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MEETING OF THE ASSOCIATION FOR SYMBOLIC LOGIC 

A meeting of the Association for Symbolic Logic was held at the Edgewater Beach 
Hotel, Chicago, Illinois on 29-30 April, 1965 in conjunction with the American Philo­
sophical Association. The invited one-hour address entitled Predicate variables in set 
theory was delivered by Professor G. Hasenjaeger. A joint symposium with the 
American Philosophical Association was held entitled Philosophic implications of 
the Godel incompleteness theorem. Invited symposiasts were Professors Paul Benacerraf, 
Hilary Putnam, and Richard Montague with Professor Alfred Tarski serving as 
chairman. In addition, thirteen papers were delivered and six were presented by 
title; the last six abstracts below were those presented by title. Professors F. B. Fitch 
and S. C. Kleene served as chairmen at the sessions of contributed papers. 

The Program Committee 
RUTH BARCAN MARCUS, CHAIRMAN 

WILLIAM BOONE 

RICHARD MONTAGUE 

G. HASENJAEGER. Predicate variables in set theory. 
Generally, predicate variables in set theory are used to indicate countable schemata 

of first-order axioms such as the axioms of subsets (Aussonderung) or replacement 
(Ersetzung). Otherwise these axioms get their full intuitive strength only from the 
interpretation of predicate variables in a level of "sets" exceeding the given axiomatic 
frame. (This strong interpretation is referred to but questioned in Levy's Pacific J. 
(1960) paper.) The role of and the relation between these weak and strong inter­
pretations will be discussed, and an obvious predicate variable version of reflexion 
type axioms will be presented. (Received February 3, 1965.) 

RICHARD B. ANGELL. Quantification without multiple occurrence-sets of variables. 
This paper presents a version of Quine's quantification theory in which no wffs 

a) contain the same variable in two or more quantifiers, or b) contain a variable which 
is both bound and free. (I.e., it is a version of quantification theory without multiple 
"occurrence-sets" of variables). 

These restrictions on wffs are introduced by stipulation through changes in rules 
of formation: 

F2. If $ is a formula, so is r(a)^'~l. 
F3. If tf> and y> are formulae, r(^lv")"^ is a formula, where the metasyntactical 

expression r ( . . . ft .. . ) n means "any expression, %, just like r ( . . . <f>.. . ) n except that if 
<l> contains any a which has more than one occurrence-set in r ( . . .<£. . . ) n , then the 
occurrence-sets of a in </> are re-lettered, beginning with bound sets, so that no variables 
in (j> have more than one occurrence-set in JJ." 

Introduction of these restrictions necessitate changes in definitions Dl and D5, 
as well as in metatheorems * 101—* 103. In the new version, using the accent, the 
results are as follows: 

Dl . r~<p for r(W)~* 
D5. r(<£ = v-)"1 for r((^ z)y>)-{y>-3<t>)V 
•101. K(«)(0»)3.(W*) ,3(W»r1 

•102. K ( O H f ) 1 

•103. K ( « ) 0 * n 

And finally, the notion of tautology in *100 must be amended slightly to permit 
alphabetic variants to be assigned identical truth-values in each possible case. I t 
is then shown that the resulting system is consistent and complete with respect to 
Quine's original system. 

147 
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The revised system permits the elimination, as redundant, of certain clauses (like, "If 
a is not free in 4>", which is omitted from * 102) from the metatheorems. I t also makes 
unnecessary certain of Quine's metatheorems (E.g., *170, *171). Finally, it is shown 
that with suitable changes in semantic rules governing metatheoretical variables <f>, 
y), x, etc., the special sign " ' could be dropped; and that the method here employed 
could be extended to other systems besides Quine's. (Received February 4, ig6$.) 

