = sin2(μt )+ cos2(μt )− cos(μt ) cosh(α)
cosh(α)− cos(μt )

= sin2(μt )

cosh(α)− cos(μt )
− cos(μt ). (3)

A similar computation gives

sin(κt (α)) = sin(μt ) sinh(α)
cosh(α)− cos(μt )

. (4)

Deriving the expression cos(κt (α)): By deriving equation (3), for all α,

−κ ′t (α) sin(κt (α)) = − sin2(μt ) sinh(α)
(cosh(α)− cos(μt ))2

= − sin(κt (α))2

sinh(α)
,

where we used equation (4) for the second equality.
Thus, for all α but in a discrete subset of R,

κ ′t (α) =
sin(μt )

cosh(α)− cos(μt )
.

This identity is thus verified on all R by continuity.

Domain and invertibility. Let us remember that It = (−(π − μt), (π − μt)).
PROPOSITION 7. For all t, κt (R) ⊂ It . Moreover, κt , considered as a function from R to
It , is bijective.

Proof. Injectivity: Since μt ∈ (0, π), then sin(μt ) > 0 and we have the inequality
cosh(α) ≥ 1 > cos(μt ). As a consequence of Computation 2, κt is strictly increasing,
and thus injective.

https://doi.org/10.1017/etds.2022.6 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.6


1866 S. Gangloff

The equality κt (α) = nπ implies α = 0: Assume that for some α, κt (α) = nπ for some
integer n. By definition of κ ,

einπ = eiμt − eα
eiμt+α − 1

.

If n was odd, then

eα − eiμt = eiμt+α − 1,

eα + 1 = eiμt · (eα + 1),

and thus eiμt = 1, which is impossible, since μt ∈ (0, π). Thus n is even, and then

−eα + eiμt = eiμt+α − 1.

As a consequence, since eiμt �= −1, we have eα = 1, and thus α = 0.
Extension of the images: Since when α tends towards +∞ (respectively, −∞),

(eiμt − eα)/(eiμt+α − 1) tends towards −eiμt (respectively, eiμt ), κt (α) tends towards
some nπ − μt (respectively, mπ + μt ). and from the last point, n = 1 (respectively,
m = −1). Thus the image of κt is the set It .

Thus κt is an invertible map from R to It .

A relation between θt and κt . The following equality originates in [YY66a]. We provide
some details of a relatively simple way to compute it.

COMPUTATION 3. For any numbers t , α, β,

∂θt

∂α
(α, β) = −∂θt

∂β
(α, β) = − sin(2μt)

cosh(α − β)− cos(2μt)
.

Proof. Deriving the equation that defines �t : Let us set, for all x, y,

Gt(x, y) = x(1− 2�ty)+ y
x + y − 2�t

.

Then we have that for all x, y,

∂Gt

∂x
(x, y) = (1− 2�ty) · (x + y − 2�t)− (x(1− 2�ty)+ y)

(x + y − 2�t)2
.

Then,

∂Gt

∂x
(x, y) = −2�t

1+ y2 − 2�ty
(x + y − 2�t)2

. (5)

For all t , α, let us set αt ≡ κt (α). By definition of �t , for all α, β,

exp(−i�t (αt , βt )) = G(eiαt , e−iβt ). (6)

Thus we have, by deriving the equality in equation (6),

−i d
dα
(�t (αt , βt )) exp(−i�t (αt , βt )) = iκ ′t (α)eiαt

∂

∂x
Gt(e

iαt , e−iβt ).
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Then,

d

dα
(�t(αt , βt )) = −κ ′t (α)eiαt

(∂/∂x)Gt (e
iαt , e−iβt )

Gt (eiαt , e−iβt )
,

and thus, using equation (5),

d

dα
�t(αt , βt ) = (κ ′t (α)2�eiαt )(1+ e−2iβt − 2�e−iβt )

(eiαt + e−iβt − 2�t)(eiαt + e−iβt − 2�t .ei(αt−βt ))
.

Factoring by ei(αt−βt ),

d

dα
�t(αt , βt ) = 2�tκ ′t (α) ·

eiβt + e−iβt − 2�t
(eiαt + e−iβt − 2�t)(eiβt + e−iαt − 2�t)

. (7)

Simplification of the term eiαt + e−iβt − 2�t in equation (7): Let us denote the function
F defined on α, β by

Ft(α, β) = eiαt + e−iβt − 2�t . (8)

By definition of κt and −2�t = e−iμt + eiμt , we have

Ft(α, β) = eiμt − eα
eiμt+α − 1

+ e
iμt+β − 1
eiμt − eβ + e

iμt + e−iμt .

Thus Ft(α, β) is equal to

(eiμt − eα)(eiμt − eβ)+ (eiμt+α − 1)(eiμt+β − 1)+ (eiμt + e−iμt ) · (eiμt+α − 1)(eiμt − eβ)
(eiμt+α − 1)(eiμt − eβ) .

Finally,

Ft(α, β) = e3iμt+α + eβ−iμt − eiμt · (eα + eβ)
(eiμt+α − 1)(eiμt − eβ) . (9)

Simplification of the derivative of �t : For all α, β, we have, using equations (7) and (8),

1
κ ′t (α)

d

dα
�t(α, β) = 2�t

Ft (β, β)
Ft (α, β) · Ft(β, α)

.

As a consequence of equation (9),

1
κ ′t (α)

d

dα
�t(αt , βt )

= −(e
iμt+α − 1)(eiμt − eα)(e−iμt + eiμt )(e3iμt+β + eβ−iμt − 2eiμt .eβ)

(e3iμt+α + eβ−iμt − eiμt .(eα + eβ))(e3iμt+β + eα−iμt − eiμt .(eβ + eα)) ,

and thus

1
κ ′t (α)

d

dα
�t(αt , βt )

= − (eiμt+α − 1)(eiμt − eα)eβ · (e2iμt − 1) · (e2iμt − e−2iμt )

e2iμt (e2iμt+α + eβ−2iμt − (eα + eβ))(e2iμt+β + eα−2iμt − (eβ + eα)) .

https://doi.org/10.1017/etds.2022.6 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.6


1868 S. Gangloff

Since in the denominator of the fraction is the square of the modulus of some number, we
rewrite it.

1
κ ′t (α)

d

dα
�t(αt , βt ) = − (e

iμt+α − 1)(eiμt − eα)eβ · (e2iμt − 1) · (e2iμt − e−2iμt )

e2iμt ((eα + eβ)2(cos(2μt)− 1)2 + (eα − eβ)2 sin2(2μt))
.

We rewrite also the other terms, by splitting the e2iμt in the denominator in two parts, one
makes sin(μt ) appear and the other one the square modulus in the following formula:

1
κ ′t (α)

d

dα
�t(αt , βt )

= −4|eiμt+α − 1|2 eβ · sin(μt ) · sin(2μt)

(eα + eβ)2(cos(2μt)− 1)2 + (eα − eβ)2 sin2(2μt)
.

By writing sin2(2μt) = 1− cos2(2μt) and then factoring by 1− cos(2μt),

1
κ ′t (α)

d

dα
�t(αt , βt )

= −4
|eiμt+α − 1|2
1− cos(2μt)

· eβ · sin(μt ) · sin(2μt)
(eα + eβ)2(1− cos(2μt))+ (eα − eβ)2(1+ cos(2μt))

.

Simplifying the denominator and factoring it by 4eα+β , we obtain

1
κ ′t (α)

d

dα
�t(αt , βt ) = − |eiμt+α − 1|2

eα(1− cos(2μt))
· sin(μt ) · sin(2μt)

cosh(α − β)− cos(2μt)
.

We have left to see that

sin(μt )κ ′t (α) · |eiμt+α − 1|2
eα(1− cos(2μt))

= 1.

This derives directly from 1− cos(2μt) = 2 sin2(μt ) and the value of κ ′t (α) given by
Computation 2.

We thus have the stated formula of ∂θt/∂α(α, β) = d/dα(�t (αt , βt )).
The other equality: We obtain the value of ∂θt/∂β(α, β) = d/dβ(�t(αt , βt )) through

the equality �t(x, y) = −�t(y, x) for all x, y (§5.1.1).

LEMMA 5. For all t , α, β,

θt (α + β, α) = θt (β, 0).

Proof. Let us fix some α ∈ R. By Computation 3, the derivative of the function β �→
θt (α + β, α) is equal to the derivative of the function β �→ θt (β, 0). As a consequence,
these two functions differ by a constant. Since they have the same value 0 in β = 0 (§5.1.1),
they are equal.

5.2. Statement of the ansatz. � In this section, we state of the coordinate Bethe ansatz
in Theorem 3 (let us remember that this provides candidate eigenvectors and eigenvalues
for VN(t) for all N and t).
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Notation 10. For all (p1, . . . , pn) ∈ Int , let us denote by ψμt ,n,N(p1, . . . , pn) the vector
in 
N such that for all ε ∈ {0, 1}∗N ,

ψμt ,n,N(p1, . . . , pn)[ε] =
∑
σ∈�n

Cσ (t)[p1, . . . , pn]
n∏
k=1

eipσ(k)qk[ε],

where, denoting by ε(σ ) the signature of σ ,

Cσ (t)[p1, . . . , pn] = ε(σ )
∏

1≤k<l≤n
(1+ ei(pσ(k)+pσ(l)) − 2�teipσ(k) ).

Definition 7. We say that p1, . . . , pn ∈ It satisfy the system of Bethe equations when for
all j,

(Ej )[t , n, N] : Npj = 2πj − (n+ 1)π −
n∑
k=1

�t(pj , pk).

THEOREM 3. For all N and n ≤ N/2, and p1, . . . , pn ∈ It distinct which satisfy the
system of Bethe equations, we have

VN(t) · ψn,N(p1, . . . , pn) = �n,N(t)[p1, . . . , pn] · ψn,N(p1, . . . , pn),

where �n,N(t)[p1, . . . , pn] is equal to

n∏
k=1

Lt(e
ipk )+

n∏
k=1

Mt(e
ipk )

when all the pk are distinct from 0. Else, it is equal to
(

2+ t2(N − 1)+
∑
k �=l

∂�t

∂x
(0, pk)

) n∏
k=1

Mt(e
ipk )

for l such that pl = 0.

In [DGHMT18] (Theorem 2.2), the equations (BE) are implied by the equations
(Ej )[t , n, N] in Theorem 3 by taking the exponential of the members of (BE). To make
the connection easier with [DGHMT18], here is a list of correspondences between the
notation: in [DGHMT18], the notation t corresponds to c, and it is fixed in the formulation
of the theorem. Thus, �t corresponds to �, It to D�, VN(t) to V, ψt ,n,N(p1, . . . , pn) to
ψ , Lt and Mt to L and M, �t to �, �n,N(t)[p1, . . . , pn] to �, Cσ (t)[p1, . . . , pn] to Aσ
and the sequence (xk)k to the sequence (qk[ε])k for some ε.

5.3. Existence of solutions of Bethe equations and analyticity. � As a matter of fact, the
Bethe ansatz presented in §5.2 provides a candidate eigenvector on the condition that there
exists a solution to the system of Bethe equations. We prove that this is the case for all
N and t and that this solution is unique. Furthermore, we will need that this solution is
analytic relative to t for all N. These statements are encompassed in the following theorem,
whose proof is a rigorous and complete version of an argument in [YY66a].
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THEOREM 4. There exists a unique sequence of analytic functions pj : (0,
√

2) �→
(−π , π) such that for all t ∈ (0,

√
2), pj (t) ∈ It and we have the system of Bethe

equations:

(Ej )[t , n, N] : Npj (t) = 2πj − (n+ 1)π −
n∑
k=1

�t(pj (t), pk(t)).

Moreover, for all t and j, pn−j+1(t) = −pj (t); for all t, the pj (t) are all distinct.

Idea of the proof: Following Yang and Yang [YY66a], we use an auxiliary multivariate
function ζt whose derivative is zero exactly when the equations (Ej )[t , n, N] are verified.
We prove that up to a monotonous change of variable, this function is convex, which
implies that it admits a unique local (and thus global) minimum (this relies on the
properties of θt and κt ). Since we rule out the possibility that the minimum is on the
border of the domain, this function admits a point where its derivative is zero, and thus
the system of equations (Ej )[t , n, N] admits a unique solution. To prove the analyticity,
we then define a function of t that verifies an analytic differential equation (and thus
is analytic), whose value in some point coincides with the minimum of ζt . Since the
differential equation ensures that ζ ′t is null on the values of this function, this means that
for all t, its value in t is the minimum of ζt .

Proof. The solutions are critical points of an auxiliary function ζt : Let us set, for all
t , p1, . . . , pn (in the third sum, both k and j are arguments of the sum),

ζt (p1, . . . , pn) = N
n∑
j=1

∫ κ−1
t (pj )

0
κt (x) dx + π(n+ 1− 2j)

n∑
j=1

κ−1
t (pj )

+
∑
k<j

∫ κt
−1(pj )−κt−1(pk)

0
θt (x, 0) dx.