WILLIAM H. HANSON. Syntactical systems that reflect the logical-factual distinction. 
We show that Carnap's well-known semantical distinction between L-true (logically 

true) and F-true (factually true) sentences can be mirrored in syntactical (i.e., logistic) 
systems. Such a system based on the propositional calculus (pc) can be constructed by 
adding an enumerably infinite list of propositional constants, t i , i%, t%, f2, ..., to the 
usual primitive symbols of pc. Wffs are then defined as usual. For the axioms of the 
new system take any complete set for pc (call these L-axioms) and t i , ~fi, t%, ~i?„ ... 
(call these F-axioms). Take as rules those rules needed for the pc axioms that have 
been chosen. Theorems are then defined as usual, L-theorems as those theorems that 
can be proved without using any F-axioms, and F-theorems as those theorems that 
are not L-theorems. 

Semantically, the constants ti (fi) are thought of as atomic, factually true (false) 
sentences, which are distinct from each other in meaning in the sense that no con­
junction made up exclusively of ti's, fi's and their negations is self-contradictory 
(assuming, of course, that no constant appears both negated and unnegated in the 
same conjunction). We define a wff to be true if and only if it takes the value T for 
all possible assignments of truth-values to its variables for which the constants ti 
and fi are assigned T and F, respectively, L-true if and only if it takes the value T 
for all possible assignments of truth-values to its variables and constants, and F-
true if and only if it is true but not L-true. 

Theorem. A wff is a theorem (L-theorem, F-theorem) if and only if it is true (L-
true, F-true). 

The syntactical procedure has been extended to both S5 and the first-order functional 
calculus. The Theorem continues to hold, for appropriate extensions of the semantical 
concepts involved, in both cases. The semantical concepts of the first-order-extension 
are obtained from the usual semantics of the first-order functional calculus by defi­
nitions analogous to those of the preceding paragraph. I t can be shown that the 
F-theorems of the first-order-extension are not recursively enumerable. The semantical 
concepts of the S5-extension are based on a modification of Kripke's methods for 
modal logic. (Received January 28, 196$.) 

A. A. MULLIN. On the complexity of algorithms. 
Recently, B. M. Kloss [The definition of complexity of algorithms, Doklady 

Akad. Nauk. SSSR, vol. 157, No. 1 (1964), pp. 38-40] considered the question of 
the complexity of effective processes. He has given (Theorem 2, op. cit.) a necessary 
and sufficient condition for an effectively calculable function to satisfy the condition 
that for no principal enumeration the complexity of all partial recursive functions is 
bounded above, viz., that it assumes each of its values only a finite number of times. 
This note provides a concrete basis for extending his results by giving two elementary, 
but basic, infinite recursive families of p.r. functions which satisfy the conditions of 
Theorem 2, op. cit., and which are closely related to K. Godel's method for numbering 
the WFFs of A2 in his Incompleteness Theorems. Let N be the set of natural numbers. 
The first infinite class is {y>1 : ieN} whose members can be ordered without repetition 
as defined in the author's note, Bull. Amer. Math. Soc. 69 (1963), pp. 446-447. The 
other infinite recursive class is {(y*)1 : ieN}, an additive version of the previous 
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example, as defined in the author's paper, Zeitschr. f. math. Logik Grundlagen 
10 (1964), pp. 199-201; with "powers" of functions defined by composition. (Received 
December 13, 1964.) 

JAAKKO HINTIKKA. Confirmation no longer paradoxical. 
In a paper read at the second International Congress of Logic, Methodology and 

Philosophy of Science in 1964 I have outlined a new approach to quantitative inductive 
logic. The basic idea of this approach is to use consistent constituents (strongest 
consistent statements with given parameters and with a fixed maximal length for 
their nested sequences of quantifiers) in the way Carnap uses structure-descriptions 
in assigning a priori probabilities to state-descriptions in The logical foundations of 
probability. In this new inductive logic, the general implication (•) (x)(x is a raven 3 x 
is black) is confirmed only by black ravens provided that it is assumed that the number 
of ravens in the universe of discourse is fixed (the same in all state-descriptions). I t is 
argued that this numerical assumption is tantamount to the intuitive assumption that 
we can always decide whether a given member of the domain is a raven or not (in­
dependently whether we can decide whether it is black or not). If the converse as­
sumption is also made, the generalization (•) is confirmed by black ravens more than 
by non-black non-ravens to the extent to which the former are rarer in the whole 
universe than the latter; it is disconfirmed by black non-ravens to the extent to which 
ravens are rarer at large than among all black objects. (Received January 27, 1965.) 

JOHN M. VICKERS. Definability of theoretical concepts in elementary theories. 
Tarski shows that a necessary and sufficient condition for the term / of the 

theory T to be definable by means of the other terms of T on the basis of T is that 
the sentence 

(*)(* = * =T(* ) ) 

should be derivable from T, where x does not occur in T and T(x) is the result of 
replacing t throughout T by x. Here definability of t means that there is a systematic 
procedure for replacing any sentence S of T by a sentence S' of T which does not 
include t and such that the equivalence of S and S' is a consequence of T. 

In this paper attention is restricted for the most part to questions of definability 
in elementary theories with equivalence. Tarski's result is extended to provide a 
necessary and sufficient condition for a predicate P (of degree n) of the theory T 
to be definable by means of the other constants of T on the basis of T, namely that 
if Q is a predicate letter of degree n not occurring in T then 

(#1, .... x„)(Qxi, ..., xn = Pxlt ..., x„) ~ T(Q) 

is derivable from T, where T(Q) results from replacing P throughout T by Q. 
These necessary and sufficient syntactical conditions for definability are shown to 

be equivalent to the following semantical conditions: Definability of the term t to 
the condition that every two normal models of T which agree up to t also agree for t ; 
definability of the predicate P to the condition that every two models of T on the 
same base which agree up to P also agree for P. 

The conditions under which a theory has an extension in which a given one of its 
terms or predicates can be defined are investigated. The relevance of definability to 
the meanings of Ramsey sentences are investigated. (Received February 1, 1963.) "' 

H. Hiz. Ontological definitions in augmented protothetics. 
Assuming protothetics and an axiom which introduces a grammatical category A 

different from any category in protothetics and the grammatical category B of a 
functor that forms a sentence with one argument of the category A, e.g., 
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1. V^VarD(9){a} 95(a))"1, where the brackets are of the shapes not occurring in proto­
thetics, one can prove any of the so-called ontological definitions (for the category B) 
as well as various definitions by identity. One can illustrate the procedure by deducing 
the ontological definition of class complementation n (4 below). 
Df. o. VaVbr =(o{ab}V<pr = (<p{a} 9>{b})~i)"> 
Df. e. V?>Vyr =(e{w}&(Var3(<p{a} y{a})13al>{a}'1VaVbrD(&(?>{a} ^bjjofab})"1))"1 

Df. n. V y V a r ^ n ^ a M ^ a } ) ) " 1 

By substituting y>/(p in Df e and applying the result to Df e, 
2. V<pVyr=(e{(pv>}&(Var:3(?>{a} v,{a})"le{W}))"1 

In 2 substitute y>/n{y}, 
3. VyVy1" =(e{<pn{y>}}&{VarZ){(p{a} n{vi}{a})"1e{w}))"1 

Using Df n to 3, 
4. V(pVyr =(e{?)n{V}}&(Var3(9'{a}-(v{a}))",e{W}))"1 

In a similar manner we introduce the definition 
Df. = .VyVy1" = ( = {<py}Var =={(p{a} ^{a})"1)"1 

and derive 
5. VyV^r s(={?,n{v}}Var ^(9,{a}~(v{a}))^)^ 
All definitions here are in accordance with the rule of definitions in protothetics 
augmented by the categories of 1. By the rules of protothetics with similar augmenta­
tion one can prove for e the formula which was used as the only axiom of Lesniewski's 
ontology. {Received February 2, J965.) 

RICHMOND H. THOMASON. An approach to infinitary propositional calculus. 
We will consider three cutfree systems LKoo, LJm, and LS4W of infinitary propo­

sitional calculus, corresponding respectively to classical two-valued logic, intuitionistic 
logic, and the modal logic S4. Wffs of these systems are characterized as follows: 

i) pi is wf for all natural numbers i, 
ii) if A and B are wf, so are ~A, A D B, and DA, 

iii) if r is an (at most denumerable) set of wffs, then AT and Vr are wf. 
(This could be replaced, if desired, by a definition using transfinite induction up to coi.) 
Where T and A are denumerable sets of wffs, r h A is a (wf) sequent. 