The interest of this function lies in the fact that for all j (here the argument in each of
the sums is k),

∂ζt

∂pj
(p1, . . . , pn) = (κ−1

t )′(pj ).
(
Npj − 2πj + (n+ 1)π

−
∑
k<j

θt (κt
−1(pj )− κt−1(pk), 0)

)
+

∑
k>j

θt (κt
−1(pk)− κt−1(pj ), 0).

= (κ−1
t )′(pj ).

(
Npj − 2πj + (n+ 1)π −

∑
k<j

θt (κt
−1(pk), κt−1(pj ))

)

+
∑
k>j

θt (κt
−1(pj ), κt−1(pk)).

∂ζt

∂pj
(p1, . . . , pn) = (κ−1

t )′(pj ).
(
Npj − 2πj + (n+ 1)π +

∑
k

�t (pj , pk)
)

, (10)

since for all x, y, �t(x, y) = −�t(y, x) and for all x, �t(x, x) = 0 (§5.1.1).
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Hence, the system of Bethe equations is verified for the sequence (pj )j if and only for
all j, ∂ζt/∂pj (p1, . . . , pn) = 0.

Uniqueness of the local minimum of ζt using convexity: Let us set ζ̃t : Rn→ R such
that for all α1, . . . , αn:

ζ̃t (α1, . . . , αn) = ζt (κt (α1), . . . , κt (αn)).

From equation (10), we have that for all sequence (αk)k and all j,

∂ζ̃t

∂pj
(α1, . . . , αn) = Nκt(αj )− 2πj + (n+ 1)π +

∑
k

θt (αj , αk).

As a consequence, using Computation 3, for all k �= j ,

∂2ζ̃t

∂pk∂pj
(α1, . . . , αn) = ∂θt

∂β
(αj , αk) = sin(2μt)

cosh
(
αj − αk

)− cos(2μt)
. (11)

Moreover, for all j,

∂2ζ̃t

∂2pj
(α1, . . . , αn, t) = Nκ ′t (αj )+

∑
k �=j

∂θt

∂α
(αj , αk) = Nκ ′t (αj )−

∑
k �=j

∂θt

∂β
(αj , αk).

(12)

Let us denote by H̃t (α1, . . . , αn) the Hessian matrix of ζ̃t . For any (x1, . . . , xn) ∈ R
n,

we have, from equations (11) and (12),

||(x1, . . . , xn) · H̃t (α1, . . . , αn) · (x1, . . . , xn)t

= N
∑
j

κ ′t (αj )xj 2 −
∑
j �=k

(
∂θt

∂β
(αj , αk)xj (xj − xk).

)

= N
∑
j

κ ′t (αj )xj 2 −
∑
j<k

(
∂θt

∂β
(αj , αk)xj (xj − xk)

)

−
∑
j<k

(
∂θt

∂β
(αk , αj )xk(xk − xj )

)

= N
∑
j

κ ′t (αj )xj 2 −
∑
j<k

(
∂θt

∂β
(αj , αk)(xj − xk)2

)
> 0.

As a consequence, ζ̃t is a convex function. Thus, if it has a local minimum, it is unique.
Since κt is increasing, this property is also true for ζt . The function ζt has a minimum in Int :
Let us consider (Cl)l as an increasing sequence of compact intervals such that

⋃
l Cl = It .

Let us assume that ζt has no local minimum in Int . As a consequence, for all j, the
minimum p(l) of ζt on (Cl)n is on its border. Without loss of generality, we can assume
that there exists some p(∞) ∈ It n such that p(l)→ p(∞).

We can assume without loss of generality that there exists some j0 ∈ �1, n� such that
j ≤ j0 if and only if p(∞)j = π − μt . The number j0 is the number of j such that p(∞)j =
π − μt . We can assume furthermore that j0 ≤ n/2: if it is not the case, then we use a
reasoning similar to the one that follows, replacing π − μt by −(π − μt).
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f

I

FIGURE 8. Illustration of the fact that the minimum of a convex continuously differentiable function on a real
compact interval has non-positive derivative.

Thus, there exists l0 such that for all l and j ≤ j0, p(l)j ≥ 0. Since ζ̃t is convex and that
p(l) is a minimum for this function on the compact set (Cl)n, then for all j ≤ j0,

∂ζt

∂pj
(p(l1 , . . . , p(l)n ) ≤ 0. (13)j

This is a particular case of the fact that for a convex and continuously differentiable
function f : I �→ R, where I is a compact interval of R, if its minimum on I occurs at
maximal element of I, then f ′ is non-positive on this point, as illustrated in Figure 8.

Since �t cannot be defined on {(x, x) : x ∈ ∂It }, to have an inequality that can be
transformed by continuity into an inequality on p, we sum the inequalities in equation
(13)j:

j0∑
j=1

∂ζt

∂pj
(p(l)1 , . . . , p(l)n ) ≤ 0.

According to the first point of the proof (equation (10)), this inequality can be re-written:

N

j0∑
j=1

pj − 2π
j0∑
j=1

j + j0(n+ 1)π +
j0∑
j=1

∑
k

�t (p
(l)
j , p(l)k ) ≤ 0.

For all j , j ′ ≤ j0, the terms �t(p
(l)
j , p(l)

j ′ ) and �t(p
(l)

j ′ , p(l)j ) cancel out in this sum. As
a consequence,

N

j0∑
j=1

pj − 2π
j0∑
j=1

j + j0(n+ 1)π +
j0∑
j=1

∑
k>j0

�t(p
(l)
j , p(l)k ) ≤ 0.

This time, the inequality can be extended by continuity and we obtain

N

j0∑
j=1

pj − 2π
j0∑
j=1

j + j0(n+ 1)π +
j0∑
j=1

∑
k>j0

�t(p
(∞)
j , p(∞)k ) ≤ 0.

From Computation 1, we have

Nj0(π − μt)− 2π
j0∑
j=1

j + j0(n+ 1)π + j0(n− j0) · (2μt − π) ≤ 0.
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Thus,

j0(n+ 1)π + j0(n− j0)π + (Nj0 − 2j0(n− j0))(π − μt) ≤ 2π
j0∑
j=1

j .

Since μt ≤ π and that 2j0(n− j0)−Nj0 = −2j2
0 < 0, this last inequality implies

j0(n+ 1)π + j0(n− j0)π ≤ 2π
j0∑
j=1

j . (14)

However, we have

j0∑
j=1

j ≤ nj0 −
j0∑
j=1

j = nj0 − j0(j0 + 1)
2

. (15)

As a consequence of equations (14) and (15),

j0(n+ 1)π + j0(n− j0) · π ≤ 2πnj0 − j0(j0 + 1)π

(2n+ 1)j0π − j0
2π ≤ 2πnj0 − j0

2π − j0π

j0π ≤ −j0π .

Since this last inequality is impossible, this means that ζt has a minimum in Int .
Characterization of the solutions with an analytic differential equation: Let us denote by

p(t) = (p1(t), . . . , pn(t)), for all t ∈ (0,
√

2), the unique minimum of the function ζt in
Int . Let us denote by t �→ s(t) = (s1(t), . . . , sn(t)) the unique solution of the differential
equation:

s′(t) = −(Ht (s1(t), . . . , sn(t)))−1 ·
(
∂2ζt

∂t∂pj
(s1(t), . . . , sn(t))

)
j

, (16)

such that s(t) is the minimum of the function ζt when t = √2/2, where Ht is the Hessian
matrix of ζt (existence and uniqueness are provided by classical theorems on first-order
nonlinear differential equations). Since this is an analytic differential equation, its solution
s is analytic.

Let us rewrite equation (16):

Ht(s1(t), . . . , sn(t)) · s′(t) = −
(
∂2ζt

∂t∂pj
(s1(t), . . . , sn(t))

)
j

∂2ζt

∂t∂pj
(s1(t), . . . , sn(t))+

∑
k

s′k(t) ·
∂2ζt

∂pk∂pj
(s1(t), . . . , sn(t)) = 0.

This means that for all j,

∂ζt

∂pj
(s1(t), . . . , sn(t))
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is a constant. Since s(t) is the minimum of ζt when t = √2/2, this constant is zero. As a
consequence, by uniqueness of the minimum of ζt for all t, s(t) = p(t). This means that
t �→ p(t) is analytic.

Antisymmetry of the solutions: For all t , j , since p(t) is the minimum of ζt , using
equation (10) and the fact that κt is increasing, we can write successively the following
equations:

Npn−j+1 − 2π(n− j + 1)+ (n+ 1)π +
∑
k

�k(pn−j+1, pn−k+1) = 0;

Npn−j+1 + 2πj − (n+ 1)π +
∑
k

�k(pn−j+1, pn−k+1) = 0;

−Npn−j+1 − 2πj + (n+ 1)π −
∑
k

�k(pn−j+1, pn−k+1) = 0;

−Npn−j+1 − 2πj + (n+ 1)π +
∑
k

�k(−pn−j+1, −pn−k+1) = 0.

This means that the sequence (−pn−j+1(t))j is a minimum for ζt , and as a consequence,
for all j, pn−j+1 = −pj .

The numbers pj (t), j ≤ n, are all distinct: Let us consider the function

χt : α �→ Nκt(α)+
n∑
k=1

θt (α, αk(t)),

where for all k, αk(t) is equal to κ−1
t (pk(t)). For all j, this function has value

π(2j − (n+ 1)) in αj (t) (by the Bethe equations). The finite sequence (π(2j − (n+ 1)))j
is increasing, thus it is sufficient to prove that the function χt is increasing. Its derivative is

χ ′t : α �→ Nκ ′t (α)+
n∑
k=1

∂θt

∂α
(α, αk(t)).

Since t ∈ (0,
√

2), sin(μt ) < 0, and thus this function is positive. As a consequence, χt
is increasing.

5.4. Diagonalization of some Heisenberg Hamiltonian. � Now that we have proved that
the system of Bethe equations has a unique solution, the Bethe ansatz effectively provides
a candidate eigenvector and eigenvalue for VN(t) for each of the sub-spaces 
(n)N . In the
following, we will focus on t = √2 and show that the candidate eigenvalue is indeed the
maximal eigenvalue of VN(t) on the corresponding sub-space, for all t sufficiently close
to
√

2 (let us remember that the analyticity of the solutions of Bethe equations will imply
that this is also the case away from

√
2). For this purpose, we will need first to introduce

a Hamiltonian HN which we diagonalize completely, following Lieb, Schultz and Mattis
[LSM61]. The term ‘Hamiltonian’ is only borrowed from the article [LSM61]. In this
paper, it is sufficient to see HN as a matrix acting on 
N .

5.4.1. Bosonic creation and annihilation operators. � The HamiltonianHN is expressed
by elementary operators which are defined in this section. We also prove the usefulness of

https://doi.org/10.1017/etds.2022.6 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.6


A complete proof that square ice entropy is 3
2 log2(4/3) 1875

their properties as Bosonic creation and annihilation operators. The Hamiltonian itself will
be defined in the next section.

Let us recall that 
N = C
2 ⊗ · · · ⊗ C

2. In this section, for the purpose of notation, we
identify {1, . . . , N} with Z/NZ.

Notation 11. Let us denote by a and a∗ the matrices in M2(C) equal to

a :=
(

0 0
1 0

)
, a∗ :=

(
0 1
0 0

)
.

For all j ∈ Z/NZ, we denote by aj (creation operator at position j) and a∗j (annihilation
operator at position j) the matrices in M2N (C) equal to

aj := id⊗ · · · ⊗ a ⊗ · · · ⊗ id, a∗j := id⊗ · · · ⊗ a∗ ⊗ · · · ⊗ id.

where id is the identity, and a acts on the jth copy of C2.

In other words, the image of a vector |ε1 · · · εN 〉 in the basis of 
N by aj (respectively,
a∗j ) is as follows:
• if εj = 0 (respectively, εj = 1), then the image vector is 0;
• if εj = 1 (respectively, εj = 0), then the image vector is |η1 · · · ηN 〉 such that ηj = 0

(respectively, ηj = 1) and for all k �= j , ηk = εk .

Remark 4. The term creation (respectively, annihilation) refers to the fact that for two
elements ε, η of the basis of 
N , aj [ε, η] �= 0 (respectively, a∗j [ε, η] �= 0) implies that
|η|1 = |ε|1 + 1 (respectively, |η|1 = |ε|1 − 1). If we think of 1 symbols as particles, this
operator acts by creating (respectively, annihilating) a particle.

LEMMA 6. The matrices aj and a∗j satisfy the following properties, for all j and k �= j :
(1) aja

∗
j + a∗j aj = id;

(2) a2
j = a∗j 2 = 0;

(3) aj , a∗j commute both with ak and a∗k .

Proof. (1) By straightforward computation, we get

aa∗ =
(

0 0
1 0

) (
0 1
0 0

)
=

(
0 0
0 1

)

and

a∗a =
(

0 1
0 0

) (
0 0
1 0

)
=

(
1 0
0 0

)
.