Necessity-wffs and possibility-wffs are characterized as follows: 
i) any wff having the form DA [ * n A ] is a necessity-wff [possibility-wff]; 

ii) if r is a denumerable set of necessity-wffs [possibility-wffs], then AT is a 
necessity-wff [possibility-wff]. 

Besides the usual structural rules and logical rules for the connectives -~ and D, 
the infinitary systems have the following primitive rules: 

r ; A h A r h A ; A 0 , r h A ; A i , ... 

r ; A ( A ; 0 ) h A rf -A;A{A 0 , Aj, ...} 

r ; A 0 h A , T ; A i h A , ... r | - A ; A 

V; V{A0, Ai, . . .}hA r F A ; V ( A ; 0 ) 

where in LJW only unit-sets or the empty set may appear on the right. 
LS4oo has in addition the primitive rules: 

© | - S ; A r ; A l - A 

© h S ; DA r ; DA V A 

where every wff in © is a necessity-wff and every wff in S a possibility-wff. 
By means of transfinite induction, an elimination theorem can be established for 

each of these three systems. {Received February 1, ig6s.) 

ANTHONY C. SCOVILLE. The cardinal number of the continuum. 
The present paper is a short extract from an extensive work in progress which 
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undertakes to provide a comprehensive exploration for a solution to the philosophical 
problem of The One and The Many. Here we shall confine ourselves to the attempt 
to determine the number of elements contained by any continuous series (ordered set). 
While it is the author's belief that the analysis to follow by no means provides the 
fundamental solution to Cantor's "Continuum Problem", a deeper treatment is 
necessarily too broad for adequate presentation in the present short report as it 
would involve a far-reaching recasting of the axioms of set theory. 

Nevertheless, following the general pattern laid down by Cantor, Huntington, 
Godel, and Kamke with the addition of one postulate, it is possible to demonstrate 
that 

N0 = Si = KN°. (1) 

The further postulate which is necessary is tha t all the members of a set must be 
unique in the sense that every element must be potentially enumerable as a member 
of a partial subset 

Sn = (a, b, c ...) (2) 

of the totality of all sets S0 composing a continuous series. 
The solution (1) may be generalized to sets of higher power than Kj.. However, the 

engendered series do not possess unique members. They are pure operational con­
structs which need transformation to (1) before we can ascertain the extensive existence 
of the elements of such a series. (Received January 6, 1963.) 

W. W. TAIT. Cut elimination in infinite propositional logic. 
Propositional formulae (p.f.) are built up from atoms p, q, etc. using negation —,A 

and infinite disjunctions V{<otAj where a is an ordinal. 2K, 2Ri, etc. denote finite 
sets of p.f. and 2R <-> A denotes 3K \J {A}. The rules of inference, for deriving finite 
sets of p.f., are: 1°. 2K «-> p w -,p 2°. 2K w A h 9K w -,-,A 3°. 3K <-> A„ h 9K w V{<otA{ 

(for any r] < a) 4°. 9JI «-> -iA, for all JJ < a V 2K <-» ->V{<aA{, and the cut rule 
5°. 1 « J A , W \J -,A Y m w W. A is called the cut formula (c.f.) in 5°. These rules 
are valid if we interpret 9M as a disjunction of its p.f.; and also they are complete. 
pA ^ ) 3 means that there is an assignment of ordinals B* to the subformulae B of A 
with p* = 0, (-,B)* = B* + 1, B* < (V{<aB{)* for all n < a and A* ^ /S. If D is a 
derivation, SD ^ y means that p-iA si y for every c.f. A in D. |D| g| d means that 
we can assign ordinals <; 6 to the steps in D (in tree form) so that the ordinal of the 
conclusion of each inference exceeds the ordinals of the premises. Let x% = 2". and 
for y > 0, Xa *s *ke *tb simultaneous solution of XYB = P l o r a l l v' < <*•• 

Theorem. If D is a derivation of 501 and SD ^ /? + eoy, then there is a derivation 
D' of 2TC with SD' ^ 0 and |D' | g X\D\-

The only proof-theoretic result needed for this is 
Lemma. If D and D' are derivations of 9)1 <-> A and W w -iA resp., with SD, 

3D' g /? and PA ^ /?, then there is a derivation D» of TO v-> W with SD" ^ £ and 
|D*| ^ |D| o |D'|, where a ° P is the natural sum of a and p. [Cf. Schiitte, Beweis-
theorie]. 