Thus aa∗ + a∗a is the identity of C2. As a consequence, for all j,

aja
∗
j + a∗j aj = id⊗ · · · ⊗ id,

which is the identity of 
N .
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(2) The second set of equalities comes directly from

a2 =
(

0 0
1 0

) (
0 0
1 0

)
=

(
0 0
0 0

)
,

(
a∗

) 2 =
(

0 1
0 0

) (
0 1
0 0

)
=

(
0 0
0 0

)
.

(3) The last set derives from the fact that any operator on C
2 commutes with the

identity.

5.4.2. Definition and properties of the Heisenberg Hamiltonian

Notation 12. Let us denote by HN the matrix in M2N (C) defined as

HN =
∑

j∈Z/NZ

(a∗j aj+1 + aja∗j+1).

LEMMA 7. This matrixHN is non-negative, symmetric and for all n, its restriction to
(n)N
is irreducible.

The proof of Lemma 7 is similar to that of Lemma 2, following the interpretation of the
action of HN described in Remark 5.

Remark 5. For all j, a∗j aj+1 + aja∗j+1 acts on a vector ε on the basis of
N by exchanging
the symbols in positions j and j + 1 if they are different. If they are not, the image of
ε by this matrix is 0. As a consequence, for two vectors ε and η on the basis of 
N ,
HN [ε, η] �= 0 if and only if η is obtained from ε by exchanging a 1 symbol of ε with a 0 in
its neighborhood. The Hamiltonian HN thus corresponds to H in [DGHMT18] for � = 0.

5.4.3. Fermionic creation and annihilation operators. � The reason for defining the
Hamiltonian, as in the last section, comes from the way it is obtained in the first place. We
will not provide details on this here, and only rewrite the definition using other operators,
called Fermionic creation and annihilation operators. This rewriting, exposed in the present
section, will help diagonalize the matrix HN .

Notation 13. Let us denote by σ the matrix of M2(C) defined as

σ =
(

1 0
0 −1

)
.

Let us denote, for all j ∈ Z/NZ, by cj and c∗j the matrices

cj = σ ⊗ · · · σ ⊗ a ⊗ id⊗ · · · ⊗ id, c∗j = σ ⊗ · · · σ ⊗ a∗ ⊗ id⊗ · · · ⊗ id.

Let us recall that two matrices P , Q anti-commute when PQ = −QP .

LEMMA 8. These operators verify the following properties for all j and k �= j :
(1) cj c

∗
j + c∗j cj = id;

(2) c∗j and cj anti-commute with both c∗k and ck;
(3) a∗j+1aj = −c∗j+1cj and a∗j aj+1 = −c∗j cj+1.
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Proof. (1) Since σ 2 = id, for all j,

cj c
∗
j + c∗j cj = aja∗j + a∗j aj .

From Lemma 6, we know that this operator is equal to identity.
(2) We can assume without loss of generality that j < k. Let us prove that cj

anti-commutes with ck (the other cases are similar):

cj ck = id⊗ · · · ⊗ aσ ⊗ σ ⊗ · · · ⊗ σ ⊗ σa ⊗ id⊗ · · · ⊗ id,

cj ck = id⊗ · · · ⊗ σa ⊗ σ ⊗ · · · ⊗ σ ⊗ aσ ⊗ id⊗ · · · ⊗ id.

Hence it is sufficient to see

σa =
(

1 0
0 −1

) (
0 0
1 0

)
=

(
0 0
−1 0

)
,

aσ =
(

0 0
1 0

) (
1 0
0 −1

)
=

(
0 0
1 0

)
= −σa.

(3) Let us prove the first equality (the other one is similar),

c∗j+1cj = id⊗ · · · ⊗ id⊗ σa ⊗ a∗ ⊗ id⊗ · · · ⊗ id.

We have just seen in the last point that σa = −a. As a consequence, c∗j+1cj =
−a∗j+1aj .

5.4.4. Action of a symmetric orthogonal matrix. � In this section, we consider some
operators derived from the Fermionic operators introduced in the last section by the action
of a symmetric and orthogonal matrix. We also prove some of their properties. Using these
new operators, we define a family of vectors that we prove in the next section to be a basis
of eigenvectors for HN .

Let us denote by c∗ the vector (c∗1, . . . , c∗N) and ct is the transpose of the vector
(c1, . . . , cN). Let us consider a symmetric and orthogonal matrixU = (ui,j )i,j in MN(R)

and denote by b and b∗ the matrices

b = U · ct = (b1, . . . , bN), b∗ = c∗ · Ut = (b∗1, . . . , b∗N).

Notation 14. For all α ∈ {0, 1}N , we set

ψα = (b∗1)α1 . . . (b∗N)αN · νN ,

where νN = |0, . . . , 0〉.
LEMMA 9. For all j and k �= j :
(1) bj and b∗j anti-commute with both bk and b∗k and bjb∗j + b∗j bj = id;
(2) for all α ∈ {0, 1}N , ψα �= 0;
(3) for all j and α, we have:

(i) b∗j bjψα = 0 if αj = 0;
(ii) b∗j bjψα = ψα if αj = 1.
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Proof. (1) Anti-commutation relations: Let us prove that bj and b∗k anti-commute (the
other statements of the first point have a similar proof). We rewrite the definition of bj
and b∗k :

bj =
∑
i

ui,j ci and b∗k =
∑
i

uk,ic
∗
i =

∑
i

ui,kc
∗
i .

Thus,

bjb
∗
k =

∑
i

∑
l �=i

ui,j ul,kcic
∗
l +

∑
i

ui,j ui,kcic
∗
i .

From Lemma 8,

bjb
∗
k = −

∑
l

∑
i �=l

ui,j ul,kc
∗
l ci +

∑
i

ui,j ui,k(id− c∗i ci).

Since the matrix U is orthogonal,

bjb
∗
k = −

∑
l

∑
i �=l

ui,j ul,kc
∗
l ci −

∑
i

ui,j ui,kc
∗
i ci = −b∗kbj .

Let us notice that this step is the reason why we use the operators ci instead of the
operators ai .

(2) For all k, b∗k =
∑
l uk,la

∗
l . As a consequence, for a sequence k1, . . . , ks ,

b∗k1
. . . b∗ks · νN =

∑
l1

· · ·
∑
ls

( s∏
j=1

ukj ,lj

)( s∏
j=1

a∗lj

)
.νN .

Since (a∗)2 = 0, the sum can be considered on the integers l1, . . . , ls such that they are
two by two distinct. The operator a∗l1 . . . a

∗
ls

acts on νN by changing the 0 on positions
l1, . . . , ls into symbols 1. The coefficient of the image of νN by this operator in the vector
b∗k1

. . . b∗ks · νN is thus:

∑
σ∈�s

s∏
j=1

ukj ,lσ (j) .

If this coefficient was equal to zero for all σ , it would mean that all s × s sub-matrices
of U have determinant equal to zero, which is impossible since U is orthogonal, and thus
invertible (this derives from iterating Laplace expansion of the determinant of U). As a
consequence, none of the vectors ψα is equal to zero.

(3) When αj = 0, from the fact that when j �= k, bj and b∗k anti-commute, we get that

bjψα = (−1)|α|1(b∗1)α1 . . . (b∗N)αN bjνN ,

and bjνN = 0, since for all j, ajνN = 0. As a consequence, b∗j bjνN = 0. When αj = 1,
by the anti-commutation relations,

b∗j bjψα = (b∗1)α1 · · · (b∗j−1)
αj−1b∗j bj b∗j (b∗j+1)

αj+1 · · · (b∗N)αN νN ,
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since the coefficients −1 introduced by anti-commutation are canceled out by the fact that
we use it for bj and b∗. From the first point,

b∗j bjψα = (b∗1)α1 · · · (b∗j−1)
αj−1b∗j (id− b∗j bj )(b∗j+1)

αj+1 · · · (b∗N)αN .

b∗j bjψα = (b∗1)α1 · · · (b∗j−1)
αj−1b∗j (id− b∗j bj )(b∗j+1)

αj+1 · · · (b∗N)αN
= ψα − (b∗1)α1 · · · (b∗N)αN bjνN
= ψα .

5.4.5. Diagonalization of the Hamiltonian. � In this section, we diagonalize HN using
the last section. Since we will only use its eigenvalues, we formulate the following.

THEOREM 5. The eigenvalues of HN are exactly the numbers

2
∑
αj=1

cos
(

2πj
N

)
,

for α ∈ {0, 1}N .

Proof. (1) Rewriting HN : From Lemma 8, we can write HN as

HN =
∑
j

c∗j cj+1 + c∗j+1cj .

The HamiltonianHN can be then rewritten asHN = c∗Mct , where M is the matrix defined
by blocks

M = 1
2

⎛
⎜⎜⎜⎜⎜⎝

0 id id

id
. . . . . .
. . . . . . id

id id 0

⎞
⎟⎟⎟⎟⎟⎠

,

where id is the identity matrix on C
2, and 0 is the null matrix. Let us denote by M ′ the

matrix of M2N (R) obtained from M by replacing 0, id by 0, 1.
(2) Diagonalization of M: The matrix M ′ is symmetric and thus can be diagonalized

in M2N (R) in an orthogonal basis. It is rather straightforward to see that the vectors ψk ,
k ∈ {0, . . . , N − 1} form an orthonormal family of eigenvectors of M ′ for the eigenvalue
λk = cos(2πk/N), where for all j ∈ {1, . . . , N},

ψkj =
√

2
N

(
sin

(
2πkj
N

)
, cos

(
2πkj
N

))
.

This comes from the equalities

cos(x − y)+ cos(x + y) = 2 cos(x) cos(y),

sin(x − y)+ sin(x + y) = 2 cos(x) sin(y),
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applied to x = k(j − 1) and y = k(j + 1). This family of vectors is linearly independent,
since the Vandermonde matrix with coefficients e2πkj/N is invertible. As a consequence,
one can write

U ′M ′U ′t = D′,
whereD′ is the diagonal matrix whose diagonal coefficients are the numbers λk , and U ′ is
the orthogonal matrix given by the vectors ψk . Replacing any coefficient of these matrices
by the product of this coefficient with the identity, one gets an orthogonal matrix U and a
diagonal one D such that

UMUt = D.

(3) Some eigenvectors of HN : Let us consider the vectors ψα constructed in §5.4.4 for
the matrix U of the last point, which is symmetric and orthogonal. From the expression of
HN , we get that

HNψα =
(

2
∑
j :αj=1

cos
(

2πj
N

))
· ψα .

Since ψα is non-zero, this is an eigenvector of HN .
(4) The family (ψα) is a basis of 
N : From cardinality of this family (the number of

possible α, equal to 2N ), it is sufficient to prove that this family is linearly independent.
For this purpose, let us assume that there exists a sequence (xα)α∈{0,1} such that

∑
α∈{0,1}N

xα · ψα = 0.

We apply first b∗1b1 · · · .b∗NbN and get that x(1,...,1)ψ(1,...,1) = 0, and thus x(1,...,1) = 0 (by
Lemma 9, the vectorψ(1,...,1) is not equal to zero). Then we apply successively the operators∏
j �=k b∗j bj for all k, and obtain that for all α ∈ {0, 1}N such that |α|1 = N − 1, xα = 0.

By repeating this argument, we obtain that all the coefficient xα are null. As a consequence,
(ψα)α is a base of eigenvectors forHH , and the eigenvalues obtained in the last point cover
all the eigenvalues of HN .

5.5. Identification. � In this section, we use the diagonalization sub-spaces 
(2n+1)
N

for t ∈ (0,
√

2) and 2n+ 1 ≤ N/2. of HN and a commutation relation between HN and
VN(
√

2) to prove that the candidate eigenvalue is the maximal eigenvalue of VN(t) for each
of the The proofs for the following two lemmas can be found in [DGHMT18] (respectively
Lemma 5.1 and Theorem 2.3). In Lemma 10, our notationHN corresponds to their notation
H for � = 0, and VN(

√
2) corresponds to V for � = 0. In Lemma 11, the equations

(Ej )[
√

2, n, N] correspond to their (BE), ψ to ψ for � = 0.

LEMMA 10. For all N ≥ 1, the Hamiltonian HN and VN(
√

2) commute

HN · VN(
√

2) = VN(
√

2) ·HN .
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LEMMA 11. For all N and n ≤ N , let us denote by (pj )j the solution of the system of
equations (Ej )[

√
2, n, N], then denoting ψ ≡ ψ√2,n,N(p1, . . . , pn),

HN · ψ =
(

2
n∑
k=1

cos
(

pk
)) · ψ .

THEOREM 6. For all N and 2n+ 1 ≤ N/2, and t ∈ (0,
√

2),

λ2n+1,N(t) = �2n+1,N(t)[p1(t), . . . , p2n+1(t)].

Proof. (1) The Bethe vector is �= 0 for t in a neighborhood of
√

2:
• Limit of the Bethe vector in

√
2: Let us denote by (pj (t))j the solution of the system

of equations (Ej )[t , 2n+ 1, N].
Let us recall [Theorem 3] that for all t, and ε in the canonical basis of 
N ,

ψt ,2n+1,N(p1(t), . . . , p2n+1(t))[ε] =
∑

σ∈�2n+1

Cσ (t)[p(t)]
2n+1∏
k=1

eipσ(k)(t)·qk[ε].