If we consider only derivations D with SD < <ov and |D| < a and which can be 
represented by primitive recursive (p.r.) functions (so that we are considering only 
countable p.f. and derivations) and if we represent the ordinals in a suitable p.r. 
well ordering, then the proof of the above results can be carried out in p.r. arithmetic 
with definition of functions by recursion up to any /? < x£. 

Let To be the least fixed point of the function q>(a) = XQ- The above theorem can 
be applied to prove that if induction up to a is proved in some system in the autono­
mous hierarchy of ramified analysis, hyperarithmetical analysis or ramified set 
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theory, then a < To, and thus unifies the proofs of these results due to Schiitte and 
Feferman. (Received March 5, J965.) 

FREDERIC B. FITCH. Tree proofs in modal logic. 
Tree-proof procedures are given for the systems M, S4, S5, and B (the Brouwersche 

system), and for deontic systems DM, DS4, DS5, and DB. (DM is like M but lacks 
DA Z> A, while retaining DAD<>A, where <̂ >A is ~ D ~ A . Add QA Z) D DA 
to DM to give DS4, and add <>A D D 0 A t o D M t 0 S i v e D B . a n d a d d b o t n o f t h e n l 

to DM to give DS5.) The method combines features of S. A. Kripke's method of 
semantical analysis [Zeitschrift fiir mathematische Logik und Grundlagen der 
Mathematik 9 (1963) 67-96] and features of the Anderson-Belnap tree-proof method 
[J. Symbolic Logic 24 (1959) 320-321]. I t differs from Kripke by introducing symbols 
for universes into the object language, thus avoiding semantical tableaux, but 
making it necessary to show that this extension of the object language is a conser­
vative extension. If a symbolizes a universe, then cei, 1x2, •••, symbolize universes 
possible relative to a. If A is an ordinary sentence of modal logic, then «A is a 
secondary sentence, asserting that A is true in a, while A is a primary sentence. Truth-
functional combinations of secondary sentences are secondary sentences. Tree-proof 
axioms are primary sentences having A and ~A as disjunctive parts, or secondary 
sentences having <xA and a~A as disjunctive parts, where A is atomic. Some examples 
of tree-proof rules of inference for DM: (aiA v «^A) -> a()A; a i A - ^ a D A ; 
(ocAvsB) -> a(A v B ) ; «~A -» ~aA; «D~A -» a~<>A; «<>~A -> a - D A ; if A -> B, 
then (C v A) - > ( C v B) and (A v C) - ^ ( B v C ) . The tree-proof method can be ex­
tended to deal with quantifiers and identity. The various systems considered are corre­
lated in obvious ways with formal properties of the relation between universes. (Recei­
ved February 3, 1965.) 

W. E. SINGLETARY. A note on the finite axiomatization of partial propositional 
calculi. 

Definition; A partial propositional calculus is a system having 3 , .~, [, ], and an 
infinite list of propositional variables pi, qi, ri , p2, q2, r2, ... as primitive symbols. 
Its well-formed formulas are (1) a propositional variable standing alone, (2) [A Z) B], 
where A and B are well-formed formulas, and (3) ~A, where A is a well-formed formula. 
I ts axioms are a recursive (possibly infinite) set of tautologies, and its two rules of 
inference are modus ponens and substitution. 

Theorem. For each recursively enumerable degree of unsolvability D there exists 
a class of partial propositional calculi {P}D such that the problem to determine of 
an arbitrary member P of {P}D whether or not P is finitely axiomatizable is of degree D. 