This expression admits a limit when t →√2, given by

∑
σ∈�2n+1

Cσ (
√

2)[p(
√

2)]
2n+1∏
k=1

e
ip
σ(k)(

√
2)·qk[ε],

where (pk(
√

2))k is solution of the system of equations (Ek)[
√

2, 2n+ 1, N].
• The expression ε(σ )Cσ (

√
2)[p(
√

2)] is independent from σ : Indeed, from the
definition of Cσ (t) we have

∏
1≤k<l≤2n+1

(1+ ei(pσ(k)(
√

2)+pσ(l)(
√

2)))

=
∏

1≤σ−1(k)<σ−1(l)≤2n+1

(1+ ei(pk(
√

2)+pl (
√

2)))

=
∏

1≤k<l≤2n+1

(1+ ei(pk(
√

2)+pl (
√

2))).

Indeed, for all l �= k, one of the conditions σ−1(k) < σ−1(l) or σ−1(l) < σ−1(k)

is verified, exclusively. This means that (1+ ei(pk(
√

2)+pl (
√

2))) appears exactly once
in the product for each l, k such that l �= k.

• The terms (1+ ei(pk(
√

2)+pl (
√

2))), k �= l, are all non-zero: Indeed, none of the
pk(
√

2)+ pl (
√

2) can be equal to ±π . This comes from the fact that the system of
Bethe equations (Ek)[

√
2, 2n+ 1, N] has a unique simple solution given by

pk(
√

2) = π

N

(
2k − (2n+ 1+ 1)

2

)
= 2π
N
(k − (n+ 1)).
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These numbers are bounded respectively above and below by

p1(
√

2) = −2π
n− 1
N

, pn(
√

2) = 2π
n− 1
N

.

Since 2n+ 1 ≤ N/2, these numbers are in [−π/2, π/2], and the possible sums of two
different values of these numbers is in ]−π , π [.

• The limit of Bethe vectors is non-zero: As a consequence of the last points, we have
that the ε coordinate of the limit of Bethe vectors when t →√2 is, up to a non-zero
constant,

∑
σ∈�2n+1

ε(σ ) ·
2n+1∏
k=1

e
ip
σ(k)(

√
2)·qk[ε],

which is the determinant of the matrix (eipσ(k)(
√

2).Here,ql [ε]
)k,l , which is a submatrix

of the matrix (eisk ·s′l )k,l∈�1,N�, where (sk) is a sequence of distinct numbers in
]−π/2, π/2[ such that for all k ≤ 2n+ 1,

sk = p
σ(k)(

√
2),

and (s′l )l is a sequence of distinct integers such that for all l ≤ n,

s′l = ql[ε].

If the determinant is non-zero, then the sum above is non-zero. This is the case
since this last matrix is obtained from the Vandermonde matrix (eisk .l)k,l∈�1,N�, whose
determinant is ∏

k<l

(eisl − eisk ) �= 0,

by a permutation of the columns.
(2) From the Hamiltonian to the transfer matrix:

• Eigenvector of VN(
√

2) and HN : Since the limit of Bethe vectors is not equal to zero,
and it satisfies an equation which is the ‘limit’ of equations which make the Bethe
vectors candidate eigenvectors, it is an eigenvector of the matrix VN(

√
2). It is also an

eigenvector of the Hamiltonian HN , for the eigenvalue

2
(n−1∑
k=1

cos
(

2πk
N

)
+

N∑
k=N−n+1

cos
(

2πk
N

))
. (17)

This is a consequence of Lemma 11, since for all j, Npj (
√

2) = 2π(j − (n+ 1)), the
eigenvalue is

2
2n+1∑
k=1

cos (pk(
√

2)) = 2
n∑
k=1

cos (pk(
√

2))+ 2
2n+1∑
k=n+1

cos (N − pk(
√

2))

= 2
(n−1∑
k=1

cos
(

2πk
N

)
+

N∑
k=N−n+1

cos
(

2πk
N

))
.
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• Comparison with the other eigenvalues of H : From Theorem 5, we know that the
number given by the expression in equation (17) is the largest eigenvalue of HN on


(2n+1)
N . Indeed, it is straightforward that ψα is in 
(2n+1)

N if and only if the number
of k such that αk = 1 is 2n+ 1. The sum in the statement of Theorem 5 is maximal
among these sequences when

α1 = · · · = αn−1 = 1 = αN−n+1 = · · · = αN
and the other αk are equal to 0.

• Identification: As a consequence, from Perron–Frobenius theorem, the limit of Bethe
vectors in

√
2 is positive, thus this is also true for t sufficiently close to

√
2. From

the same theorem, the Bethe vector is associated to the maximal eigenvalue of VN(t).
As a consequence, the Bethe value �2n+1,N(t)[p1(t), · · · p2n+1(t)] is equal to the
largest eigenvalue λ2n+1,N(t) of VN(t) on 
(2n+1)

N for these values of t. Since these
two functions are analytic in t (by the implicit functions theorem on the characteristic
polynomial, using the fact that the largest eigenvalue is simple), one can identify these
two functions on the interval (0,

√
2).

6. Asymptotic properties of Bethe roots
� At this point, we have an expression of the largest eigenvalue of VN(1) on each of
the sub-spaces 
(2n+1)

N with 2n+ 1 ≤ N/2. To obtain the entropy of Xs , we need to
understand how these expressions behave asymptotically, when n and N tend towards
infinity—we can in fact assume that n/N tends towards some d. For this, we need to
understand how Bethe roots behave asymptotically. This is what we will do in this section.

Let us fix some d ∈ [0, 1/2], and (Nk)k and (nk)k some sequences of integers such that
for all k, nk ≤ Nk/2+ 1 and nk/Nk → d . In this section, we study the asymptotic behavior
of the sequences (α(k)j (t))j , where t ∈ (0,

√
2),

(p(k)j (t))j ≡ (κt (α(k)j (t)))j
is solution of the system of Bethe equations (Ej )[t , nk , Nk], j ≤ nk , when k tends towards
+∞. For this purpose, we introduce in §6.1 the counting functions ξ (k)t associated to the
corresponding Bethe roots. The term ‘counting function’ refers to the fact that between two
Bethe roots, the function increases by a constant, and thus ‘counts’ Bethe roots. In other
words, these functions represent the distribution of Bethe roots in the real line. In §6.2,
we prove that the sequence of functions (ξ (k)t )k converges uniformly on any compact to a
function ξ t ,d . In §6.3, we then prove the following, which will be used in §7 to compute
the entropy of square ice: for all function f : (0, +∞)→ (0, +∞) which is continuous,
decreasing and integrable,

1
Nk

nk∑
j=�nk/2�+1

f (α
(k)
j (t))→

∫ ξ−1
t ,d (d)

0
f (α)ξ t ,d(α) dα.

6.1. The counting functions associated to Bethe roots. In this section, we define the
counting functions and prove some additional preliminary facts on the auxiliary functions
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θt and κt that we will use in the following [§6.1.1]. We prove also that the number of Bethe
roots vanishes as one get close to ±∞, with a speed that does not depend on k [§6.1.2].

6.1.1. Definition

Notation 15. For all t ∈ (0,
√

2) and all integer k, let us denote by ξ (k)t : R→ R the
counting function defined as follows:

ξ
(k)
t : α �→

(
1

2π
κt (α)+ nk + 1

2Nk
+ 1

2πNk

∑
j

θt (α, α
(k)
j (t))

)
.

Fact 1. Let us notice some properties of these functions, that we will use in the following.
(1) By Bethe equations, for all j and k,

ξ
(k)
t (α

(k)
j (t)) =

j

Nk
≡ ρ(k)j .

(2) For all k, t , the derivative of ξ (k)t is the function

α �→ 1
2π
κ ′t (α)+

1
2πNk

∑
j

∂θt

∂α
(α, αj (t)) > 0.

Indeed, this comes directly from the fact that μt ∈ (π/2, π). As a consequence, the
counting functions are increasing.

We will use also the following proposition.

PROPOSITION 8. We have the following limits for the functions κt and θt on the border of
their domains:

lim+∞ κt = − lim−∞ κt = π − μt
and that for all β ∈ R,

lim+∞ θt (α, y) = − lim−∞ θt (α, y) = 2μt − π .

Proof. Let us prove this property for κt , where the limits for θt are obtained applying the
same reasoning. Let us recall that for all α ∈ R,

κ ′t (α) =
sin(μt )

cosh(α)− cos(μt )
.

Since this function is positive, κt is increasing, and thus admits a limit in ±∞. Since κ ′t is
integrable, these limits are finite. Since for all α,

eiκt (α) = eiμt − eα
eiμt+α − 1

,

and the limit of this expression when α tends to +∞ is −e−iμt , then there exists some
k ∈ Z such that

lim+∞κt = 2kπ + π − μt
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Since κt is a bijective map from R to It [Proposition 7], then k = 0. Thus we have

lim+∞κt = π − μt .
The limit in −∞ is obtained by symmetry.

Notation 16. For any compact interval I ⊂ R, we set

VI (ε, η) = {z ∈ C : |Im(z)| < η, d(Re(z), I ) < ε}.

6.1.2. Rarefaction of Bethe roots near infinities. For all k, t and M > 0, we set

P
(k)
t (M) ≡ {j ∈ �1, nk� : α

(k)
j (t) /∈ [−M , M]}.

THEOREM 7. For all t ∈ (0,
√

2), ε > 0, there exists some M > 0 and k0 such that for all
k ≥ k0,

1
Nk
|P (k)t (M)| ≤ ε.

Idea of the proof: To prove this statement, we introduce a quantity qt which represents
roughly the density of Bethe roots near infinities, defined as a lim sup on pairs of integer
and interval. It is sufficient to prove that qt = 0 to prove the statement. We extract a
sequence of integers (ν(kl))l and (Il)l = ([−Ml , Ml])l that realizes this lim sup. For these
sequences, we bind from above and below the smallest (respectively, greatest) integer such
that the corresponding Bethe root is greater than Ml (respectively, smaller than −Ml).
Using Bethe equations and properties of κt and θt (boundedness and monotonicity), we
prove a inequality relating these two bounds. Taking the limit l→+∞, we obtain an
inequality that forces qt = 0.

Proof. In this proof, we assume, to simplify the computations, that for all k, nk is even, and
we set nk = 2mk . However, similar arguments are valid for any sequence (nk)k . Moreover,
if d = 0, the statement is trivial, and as a consequence, we assume in the remainder of the
proof that d > 0. It is sufficient to prove then that for all ε > 0, there exists some M and
k0 such that for all k ≥ k0,

1
nk
|P (k)t (M)| ≤ ε.

Formulation with superior limits: If lim supm α
(k)
nk is finite, then the Bethe roots are

bounded independently from k (from below this comes from the asymmetry of α(k)), and
thus the statement is verified.

Let us thus assume that lim supk α
(k)
nk = +∞, meaning that there exists some ν : N→

N such that

α(ν(k))nν(k)
→+∞.

Let us denote, for all k, t andM > 0, by q(k)t (M) the proportion of positive Bethe roots α
(k)
j

that are greater than M. Since for all k, α(k) is an anti-symmetric and increasing sequence,
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α
(k)
j > 0 implies that j ≥ mk + 1, and we define this proportion as

q
(k)
t (M) = 1

mk
|{j ∈ �mk + 1, 2mk� : α

(k)
j ≥ M}|. (18)

We also denote by qt (M) = lim supk q
(ν(k))
t (M) and

qt = lim sup
M

qt (M) ≤ 1.

By construction, there exists an increasing sequence (Ml)l of real numbers and a
sequence (kl)l of integers such that for all ε > 0, there exists some l0 and for all
l ≥ l0,

qt − ε < qt (Ml)− ε2 < q
(ν(kl))
t (Ml) < qt (Ml)+ ε2 < qt + ε. (19)

The proof of the statement reduces to prove that qt = 0.
Bounds for the cutting integers sequence:

(1) Lower bound: As a consequence of equation (18) and inequalities in equation (19),
for ε and l0 as in the previous point,

(qt + ε)mν(kl) ≥ |{j ∈ �2mν(kl) + 1, 2mν(kl)� : α
(ν(kl))
j ≥ Ml}|.