To each positive integer n recursively assign a well-formed formula as follows: 
Wi is [pi Z) pi] and Wn+i is [pi Z) Wn] . Let S be a set of ordered pairs of positive 
integers having the properties (1) there is a recursive procedure to determine of any 
ordered pair (m, n) whether or not (m, n) is in S, (2) the problem to determine of an 
arbitrary n whether or not there is an m such that (m, n) is in S is of degree D, and 
(3) the set of second members of the ordered pairs of S is infinite. Let L represent 
the single Lukasiewicz axiom for the complete propositional calculus. Then Ps is 
specified by the following axioms (1) ~ ~ ~ ~ p i z> ~"~pi, (2) ~— pi Z) -—•"—•pi and 
(3) .SmWn for each (m, n) in S. Ps(Wn) is specified by adding the well-formed formula 
« » W n 3 L to the axioms of Ps. Then if {P}D is taken to consist of all calculi of the 
form of Ps(Wn) we can prove that the problem to determine of an arbitrary member 
P of {P}D whether or not P is finitely axiomatizable is of degree D. (Received February 
15. I965-) 

DANIEL E. ANDERSON and RICHARD B. ANGELL. Venn diagrams for n classes. 
This paper presents two methods for the construction of Venn-type diagrams 

https://doi.org/10.1017/S0022481200128312 Published online by Cambridge University Press

https://doi.org/10.1017/S0022481200128312


ABSTRACTS OF PAPERS 153 

representing all possible relations between any given set of n classes. Venn diagrams 
for four or fewer classes present little difficulty. Previous methods for extending 
Venn diagrams to more than four classes, however, have either 1) required discon­
tinuous regions, or 2) been incapable of generalization for any n, or, 3) were difficult 
to grasp visually, or, 4) did not lend themselves to insertion of shading or stars to 
denote emptiness or non-emptiness of the classes. The two methods below avoid these 
shortcomings. 

The first method, which was treated in detail in this JOURNAL, vol. 30, pp. 113-118 by 
D. E. Anderson and F. L. Cleaver, represents classes by regions resembling "pants-
legs" or "comb-teeth". A topological proof is available to show that such diagrams 
are constructible for any n terms. 

The second method, suggested by Angell, is a special case of the general theorem 
referred to above. In this case a circle with diameter, d, represents the universe of 
discourse. The first class is established by bisecting the circle with a wave of wave­
length \d and amplitude l/4d. This and each succeeding wth class, is determined by 
a wave with 2 n _ 1 crests, having a wave-length d/2"- 1 , and amplitude d/4(2B_1). The 
formula for the line defining the wth class is 

i / i / 2A-1X2 k-\ k 
y = ( - i ) fc - i l ' _ [x _ - ) , where h = 1, 2, ..., 2» and < x < , 

and the diagrams, for the first four classes, will look like this: 

This method will provide a diagram for any n classes, with each classlvisibly dis­
tinguishable, constructed by a rule which remains the same from the introduction 
of the first class on. Some additional properties of these diagrams will be discussed. 
(Received February 3, 1965.) 

DAVID KAPLAN. Rescher's plurality-quantification. 
In [1], Rescher introduces the plurality-quantifier 'M', where 'MxFx' is read 'most 

objects x are such that Fx' , and comments on the validity of a number of interesting 
schemata expressed in the first-order predicate calculus with the addition of the 
plurality quantifier. Semantical notions for languages containing plurality quantifi­
cation are based on the following clause in the definition of 'satisfaction', 

f satisfies Ma* in <DR> if and only if K(E[x E D and f« satisfies © in <DR>]) > 
x 

K ( E [ x e D and f« satisfies -1® in <DR>]); 
X 

here <DR> is a model consisting of a non-empty set D and an assignment R of de­
notations to non-logical constants, f is an assignment of values to variables, 
f| = (f~{<of(a)>})<-'{<ax>}, and 'K' is read 'the cardinal of. 

Let £fi be the set of all formulas of the first-order monadic predicate calculus 
without identity; JS Ĵ1 is obtained from &\ by admitting plurality quantification. 

Lemma 1. If $ e SP^-, then we can effectively find an equivalent Ye3?^- which 
contains no quantifier within the scope of another quantifier. 

Using this lemma we obtain: 
Lemma 2. If <D e JSfJ1, then we can effectively find a sentence $ a expressed in 
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first-order arithmetic with ' + ' as its only non-logical sign, such that <D is valid in 
all finite models if and only if <Da is true. 