Moreover,

|{j ∈ �mν(kl) + 1, 2mν(kl)� : α
(ν(kl))
j < Ml}| = mν(kl)

− |{j ∈ �mν(kl) + 1, 2mν(kl)� : α
(ν(kl))
j ≥ Ml}|

≥ mν(kl) · (1− qt − ε).
Thus the ‘cutting integer’, denoted by σl , defined as the greatest j such that the

associated Bethe root satisfies the inequality α
(ν(kl))
j < Ml , is bounded from below

by

mν(kl) +mν(kl) ·max(0, 1− ε − qt ) ≥ max(0, 2mν(kl)(1− ε − qt )).
Since it is an integer, it is also greater than the integer al defined by

al = max(0, �2mν(kl).(1− ε − qt )�).
(2) Upper bound: Let us also set al = �2mν(kl).(1+ ε − qt )� + 1. For a similar reason,

the cutting integer σl is smaller than al . See a schema in Figure 9.
(3) Another similar bound: Moreover, since l ≥ l0, by definition of the sequence (q(k)t )

and by the inequalities in equation (19),

qt
(ν(kl))(Ml0) ≥ qt (ν(kl))(Ml) > qt (Ml)− ε2 .

As a consequence of a reasoning similar to the first point,

|{j ∈ �mν(kl) + 1, 2mν(kl)� : α
(ν(kl))
j < Ml0}| ≥ mν(kl) · (1− qt − ε),

and thus for all j ≤ al , α
ν(kl)
j < Ml0 .
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1 2mν(kl)jmν(kl) + 1

al

al

α
(ν(kl))
j ≥ M

FIGURE 9. Illustration of the definition and lower bound of the cutting integer.

Inequality involving al and al through Bethe equations: By summing values of the
counting function,

2mν(kl )∑
k=al

ξ
(ν(kl))
t (α

(ν(kl))
k ) = 1

2π

2mν(kl )∑
k=al

κt (α
(ν(kl))
k )+ 2mν(kl) + 1

2Nν(kl)
(2mν(kl) + 1− al)

+ 1
2πNν(kl)

2mν(kl )∑
k=al

2mν(kl )∑
k′=1

θt (α
(ν(kl))
k , α

(ν(kl))

k′ ).

By Bethe equations, we also have

2mν(kl )∑
k=al

ξ
(ν(kl))
t (α

(ν(kl))
k ) = 1

Nν(kl)

2mν(kl )∑
k=al

k = (2mν(kl) + al)(2mν(kl) − al + 1)
2Nν(kl)

.

As a direct consequence, and since θt is increasing in its first variable and θt (α, α) = 0
for all α,

(2mν(kl) − al + 1)(al − 1)
2Nν(kl)

= 1
2π

2mν(kl )∑
k=al

κt (α
(ν(kl))
k )+ 1

2πNν(kl)

2mν(kl )∑
k=al

2mν(kl )∑
k′=1

θt (α
(ν(kl))
k , α

(ν(kl))

k′ )

≥ 1
2π

2mν(kl )∑
k=al

κt (α
(ν(kl))
k )+ 1

2πNν(kl)

2mν(kl )∑
k=al

∑
k′<k

θt (α
(ν(kl))
k , α

(ν(kl))

k′ ).

Using again the fact that θt is increasing in its first variable, we have

θt (α
(ν(kl))
k , α

(ν(kl))

k′ ) ≥ θt (Ml , Ml0)

when k ≥ al and k′ ≤ al (this is a consequence of the third bound proved in the last point).
The terms corresponding to other pairs (k, k′) are bounded from below by 0. Using these
facts and the fact that κt is increasing,

(2mν(kl) − al + 1)(al − 1)
2Nν(kl)

≥ (2mν(kl) − al + 1)
1

2π
κt (Ml)

+ (2mν(kl) − al + 1)
al

2πNν(kl)
θt (Ml , Ml0).
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Simplifying by (2mν(kl) − al + 1) (which is possible because it is positive),

(al − 1)
2Nν(kl)

≥ 1
2π
κt (Ml)+ al

2πNν(kl)
θt (Ml , Ml0).

We take the limit when l→+∞, and obtain, using the definitions of al and al ,

d

2
(1− ε − qt ) ≥ π − μt2π

+ d
2

2μt − π
π

(1− qt ).
Taking the limit when ε → 0,

d

2
(1− qt ) ≥ π − μt2π

+ d
2

2μt − π
π

(1− qt ).
This inequality can be rewritten as

(1− qt )
(
d

2
− d

2
2μt − π
π

)
≥ π − μt

2π
.

Finally, 1− qt ≥ 1/2d ≥ 1, and thus since by definition qt is non-negative, qt = 0.

6.2. Convergence of the sequence of counting functions (ξ (k)t )k . � In this section, we
prove that the sequence of functions (ξ (k)t )k converges uniformly on any compact to
a function ξ t ,d . After some recalls on complex analysis [§6.2.1], we prove that if a
subsequence of this sequence of functions converges on any compact of their domain
towards a function, then this function verifies a Fredholm integral equation [§6.2.2], which
is solved through Fourier analysis, and the solution is proved to be unique, in §6.2.3, by
solving a similar equation verified by the derivative of this function. We prove in §6.2.4
that this fact implies that the sequence of counting functions converges to ξ t ,d .

For all t, there exists τt > 0 such that for all k, the functions κt , �t and ξ (k)t can be
extended analytically on the set Iτt := {z ∈ C : |Im(z)| < τt } ⊂ C. For the purpose of
notation, the extended functions are denoted by the same symbols as their restriction on R.

6.2.1. Some complex analysis background. Let us recall some results of complex
analysis that we will use in the remainder of this section. Let U be an open subset
of C.

Definition 8. We say that a sequence (fm)m of functions U → C is locally bounded when
for all z ∈ U , the sequence (|fm(z)|)m is bounded.

THEOREM 8. (Montel) Let (fm)m be a locally bounded sequence of holomorphic
functions U → C. There exists a subsequence of (fm)m which converges uniformly on
any compact subset of U.

LEMMA 12. Let (fm)m be a locally bounded sequence of continuous functions U → C

and f : U → C such that any subsequence of (fm)m which converges uniformly on any
compact subset of U converges towards f. Then (fm)m converges uniformly on any compact
towards f.
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Proof. Let us assume that (fm)m does not converge towards f. Then there exists some
ε > 0, compact K ⊂ U and a non-decreasing function ν : N→ N such that for all m,

‖(fν(m) − f )K‖∞ ≥ ε.

From Montel theorem, one can extract a subsequence of (fν(m))m which converges
towards f uniformly on any compact of U, and in particular on the compact K. This is in
contradiction to the above inequality, and we deduce that (fm)m converges towards f.

THEOREM 9. (Cauchy formula) Let us assume that U is simply connected and let f : U →
C be a holomorphic function and γ a loop included in U that is homeomorphic to a circle
positively oriented. Then for all z in the interior domain of the loop,

f (z) = 1
2πi

∮
γ

f (s)

s − z ds.

Let us also recall a sufficient condition for a holomorphic function to be
biholomorphic.

THEOREM 10. Let U be an open and simply connected set and f : U → C be a
holomorphic function. Let V ⊂ U be an open set and γ a loop included in U that is
homeomorphic to a positively oriented circle, and such that V is included in the interior
domain of γ . We assume that:
(1) for all z ∈ V and s ∈ γ , f (z) �= f (s);
(2) and for all z ∈ V , f ′(z) �= 0.

Then f is a biholomorphism from V onto its image, meaning that there exists some
holomorphic function g : f (V )→ U such that for all z ∈ f (V ), f (g(z)) = z and for all
z ∈ U , g(f (z)) = z. Moreover, for all z ∈ f (V ),

g(z) = 1
2πi

∫
γ

s
f ′(s)

f (s)− zds.

6.2.2. The limits of subsequences of (ξ (k)t )k satisfy a Fredholm integral equation. In this
section, we prove the following theorem.

THEOREM 11. Let ν : N→ N be a non-decreasing function, and assume that (ξ (ν(m))t )m

converges uniformly on any compact of Iτt towards a function ξt . Then this function
satisfies the following equation for all α ∈ Iτ :

ξ ′t (α) =
1

2π
κ ′t (α)+

∫
R

∂θt

∂α
(α, β)ξ ′t (β)dβ.

Moreover, ξt (0) = d/2.

Proof. Convergence of the derivative of the counting functions: Since any compact of Iτt
can be included in the interior domain of a rectangle loop, through derivation of the Cauchy
formula, the derivative of ξ (ν(m))t converges also uniformly on any compact, towards ξ ′t .
Since |(ξ (m)t )′| is bounded by a constant that does not depend on m, and that s �→ |θt (α, s)|
is integrable on R for all α, then s �→ θt (α, s)ξ ′t (s) is integrable on R.
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Some notation: Let us fix some ε > 0, and α0 ∈ R. In the following, we consider some
irrational number (and as a consequence, not the image of a Bethe root) M > 1 such
that:

(1) M ∈ ◦
ξt (R);

(2) |P (k)t (M)| ≤ ε/2(2μt − π) for all k greater than some k0 (this is possible to impose
in virtue of Theorem 7);

(3) and α0 ∈ ξ−1
t ([−M , M]).

Since ξt (R) is an interval (this function is increasing on R), one can take M arbitrarily
close to the supremum of this interval. When M tends towards this supremum, ξ−1

t (M)

tends to +∞: if it did not, then this would contradict the fact that this is the supremum
(again by monotonicity). One can assume that M is such that

1
2π

∣∣∣∣
∫
(ξ−1
t ([−M ,M]))c

θt (α, β)ξ ′t (β) dβ
∣∣∣∣ ≤ ε

4
. (20)

Let us also set Jt = ξ−1
t ([−M , M]).

The derivative of ξt relative to the axis iR is non-zero when close enough to R: Indeed,
for all α, λ ∈ R,

ξ
(k)
t (α + iλ) = 1

2π
κt (α + iλ)+ nk + 1

2Nk
+ 1

2πNk

∑
j

θt (α + iλ, α
(k)
j (t)).

As a direct consequence, the derivative of the function λ �→ −iξ (k)t (α + iλ) in 0 is

1
2π
κ ′t (α)+

1
2πNk

∑
j

θt (α, α
(k)
j (t)) = (ξ (k)t )′(α) ≥ 1

2π
κ ′t (α) > 0. (21)

Thus for all α, the derivative of the function λ �→ −iξt (α + iλ) in 0 is greater than

1
2π
κ ′t (α).

Moreover, since the second derivative of λ �→ −iξ (k)t (α + iλ) is a bounded function of
α, with a bound that is independent from k, through Taylor integral formula, there exists a
constant pt > 0 such that for all λ ∈ R and α ∈ R,

|ξt (α + iλ)− iξ ′t (α).λ− ξt (α)| ≤ ptλ2,

which implies

|Im(ξt (α + iλ))− ξ ′t (α).λ| ≤ ptλ2.

By virtue of equation (21),

Im(ξt (α + iλ)) ≥ ξ ′t (α)λ− ptλ2 ≥ 1
2π
κ ′t (α)λ− ptλ2.

The derivative of ξt relative to the axis iR in α ∈ R is greater than (1/2π)κ ′t (α).
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R

VJt(ηt, εt)
γt

VJt(σt, 1)

Jt

σt

τt

α0

iR

Iτt

FIGURE 10. Illustration of the proof that ξt is a biholomorphism on a neighborhood of Jt .

The restriction of ξt on some VJt (ηt , εt ) is a biholomorphism onto its image: Since M
is defined so that

M ∈ ◦
ξt (R),

then Jt = ξ−1
t ([−M , M]) is compact. This means, as a consequence of the last point,

that there exists some positive number σt < τt such that for all z ∈ VJt (σt , 1)\R, then
ξt (z) /∈ R.

Let us consider the loop γt given by ∂VJt (σt , 1) (see the illustration in Figure 10).
Let us prove that there exist some εt > 0 and ηt > 0 such that the values taken by the

function ξt on VJt (ηt , εt ) are distinct from any value taken by the same function on the
loop γt . This is done in two steps, as follows.
(1) First, we consider open neighborhoods (illustrated by dashed squares in Figure 10)

for the two points of γt ∩ R such that the values taken by ξt on these sets are distant
by more than a positive constant from the values taken on Jt . This is possible since
ξt is strictly increasing on R.

(2) On the part of γt that is not included in these two open sets, the function ξt

takes non-real values, and the set of values taken is compact, by continuity. As a
consequence, the set of values taken on the loop γt is included into a compact that
does not intersect the set of values taken on Jt . Thus one can separate these two sets
of values with open sets, meaning that there exist some εt > 0 and ηt > 0 such that
the set of values taken by ξt on VJt (ηt , εt ) does not intersect the set of values taken
by this function on γt .

By virtue of Theorem 10, this means that ξt is a biholomorphism from VJt (ηt , εt ) onto
its image on this set. As a consequence, it is also an open function, and its image on
VJt (ηt , εt ) contains the image of Jt , where [−M , M] by definition.