Lemma 3. If <D e £C^, then we can effectively find a finite number of denumerable 
models 9ti, ..., 3ln, such that €> is valid in all infinite domains if and only if <J> is true 
in 9li, ..., 9ln. 

By lemma 2 and Presberger's theorem that the arithmetical theory mentioned is 
decidable, the finitely valid formulas of M are decidable. Hence by lemma 3 : 

Theorem 1, The valid formulas of J&fJ1 are decidable. 
Lemma 4. There is a sentence fl> e & J1 and a finite number b such that 

(i) $ is false in all infinite models, 
(ii) $ is satisfiable in all finite domain with more than b elements. 

(iii) © is false in all models with b or less elements. 
From lemma 4 and the well-known fact that no such sentence can be formed in 

first-order languages, we have: 
Theorem 2. (stated in [1]) The plurality quantifier is not definable in the (full) 

first order predicate calculus with identity. 
The plurality quantifier is obviously definable if we allow quantification on a binary 

predicate variable. 
Let .£?2 be obtained from £Pi by admitting binary predicates; SC^ is obtained 

from 5£% by admitting plurality quantification. Using lemma 4 and the fact that 
corresponding to every Y e -£?2 and finite number b, we can find a formula X e -S?i 
which is valid just in case Y is valid in all domains with b or less elements, we have 
the result: 

Lemma 5. If Y s £e%, we can effectively find <D, X e 3?f, such that (<X> ->- Y) A X 
is (universally) valid if and only if Y is valid in all finite domains. 

But from the theorem of Trahtenbrot and Craig we know that the set of Y e £C^ 
which are valid in all finite domains is not axiomatizable. Therefore 

Theorem 3. The valid formulas of y}^ are not axiomatizable. 
Finally, in contrast to lemma 3, and Lowenheim's theorem for the full predicate 

calculus with equality, we have: 
Theorem 4. There is a sentence $ e 3^ which is valid in all and only countable 

domains. 
[1] NICHOLAS RESCHER, Plurality-quantification, The Journal of Symbolic 

Logic, vol. 27, pp. 373-374. {Received March IO, 1965.) 

DAVID KAPLAN. Generalized plurality-quantification. 
For each rational number m/n, 0 sj m/n < 1, we provide an interpretation of the 

plurality quantifier (see the preceding abstract for notation and reference) according 
to which 'MxFx' is read 'more than m/n of the objects x are such that Fx'. Semantical 
notions for each such interpretation are based on the following clause: 

f m/n-satisfies MaCD in <DR> if and only if 
n - K ( E [ x s D A f£m/n-satisfies * in <DR>]) > m-K(D) 

I t is readily seen that the familiar existential quantifier and Rescher's plurality 
quantifier are generalized plurality quantifiers for the ratios 0 and 1/2 respectively. 

Theorem 1. If 0 < m/n < 1, then all lemmas and theorems of the preceding 
abstract hold for m/n-quantification. 

In his abstract, Rescher points out that all his remarks remain unaffected if 'M' 
were interpreted — for finite domains — as 'more than 80 per cent [instead of 50 
per cent] of the objects,' etc. The following theorems illustrate the fact that validity 
is not, in general, preserved by such a reinterpretation. 

Theorem 2. If 0 < m/n < 1, then we can construct a sentence <J> e JSfJ1 such that 
for all rational j /k 0 < j /k < 1, <D is j/k-valid if and only if j /k ^ m/n. 
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Theorem 3. If 0 < m/n < 1, then we can construct a sentence O e £S^ such that 
for all rational j /k 0 < j /k < 1, * is j/k-valid in all finite domains if and only if 
m/n ^ j /k . 

Corollary. If 0 < m/n < 1, then we can construct a sentence 4> e JSPj1 such that 
for all rational j /k, 0 < j /k < 1, $ is j/k-valid in all finite domains if and only if 
j /k = m/n. (Received March io, 1965.) 