Asymptotic biholomorphism property for ξ (ν(k))t : It can be derived from the last point
that there exists some k1 ≥ k0 such that for all k ≥ k1, the values of ξ (ν(k))t on γt are
distinct from the values of ξ (k)t on VJt (ηt , εt ), and as a consequence, for the same reason
as the last point, ξ (ν(k))t is a biholomorphism from VJt (ηt , εt ) onto its image on this set.
Moreover, since ξ (ν(k))t converges uniformly to ξt on VJt (ηt , εt ), it converges also uniformly
on VJt (ηt , εt ). Furthermore, ξt (VJt (ηt , εt )) contains V[−M ,M](η

′
t , ε
′
t ), and thus there exists

some η′t , ε′t > 0 and some k2 ≥ k1 such that for all k ≥ k2, ξ (ν(k))t (VJt (ηt , εt )) contains
V[−M ,M](η

′
t , ε
′
t ).
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ξ
(ν(k))
t (VJt

(εt, ηt))

R

Γσ
t

−M M

ρ
(ν(k))
j

V[−M,M ](2η′
t, ε

′
t)

ρ
(ν(k))
j′′+1

. . . ρ
(ν(k))
j′ . . .

FIGURE 11. Illustration for the definition of the loop �σt .

Loop integral expression of the counting functions and approximation of ξ (ν(k))t : We
deduce that for all k ≥ k2 and σ < η′t positive, the loop

�σt ≡ ({−M , M} × �−σ , σ �)
⋃
([−M , M]× {−σ , σ })

is included into ξ (ν(k))t (VJt (ηt , εt )). See Figure 11 for an illustration.
We then have, since α0 ∈ Jt , the following equation for all k, t , σ :

1
2πNν(k)

∑
j∈P (ν(k))t (M)

θt (α0, α
(ν(k))
j (t))

= 1
2π

∮
�σt

θt (α0, (ξ (ν(k))t )−1(s))
e2iπNν(k)s

(e2iπNν(k)s − 1)
ds.

Indeed, there are no poles for ξ (ν(k))t on �σt since M is irrational. The poles of the
function inside the domain delimited by �σt are exactly the numbers ρ(ν(k))j . By the residues

theorem, and since for all j, ξ (ν(k))t (αj (t)) = ρ(ν(k))j ,∮
�σt

θt (α0, (ξ (ν(k))t )−1(s))
e2iπNν(k)s

(e2iπNν(k)s − 1)
ds

= 2πi
∑

j∈P (ν(k))t (M)

1
2iπNν(k)

θt (α0, α
(ν(k))
j (t)). (22)

Triangular inequality: We have the following triangular inequality:∣∣∣∣ξ (ν(k))t (α0)− 1
2π
κt (α0)− d2 −

1
2π

∫ ∞
−∞

θt (α0, β)ξ ′t (β) dβ
∣∣∣∣

≤
∣∣∣∣nν(k) + 1

2Nν(k)
− d

2

∣∣∣∣+
∣∣∣∣ξ (ν(k))t (α0)− 1

2π
κt (α0)− nν(k) + 1

2Nν(k)

− 1
2π

∮
�σt

θt (α0, (ξ (ν(k))t )−1(s))
e2iπNν(k)s

(e2iπNν(k)s − 1)
ds

∣∣∣∣
+

∣∣∣∣
∫

[−M ,M]
θt (α0, ξ−1

t (β − iσ )) dβ −
∫

[−M ,M]
θt (α0, ξ−1

t (β)) dβ

∣∣∣∣
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+
∣∣∣∣
∫

[−M ,M]
θt (α0, ξ−1

t (β − iσ )) dβ −
∫
ξ−1
t ([−M ,M])

θt (α0, β)ξ ′t (β) dβ
∣∣∣∣

+
∣∣∣∣ 1
2π

∫ σ

−σ
θt (α0, (ξ (ν(k))t )−1(±M + iλ))) e2iπNν(k)(±M+iλ)

(e2iπNν(k)(±M+iλ) − 1)
dλ

∣∣∣∣
+

∣∣∣∣ 1
2π

∫ M

−M
θt (α0, (ξ (ν(k))t )−1(β + iσ1))

e2iπNν(k)(β+iσ1)

(e2iπNν(k)(±(β+iσ1) − 1)
dβ

∣∣∣∣
+

∣∣∣∣ 1
2π

∫ M

−M
θt (α0, (ξ (ν(k))t )−1(β − iσ1))

(
e2iπNν(k)(β−iσ1)

(e2iπNν(k)(±(β−iσ1) − 1)
− 1) dβ

∣∣∣∣
+ 1

2π

∣∣∣∣
∫
(ξ−1
t (−[M ,M]))c

θt (α0, β)ξ ′t (β) dβ
∣∣∣∣. (23)

We deduce from the last point (equation (22)) that for all k ≥ k2 and all σ < η′t ,∣∣∣∣ξ (ν(k))t (α0)− 1
2π
κt (α0)− nν(k) + 1

2Nν(k)

− 1
2π

∮
�σt

θt (α0, (ξ (ν(k))t )−1(s))
e2iπNν(k)s

(e2iπNν(k)s − 1)
ds

∣∣∣∣
≤

∑
j /∈P (ν(k))t (M)

|θt (α0, α
(ν(k))
j (t))|

≤ (2μt − π)|{j ∈ �1, nν(k)� : α
(ν(k))
k (t) /∈ [−M , M]}| ≤ ε

2
, (24)

using the notation from the second point of this proof. Let us also note k3 ≥ k2 some
integer such that for all k ≥ k3, ∣∣∣∣nν(k) + 1

2Nν(k)
− d

2

∣∣∣∣ ≤ ε

8
. (25)

We then evaluate convergence of the various other terms involved in the triangular
inequality above.
(1) Convergence of the bottom part of the loop integral to an integral on a real segment

when σ → 0: By continuity of ξ−1
t , there exists some σ0 > 0 such that for all k ≥ k3,

σ ≤ σ0,∣∣∣∣
∫

[−M ,M]
θt (α0, ξ−1

t (β − iσ )) dβ −
∫

[−M ,M]
θt (α0, ξ−1

t (β))dβ

∣∣∣∣ ≤ ε

64
. (26)

By change of variable in the second integral,∣∣∣∣
∫

[−M ,M]
θt (α0, ξ−1

t (β − iσ )) dβ −
∫
ξ−1
t ([−M ,M])

θt (α0, β)ξ ′t (β) dβ
∣∣∣∣ ≤ ε

64
. (27)

(2) Bounding the lateral parts of the loop integral for σ → 0: There exists some σ1 > 0
such that σ1 ≤ σ0 such that for all σ ≤ σ1, k ≥ k3,∣∣∣∣ 1

2π

∫ σ

−σ
θt (α0, (ξ (ν(k))t )−1(±M + iλ))) e2iπNν(k)(±M+iλ)

(e2iπNν(k)(±M+iλ) − 1)
dλ

∣∣∣∣ ≤ ε

64
. (28)
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(3) Convergence of the top and bottom parts of the loop integral when k→+∞: Then
there exists some k4 ≥ k3 such that for all k ≥ k4,∣∣∣∣ 1

2π

∫ M

−M
θt (α0, (ξ (ν(k))t )−1(β + iσ1))

e2iπNν(k)(β+iσ1)

(e2iπNν(k)(±(β+iσ1) − 1)
dβ

∣∣∣∣ ≤ ε

64
. (29)

∣∣∣∣ 1
2π

∫ M

−M
θt (α0, (ξ (ν(k))t )−1(β − iσ1))

(
e2iπNν(k)(β−iσ1)

(e2iπNν(k)(±(β−iσ1) − 1)
− 1

)
dβ

∣∣∣∣ ≤ ε

64
.

(30)

Using equations 23–30 together with equation (20), we have that for all k ≥ k4,∣∣∣∣ξ (ν(k))t (α0)− 1
2π
κt (α0)− d2 −

1
2π

∫ ∞
−∞

θt (α0, β)ξ ′t (β) dβ
∣∣∣∣ ≤ ε

2
+ ε

4
+ ε

8
+ 5

ε

64
≤ ε.

Integral equations: As a consequence, since this is true for all ε > 0 and α0, we have
the following equality for all α ∈ R:

ξt (α) = 1
2π
κt (α)+ d2 +

1
2π

∫ ∞
−∞

θt (α, β)ξ ′t (β) dβ.

Moreover, this equality is verified for any α0, and differentiating it relatively to α:

ξ ′t (α) =
1

2π
κ ′t (α)+

1
2π

∫ ∞
−∞

∂θt

∂α
(α, β)ξ ′t (β) dβ.

Value of ξt (0): Since ξ (k)t is increasing for all k, we have directly

�nk/2�
Nk

= ξ (k)t (α
(k)
�nk/2�(t)) ≤ ξ

(k)
t (0) ≤ ξ (k)t (α

(k)
�nk/2�+1(t)) =

�nk/2� + 2
Nk

.

As a consequence, since we assumed at the very beginning of §6 that nk/Nk → d ,
ξt (0) = d/2.

6.2.3. Solution of the Fredholm equation. In this section, we prove that the integral
equation on ξt in the statement of Theorem 11 is unique and compute its solution.

PROPOSITION 9. Let t ∈ (0,
√

2) and ρ a continuous function in L1(R, R) such that for
all α ∈ R,

ρ(α) = 1
2π
κ ′t (α)+

1
2π

∫ +∞
−∞

∂θt

∂α
(α, β)ρ(β) dβ.

Then for all α,

ρ(α) = 1
4μt cosh(πα/2μt)

.

Proof. The proof consists essentially in the application of Fourier transform techniques.
We will set, for convenience, for all α and μ,

�μ(α) = sin(μ)
cosh(α)− cos(μ)

.
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Application of Fourier transform: Let us denote by ρ̂ the Fourier transform of ρ:
for all ω,

ρ̂(ω) =
∫ +∞
−∞

ρ(α)eiωα dα,

which exists since ρ is L1(R). Additionally, we denote by �̂μ the Fourier transform of �μ.
Thus, since ∫ +∞

−∞
∂θt

∂α
(α, β)ρ(β) dβ = −

∫ +∞
−∞

�μ(α − β)ρ(β) dβ,

this defines a convolution product, which is transformed into a simple product through the
Fourier transform, so that for all ω,

ρ̂(ω) = 1
2π
�̂μt (ω)−

1
2π
�̂2μt (ω)ρ̂(ω).

2πρ̂(ω) = �̂μt (ω)

1+ (1/2π)�̂2μt (ω)
. (31)

Computation of �̂μ:
• Singularities of this function: The singularities of the function �μ are exactly

the numbers i(μ+ 2kπ) for k ≥ 0 and i(−μ+ 2kπ) for k ≥ 1, since for α ∈ C,
cosh(α) = cos(μ) if and only if

cos(iα) = cos(μ),

and this implies that α = i(±μ+ 2kπ) for some k.
• Computation of the residues: For all k, the residue of �μ in i(μ+ 2kπ) is

Res(�μ, iμ+ 2kπ) = eiγ .i(μ+2kπ)

i
= 1
i
e−γ (μ+2kπ).

As well,

Res(�μ, −iμ+ 2kπ) = eiγ .i(−μ+2kπ)

i
= −1

i
e−γ (−μ+2kπ).

We have, for all γ ,∫ +∞
−∞

�μ(α)e
iαγ dα = 2π

sinh[(π − μ)γ ]
sinh(πγ )

.

• Residue theorem: Let us set, for all integer n, the loop �n = [−n, n]+ i[0, n]. The
residues �μ inside the domain delimited by this loop are the i(μ+ 2kπ) with k ≥ 0,
and the i(−μ+ 2kπ) with k ≥ 1. For all n,∫

�n

�μ(α)e
iαγ dα =

∫
�n

sinh(iμ)
i(cosh(α)− cosh(iμ))

eiαγ dα.

By the residue theorem,∫
�N

�μ(α)e
iαγ dα = 2πi

(∑
k≥0

Res(�μ, i(μ+ 2kπ))−
∑
k≥1

Res(�μ, i(−μ+ 2kπ))
)

.
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• Asymptotic behavior: Since only the contribution on [−n, n] of the integral is non-zero
asymptotically, and by convergence of the integral and the sums,

∫ +∞
−∞

�μ(α)e
iαγ dα = 2πe−γμ + 2π

+∞∑
k=1

(−eγμ + e−γμ)e−2γ kπ

= 2πe−γμ + 2π(−eγμ + e−γμ)
(

1
1− e−2γπ − 1

)

= 2πe−γμ + 2π(−eγμ + e−γμ) e−γπ

eγπ − e−γπ

= 2π
e−γ (−π+μ) − eγ (−π−μ) − eγ (μ−π) + eγ (−π−μ)

eγπ − e−γπ
�̂μ(γ ) = 2π

sinh(γ (π − μ))
sinh(γ π)

. (32)

Computation of ρ̂: Using equations (31) and (32) with μ = μt , for all ω,

2πρ̂(ω) = 2π sinh(ω(π − μt))
sinh(πω)+ sinh(ω(π − 2μt))

= 4π sinh(ω(π − μt))
eωπ .(1+ e−2μtω)− e−ωπ .(1+ e2μtω)

= 4π sinh(ω(π − μt))
eω(π−μt ).(eμtω + e−μtω)− e−ω(π−μt ).(e−μtω + eμtω)

= π

cosh(μtω)
.

Inverse transform: We thus have for all α,

2πρ(α) = 1
2π

∫ ∞
−∞

π

cosh(μtω)
e−iωα dω = 1

μt

∫ ∞
−∞

1
2 cosh(u)

e
−i u

μt
α
du,

where we used the variable change u = μtω. Using equation (32) for μ = π/2,
∫ +∞
−∞

1
cosh(α)

eiαγ dα = 2π
sinh(πγ /2)
sinh(πγ )

= π

cosh(πγ /2)
.

Thus we have

2πρ(α) = 1
2μt

π

cosh(πα/2μt)
= π

2μt

1
cosh(πα/2μt)

Finally,

ρ(α) = 1
4μt

1
cosh(πα/2μt)

.

6.2.4. Convergence of ξ (k)t

THEOREM 12. There exists a function ξ t ,d : R→ R such that ξ (k)t converges uniformly
on any compact towards ξ t ,d . Moreover, this function satisfies the following equation
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for all α:

ξ ′t ,d(α) =
1

2π
κ ′t (α)+

1
2π

∫
R

∂θt

∂α
(α, β)ξ ′t ,d(β) dβ,

and ξ t ,d(0) = d/2.

Proof. Consider any subsequence of (ξ (k)t )k which converges uniformly on any compact of
Iτt to a function ξt . Using the Cauchy formula, the derivative of (ξ (k)t ) converges uniformly
on any compact to ξ ′t . Since the functions ξ (k)t are uniformly bounded by a constant which
is independent from k, and that for all k, (ξ (k)t ), ξ ′t is positive and ξt is bounded, and thus ξt
is in L1(R, R). From Theorem 11, we get that ξ ′t verifies a Fredholm equation, which has
a unique solution in L1(R, R) [Proposition 9]. From Theorem 11, ξt , as a function on R, is
the unique primitive function of this one which has value d/4 on 0. Since this function is
analytic, it determines its values on the whole stripe Iτt . By virtue of Lemma 12, (ξ (k)t )k

converge towards this function.

PROPOSITION 10. The limit of the function ξ t ,d in +∞ is d/2+ 1
4 , and the limit in −∞

is d/2− 1/4.

Proof. For all α,

ξ t ,d(α) =
d

2
+ 1

4μt

∫ α

0

1
cosh(πx/2μt)

dx = d

2
+ 1

2π

∫ 2μtα/π

0

1
cosh(x)

dx.

This converges in +∞ to

d

2
+ 1
π

∫ +∞
0

ex

e2x + 1
dx = d

2
+ 1
π

∫ +∞
0

(arctan(exp))′(x)

dx = d

2
+ 1

2
− 1
π

π

4
= d

2
+ 1

4
.

For the same reason, the limit in −∞ is d/2− 1/4.

Remark 6. As a consequence, this limit is > d when d < 1/2 and equal to d when d =
1/2.

6.3. Condensation of Bethe roots relative to some functions. In this section, we prove
that if f is a continuous function (0, +∞)→ (0, +∞), decreasing and integrable, then the
scaled sum of the values of f on the Bethe roots converges to an integral involving f and
ξ t ,d [Theorem 13]. Let us set, for all t , m and M > 0,

Q
(k)
t (M) :=

{
j ∈ �1, nk� : ξ−1

t ,d

(
j

Nk

)
/∈ [−M , M]

}
,

and for two finite sets S, T , we set S�T = S\T ∪ T \S. For a compact set K ⊂ R, we
denote by δ(K) ≡ maxx,y∈K |x − y| its diameter. For I a bounded interval of R, we denote
by l(I ) its length. When

J =
⋃
j

Ij
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with (Ij ) a sequence of bounded and disjoint intervals, the length of J is

l(J ) =
∑
j

l(Ij ).

THEOREM 13. Let f : (0, +∞)→ (0, +∞) be a continuous, decreasing and integrable
function. Then,

1
Nk

nk∑
j=�nk/2�+1

f (α
(k)
j (t))→

∫ ξ−1
t ,d (d)

0
f (α)ξ ′t ,d(α) dα,

where we set ξ−1
t ,1/2(1/2) = +∞.

Remark 7. This is another version of a statement proved in [K18] for bounded continuous
and Lipschitz functions, which is not sufficient for the proof of Theorem 2.

Proof. In all the proof, the indexes j in the sums are in ��nk/2� + 1, nk�.
Setting: Let ε > 0 and t ∈ (0,

√
2). Let us fix some M such that the following conditions

are satisfied:
(1) for all k greater than some k0,

1
Nk
|P (k)t (M)| ≤ ε

2‖f[M ,+∞)‖∞ + 1
; (33)

(2) the following equation is satisfied:∣∣∣∣
∫

[M ,+∞)
f (α)ξ ′t ,d(α) dα

∣∣∣∣ ≤ ε2 ; (34)

(3) and if d < 1/2,

M > ξ−1
t ,d (d), (35)

which is possible to impose by virtue of Proposition 10.
Using the rarefaction of Bethe roots: We have the following, by definition:

1
Nk

nk∑
j=�nk/2�+1

f (α
(m)
j (t)) = 1

Nk

nk∑
j=�nk/2�+1

f

(
(ξ
(k)
t )−1

(
j

Nk

))

= 1
Nk

∑
j /∈P (k)t (M)

f

(
(ξ
(k)
t )−1

(
j

Nk

))

+ 1
Nk

∑
j∈P (k)t (M)

f

(
(ξ
(k)
t )−1

(
j

Nk

))
. (36)

As a consequence of the inequality of equation (33) and then equation (34),
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∣∣∣∣ 1
Nk

nk∑
j=�nk/2�+1

f (α
(k)
j )−

1
Nk

∑
j /∈P (k)t (M)

f

(
(ξ
(k)
t )−1

(
j

Nk

))∣∣∣∣

≤ 1
Nk
|P (k)t (M)|.‖f[M ,+∞)‖∞

≤ ε

2‖f[M ,+∞)‖∞ + 1
‖f[M ,+∞)‖∞

≤ ε
2

, (37)

since by definition, if j ∈ P (k)t (M) and j ≥ �nk/2� + 1, then

(ξ
(k)
t )−1

(
j

Nk

)
≥ M .

On the asymptotic cardinality of (P (k)t (M))c�(Q
(k)
t (M))

c:

1
Nk
|(P (k)t (M))c�(Q

(k)
t (M))

c| →
k→+∞ 0.

Indeed, (P (k)t (M))c�(Q
(k)
t (M))

c is equal to the set
{
j ∈ �1, nk� :

j

Nk
∈ (ξt (k)([−M , M]))�(ξ t ,d([−M , M]))

}
,

thus its cardinality is smaller than

δ(Nk((ξt
(k)([−M , M]))�(ξ t ,d([−M , M]))))+ 1,

which is equal to

Nkδ((ξt
(k)([−M , M]))�(ξ t ,d([−M , M])))+ 1.

As a consequence,

1
Nk
|(P (k)t (M))c�(Q

(k)
t (M))

c| ≤ δ((ξt (k)([−M , M]))�(ξ t ,d([−M , M])))+ 1
Nk

.

Since ξ (k)t converges to ξ t ,d on any compact, and in particular [−M , M], the diameter
on the right of this inequality converges to 0 when k tends towards +∞.

Replacing P (k)t (M) by Q(k)
t (M) in the sums: Since f is decreasing and positive, for all

j ∈ ��nk/2� + 1, nk�,

1
Nk

∣∣∣∣f
(
(ξ
(k)
t )−1

(
j

Nk

))∣∣∣∣ ≤
∫

[(j−1)/Nk ,j/Nk]
f ((ξ

(k)
t )−1(x)) dx.

As a consequence, the difference

1
Nk

∣∣∣∣
∑

j /∈P (k)t (M)

f

(
(ξ
(k)
t )−1

(
j

Nk

))
−

∑
j /∈Q(k)t (M)

f

(
(ξ
(k)
t )−1

(
j

Nk

))∣∣∣∣
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is smaller than ∫
Jk

|f ((ξ (k)t )−1(x))| dx =
∫
ξ
(k)
t (Ik)

f (x)(ξ
(k)
t )′(x) dx,

where Jk is the union of the intervals
[
j − 1
Nk

,
j

Nk

]
,

for j ∈ (P (k)t (M))c�(Q
(k)
t (M))

c. We also used the fact that f is a positive function. Since
the functions ξ (k)t are uniformly bounded independently of k, there exists a constant Ct > 0
such that for all k, ∫

ξ
(k)
t (Jk)

f (x)(ξ
(k)
t )′(x) dx ≤ Ct

∫
ξ
(k)
t (Jk)

f (x) dx.

Since f is decreasing,
∫
ξ
(k)
t (Jk)

f (x) ≤
∫

[0,l(ξ (k)t (Jk))]
f (x).

From the fact that ξ (k)t is increasing,

l(ξ (k)t (Jk)) =
∫
Jk

(ξ
(k)
t )′(α) dα.

Since the derivative of ξ (k)t is bounded uniformly and independent of k, and that the length
of Jk is smaller than 1/Nk|(P (k)t (M))c�(Q

(k)
t (M))

c|,
l(ξ (k)t (Jk))→ 0.

From the integrability of f on (0, +∞),
∫

[0,l(ξ (k)t (Jk))]
f (x)→ 0.

As a consequence, there exists exists some k1 ≥ k0 such that for all k ≥ k1,

1
Nk

∣∣∣∣
∑

j /∈P (k)t (M)

f

(
(ξ
(k)
t )−1

(
j

Nk

))
−

∑
j /∈Q(k)t (M)

f

(
(ξ
(k)
t )−1

(
j

Nk

))∣∣∣∣ ≤ ε

4
. (38)

Approximating ξ (k)t by ξt ,d in the sum:
(1) Bounding the contribution in a neighborhood of 0: With an argument similar to that

used in the last point (bounding with integrals), there exists σ > 0 smaller than M
such that for all k,

1
Nk

∑
j∈(Q(k)t (σ ))c∩(Q(k)t (M))c

∣∣∣∣f
(
(ξ
(k)
t )−1

(
j

Nk

))∣∣∣∣ ≤ ε8 . (39)
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(2) Using the convergence of ξ (k)t on a compact away from 0: There exists some k2 ≥ k1

such that for all k ≥ k2,

1
Nk

∑
j∈Q(k)t (σ )∩(Q(k)t (M))c

∣∣∣∣f
(
(ξ
(k)
t )−1

(
j

Nk

))
− f

(
ξ−1
t ,d

(
j

Nk

))∣∣∣∣ ≤ ε

16
. (40)

Indeed, for all the integers j in the sum, ξ−1
t ,d (j/Nk) ∈ [σ , M], and by uniform

convergence of (ξ (k)t )−1 on the compact ξ t ,d([σ , M]), for k great enough, the real
numbers (ξ (k)t )−1(j/Nk) and ξ−1

t ,d (j/Nk) for these integers k and these indexes j all
lie in the same compact interval. Since f is continuous, there exists some η > 0
such that whenever x, y lie in this compact interval and |x − y| ≤ η, then |f (x)−
f (y)| ≤ ε/8. Since (ξ

(k)
t )−1 converges uniformly towards ξ−1

t ,d on the compact
ξ t ,d([σ , M]), there exists some k3 ≥ k2 such that for all k ≥ k3, and for all j such
that j ∈ Q(k)

t (σσ ) and j /∈ Q(k)
t (M),∣∣∣∣(ξ (k)t )−1

(
j

Nk

)
− ξ−1

t ,d

(
j

Nk

)∣∣∣∣ ≤ η.

As a consequence, we obtain the announced inequality.
Convergence of the remaining sum: The following sum is a Riemmann sum:

1
Nk

∑
j /∈Q(k)t (M)

f

(
ξ−1
t ,d

(
j

Nk

))
.

Indeed,

(Q
(k)
t (M))

c =
{
j ∈ �1, nk� : ξ−1

t ,d

(
j

Nk

)
∈ [−M , M]

}
.

Let us also remember that we imposed also that the indexes in the sums of the proof
are all in ��nk/2� + 1, nk�. As a consequence, since ξ t ,d is increasing, the indexes are
consecutive integers, from one that is at distance less than some constant from Nkξ t ,d(0)
and the last one is at distance less than this constant from Nkξ t ,d(M).

As a consequence, if d = 1/2, this sum converges towards
∫ ξ t ,d (M)

ξ t ,d (0)
f (ξ−1

t ,d (α))dα =
∫ M

0
f (α)ξ ′t ,d(α) dα

by a change of variable. If d < 1/2, it converges towards
∫ d

ξ t ,d (0)
f (ξ−1

t ,d (α))dα =
∫ d

0
f (α)ξ ′t ,d(α) dα,

since in this case, M was chosen to satisfy the inequality in equation (35).
As a consequence, there exists some k4 ≥ k3 such that for all k ≥ k4, if d = 1/2,∣∣∣∣

∑
j /∈Q(k)t (M)

f

(
ξ−1
t ,d

(
j

Nk

))
−

∫ M

0
f (α)ξ ′t ,d(α) dα

∣∣∣∣ ≤ ε

16
. (41)
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If d < 1/2,
∣∣∣∣

∑
j /∈Q(kt (M)

f

(
ξ−1
t ,d

(
j

Nk

))
−

∫ d

0
f (α)ξ ′t ,d(α) dα

∣∣∣∣ ≤ ε

16
. (41)′)

Assembling the inequalities: Putting together equations 36–41, if d = 1/2 (equation
(41)

′
if d < 1/2), we have for all k ≥ k4,

∣∣∣∣ 1
Nk

nk∑
j=�nk/2�+1

f (α
(k)
j (t))−

∫ ξ−1
t (d)

0
f (α)ξ ′t ,d(α) dα

∣∣∣∣ ≤ ε2 +
ε

4
+ ε

8
+ ε

16
+ ε

16
= ε.

Since for all ε > 0 there exists such an integer k4, this proves the statement.

7. Computation of square ice entropy
� Let us remember that the purpose of the paper is to compute the entropy of square ice,
which is the entropy of the subshift Xs . In §5, we have expressed the entropy of the stripes
subshifts X

s

N as a sum involving Bethe roots. To compute h(Xs), we can use the following
formula:

h(Xs) = lim
N

h(X
s

N)

N
.

In §6, we have dealt with the asymptotics of sums involving a positive decreasing
integrable function and Bethe roots. We will thus combine the results of these two parts
here.

Notation 17. For all d ∈ [0, 1/2], we set

F(d) = −2
∫ ξ−1

t ,d (d)

0
log2(2| sin(κt (α)/2)|)ρt (α) dα.

LEMMA 13. Let us consider (Nk) some sequence of integers, and (nk) another sequence
such that for all k, 2nk + 1 ≤ Nk/2 and (2nk + 1)/Nk → d ∈ [0, 1/2]. Then

log2(λ2nk+1,Nk (1))→ F(d).

Proof. In this proof, for all k we set

(p(k)j )j = (κt (α(k)j ))j ,

the solution of the system of Bethe equations (Ek)[1, 2nk + 1, Nk]. Then for all k (we use
first Theorem 6 and then Theorem 3),

λ2nk+1,Nk (1) = �2nk+1,Nk [p(k)] =
(

2+ (Nk − 1)+
∑

j �=(nk+1)

∂�1

∂x
(0, p(k)j )

) nk∏
j=1

M1(e
ip(k)j ),

since by anti-symmetry of p(k) (Theorem 4), and that the length 2nk + 1 of this tuple is
odd, p(k)nk+1 = 0 (the second case in Theorem 3 applies).
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For all z such that |z| = 1,

M1(z) = z

z− 1
.

By anti-symmetry of the sequences p(k), for all k,

nk∏
j=1

e
ip(k)j =

nk∏
j=1

e
ip(k)j /2 = 1.

As a consequence,

�2nk+1,Nk [p(k)] =
(

2+ (Nk − 1)+
∑

j �=(nk+1)

∂�1

∂x
(0, p(k)j )

) nk∏
j=1

1

e
ip(k)j − 1

=
(

2+ (Nk − 1)+
∑

j �=(nk+1)

∂�1

∂x
(0, p(k)j )

) nk∏
j=1

e
−ip(k)j /2

e
ip(k)j /2 − e−ip(k)j /2

.

Since this number is positive (by Perron–Frobenius theorem),

�2nk+1,Nk [p(k)] = |�2nk+1,Nk [p(k)]|

=
∣∣∣∣ 2+ (Nk − 1)+

∑
j �=(nk+1)

∂�1

∂x
(0, p(k)j )

∣∣∣∣
nk∏
j=1

1

2| sin (p(k)j /2)|
.

As a consequence, since ∂�1/∂x is a bounded function,

lim
k

log2(λ2nk+1,Nk (1)) = − lim
k

(
1
Nk

nk∑
j=1

log2(2| sin (p(k)j /2)|)+O
(

log2(Nk)

Nk

))

= −2 lim
k

1
Nk

nk∑
j=�nk/2�+1

log2(2| sin (κt (α
(k)
k )/2)|)

= −2
∫ ξ−1

t ,d (d)

0
log2(2| sin(κt (α)/2)|)ρt (α) dα

= F(d),
where ρt = ξ ′t ,d , and we used the anti-symmetry of the Bethe roots vectors in the second
equality. For the other equalities, they are a consequence of Theorem 13, since the function
defined as α �→ − log2(2| sin(κt (α)/2)|) on (0, +∞) is continuous, integrable, decreasing
and positive:
(1) Positive: For all α > 0, κt (α) is in

(0, π − μt) =
(

0,
π

3

)
.

As a consequence, 2 sin(κt (α)/2) is in (0, 1), and this implies that for all α > 0,

− log2(2| sin(κt (α)/2)|) > 0.
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(2) Decreasing: This comes from the fact that− log2 is decreasing, and κt is increasing,
and the sine is increasing on (0, π/6).

(3) Integrable: Since κt (0) = 0 and κ ′t (0) > 0, for α positive sufficiently close to 0,
2 sin(κt (α)/2) ≤ 2κ ′t (0)α. As a consequence,

− log2(2| sin(κt (α)/2)|) ≤ − log2(2κ
′
t (0)α).

Since the logarithm is integrable on any bounded neighborhood of 0, the function
α �→ − log2(2| sin(κt (α)/2)|) is integrable.

The other limit is obtained by anti-symmetry of κt .

THEOREM 1. The entropy of square ice is

h(Xs) = 3
2 log2

( 4
3

)
.

Remark 8. This value corresponds to log2(W) in [L67].

Proof. Here we fix t = 1 ∈ (0,
√

2). As a consequence, μt = 2π/3.
Entropy of Xs and asymptotics of the maximal eigenvalue: Let us recall that the entropy

of Xs is given by

h(Xs) = lim
N

1
N

max
2n+1≤N/2

log2(λ2n+1,N(1)).

For all N, we denote by ν(N) the smallest j such that 2j + 1 ≤ N/2 and that for all n
with 2n+ 1 ≤ N/2,

λ2j+1,N(1) ≥ λ2n+1,N(1).

By compactness, there exists an increasing sequence (Nk) such that (2ν(Nk)+ 1)/Nk
converges towards some non-negative real number d. Since for all k, 2ν(Nk)+ 1 ≤ Nk/2,
then d ≤ 1/2. By virtue of Lemma 13, h(Xs) = F(d).

Comparison with the asymptotics of other eigenvalues: Moreover, if d is another number
in [0, 1/2], there exists ν′ : N→ N such that

(2ν′(N)+ 1)/N → d .

For all k,

λ2ν′(Nk)+1,Nk (1) ≤ λ2ν(Nk)+1,Nk (1).

Also by virtue of Lemma 13, h(Xs) ≥ F(d), and thus

F(d) = max
d∈[0,1/2]

F(d).

This maximum is realized only for d = 1/2. As a consequence d = 1/2.
Rewritings: As a consequence,

h(Xs) = −2
∫ +∞

0
log2(2| sin(κt (α)/2|)ρt (α) dα.
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Let us rewrite this expression of h(Xs) using

|sin(x/2)| =
√

1− cos(x)
2

.

This leads to

h(Xs) = − log2(2)
2

∫ +∞
−∞

ρt (α) dα − 1
2

∫ +∞
−∞

log2(1− cos(κt (α))).ρt (α) dα.

Thus,

h(Xs) = −1
2

∫ +∞
−∞

log2(2− 2 cos(κt (α))).ρt (α) dα.

Let us recall that for all α,

ρ(α) = 1
4μt cosh(πα/2μt)

= 3
8π cosh(3α/4)

cos(κt (α)) = sin2(μt )

cosh(α)− cos(μt )
− cos(μt ) = 3

4(cosh(α)+ 1/2)
+ 1

2
.

We thus have that

h(Xs) = − 3
16π

∫ +∞
−∞

log2

(
1− 3

2 cosh(α)+ 1

)
1

cosh(3α/4)
dα.

Using the variable change eα = x4, dα.x = 4 dx,

h(Xs) = − 3
16π

∫ +∞
0

log2

(
1− 3

x4 + 1/x4 + 1

)
2

(x3 + 1/x3)

4
x
dx.

By symmetry of the integrand,

h(Xs) = − 3
4π

∫ +∞
−∞

x2 dx

x6 + 1
log2

(
(2x4 − 1− x8)

1+ x4 + x8

)
dx

h(Xs) = − 3
4π

∫ +∞
−∞

x2 dx

x6 + 1
log2

(
(x2 − 1)2(x2 + 1)2

1+ x4 + x8

)
dx.

Application of the residues theorem: In the following, we use the standard determination
of the logarithm on C\R−.

We apply the residue theorem to obtain (the poles of the integrand are eiπ/6, eiπ/2, ei5π/6)
∫ +∞
−∞

x2 log2(x + i)
x6 + 1

dx = 2πi
( ∑
k=1,3,5

eikπ/3 log2(e
ikπ/6 + i)

6ei5kπ/6

)
,

∫ +∞
−∞

x2 log2(x − i)
x6 + 1

dx = −2πi
( ∑
k=7,9,11

eikπ/3 log2(e
ikπ/6 − i)

6ei5kπ/6

)
.
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By summing these two equations, we obtain that
∫ +∞
−∞ (x

2 log2(x
2 + 1)/(x6 + 1)) dx is

equal to
π

3
[log2(e

iπ/6 + i)− log2(e
iπ/2 + i)+ log2(e

i5π/6 + i)

+ log2(e
i7π/6 − i)− log2(e

i9π/6 − i)+ log2(e
i11π/6 − i)].

This is equal to

π

3
(log2(|eiπ/6 + i|2))− log2(|eiπ/2 + i|)+ log2(|ei5π/6 + i|2) =

2π
3

log2

(
3
2

)
.

Other computations: We do not include the following computation, since it is very
similar to the previous one:

∫ +∞
−∞

x2

x6 + 1
log2(1+ x4x8) dx = 2π

3
log2

(
8
3

)
.

For the last integral, we write log2((x
2 − 1)2) = 2Re(log2(x − 1)+ log2(x + 1)) and

obtain ∫ +∞
−∞

x2

x6 + 1
log2((x

2 − 1)2) = Re
( ∫ +∞
−∞

x2

x6 + 1
log2(x − 1)

+
∫ +∞
−∞

x2

x6 + 1
log2(x + 1)

)

= 2π
3

log2

(
1
2

)
.

Summing these integrals: As a consequence,

h(Xs) = − 3
4π

2π
3

(
log2

(
1
2

)
+ 2 log2

(
3
2

)
− log2

(
8
3

))

= 1
2

log2

(
43

33

)
= 3

2
log2

(
4
3

)
.

8. Comments
This text is meant as a basis for further research that would aim at extending the
computation method that we exposed to a broader set of multidimensional SFT, including,
for instance, Kari–Culik tilings [C96], the monomer–dimer model [see, for instance,
[FP05]], subshifts of square ice [GS17], the hard square shift [P12] or a three-dimensional
version of the six-vertex model. Adaptations for these models may be possible, but would
not be immediate at all. We explain here at which points the method has limitations, each
of them coinciding with a specific property of square ice.

Let us recall that we called the Lieb path an analytic function of transfer matrices
t �→ VN(t) such that for all t, VN(t) is an irreducible non-negative and symmetric matrix
on 
N . Although the definition of transfer matrices admits straightforward generalization
to multidimensional SFT and their non-negativity does not seem difficult to achieve, the
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property of symmetry of the matrices VN(t) relies on symmetries of the alphabet and local
rules of the SFT. Friedland [F97] proved that under these symmetry constraints (which
are verified, for instance, by the monomer–dimer and hard square models, but a priori not
by Kari–Culik tilings), entropy is algorithmically computable, through a generalization
of the gluing argument exposed in Lemma 1. Outside of the class of SFT defined by
these symmetry restrictions, as far as we know, only strong mixing or measure theoretic
conditions ensure algorithmic computability of entropy, leading, for instance, to relatively
efficient algorithms approximating the hard square shift entropy [P12]. However, the
irreducibility of the matrices VN(t) derives from the irreducibility property of the stripes
subshifts XsN [Definition 2], that can be derived from the linear block gluing property of
Xs [GS17]. This property consists in the possibility for any pair of patterns on U

(2)
N to

be glued in any relative positions, provided that the distance between the two patterns is
greater than a minimal distance, which is O(N).

Furthermore, Lemma 1, which relies on a horizontal symmetry of the model, is a
simplification in the proof of Theorem 2, whose implication is that the entropy of Xs can
be computed through entropies of subshifts X

s

N , and thus simplifies the algebraic Bethe
ansatz, that we will expose in another text. One can see in [VL19] that it is possible to
use the ansatz without Lemma 1. However, this application of the ansatz would lead to
different Bethe equations, and it is not clear if these equations admit solutions, and if we
can evaluate their asymptotic behavior. The symmetry is also involved in the equality of
the entropy of X

s

n,N and the entropy of X
s

N−n,N . Without this equality, we do not know
how to identify the greatest eigenvalue of VN(t) with the candidate eigenvalue obtained
via the ansatz.
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