C. E. M. YATES. On the degrees of index sets (II). 
We have already announced (Abstract, this JOURNAL, vol. 28 (1964), p . 161) an 

exact classification (within the arithmetical-hierarchy) of the set G(a) = {e|Re is 
of degree a} for any r.e. degree a. (Our notation is that of the previous abstract). 
A slight modification of the proof yields Sacks' theorem that the r.e. degrees are 
dense as follows. Let a, b be r.e. degrees such that a < b . The first simple step is 
to show that G(a) e Ss(b). The second (slightly modified) step in the classification 
is to define a r.e. sequence of r.e. sets Co, Ci, .... such that if c e is the degree of Ce 

then a i c , g b and R e £ G(a) = Ce e G(b) for all e. By the fixed-point theorem 
there is a number k such that Ck = Rk- Clearly, Ck # a and Ck # b , so that 
a < Ck < b . The only modification in the original classification procedure is to 
arrange that a :£ c e for all e, but this introduces no major new difficulties. 

Similar methods can be used to prove: (i) if a < O'1' and ao < a i < ... is an 
infinite ascending sequence of uniformly r.e. degrees each < a, then there is a r.e. 
degree c such that ao < a i < ... < c and a|c. (ii) if 0 < a < Of1) and b is a degree 
which is is 0<J> and r.e. in O'1* then there is a r.e. degree c such that c*1' = b and 
a|c. (iii) if 0 < a < O'1* then there is a degree c such that c|a and c contains a 
maximal set. (Received February 5, 1965.) 

P. H. G. ACZEL and J. N. CROSSLEY. Constructive order types VI. 
Terminology and notation are as in the second author's previous abstracts in this 

JOURNAL. 

We define a function E of coordinals following a construction of Parikh. 
Theorem. The following are equivalent 

(i) X is an infinite principal number for exponentiation 
(ii) X = W or W * = X 

(iii) X = W or X = E (A) for some coordinal A. 
Corollary. The collection of all principal numbers for exponentiation is strictly 

em-unique. 
A coordinal A is said to be full if T < )A| ->- (3C) (|C| = T & C < A). 
A coordinal A is said to be closed under f if Ai, ..., An < A implies f (Ai, ..., An) < A. 
Theorem. For any epsilon number e r there is a coordinal A such that 
(i) |A| = T, |E(A)| = sr 

(ii) E(A) is full and closed under addition, multiplication and exponentiation. 
Notation. | |A|| = order of type {B : B < A} 
Theorem. If A is closed under addition or multiplication or exponentiation then 

|| || is an isomorphism from {B : B < A} with respect to addition or multiplication 
or exponentiation, respectively, onto an initial segment of the ordinals. (Received 
February 2, J965.) 

W. W. TAIT. Intensional interpretations of functionals of finite type I. 
0 is a finite type (It .) , and (a, T) is a f.t. whenever a and r are. Every constant 

and variable of type T is a r-term, and (st) is a r-term if s is a (a, r)-term and t a o-
term. t i tz . . . t n abbreviates the term (•••(tita)...tn). Godel's theory T (Dialectica, 
v. 12 (1958), pp. 280-87) can be formulated as follows: The constants are 0 (zero) 
of type 0, S (successor) of type (0, 0), and constants Pi, C and R of appropriate types. 
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1 = SO, 2 = SI, etc. The formulae of T are formed from equations sT = tT (for 
arbitrary f.t. r) by means of connectives (but no quantifiers). The axioms and rules 
are: those of classical propositional logic (so that sT = tT is not to be interpreted 
as extensional equality, but as a decidable relation of "definitional equality"), the 
usual axioms for = (for each f.t. T), 0 and S, the rule of mathematical induction, and 
the defining axioms: Pit i- . . t n = ti, Crsti. . . tn = r t i . . . t n (s t i . . . t n ) , RrsO = r and 
Rrs(St) = s(Rrst)t. (E.g. for all n > 0, 0 < i ^ n and f.t. TI, ..., m, there is a Pi 
of type (TI, . . . (T2, ...(Tn-i, Tn).••)).) The Pi and C yield explicit definition, and the R 
yield primitive recursion. 

r q1 s means that s is obtained from r by a sequence of substitutions of right-hand 
sides of defining axioms by the corresponding left-hand sides. TT(s) means that s is 
a closed T-term. Define E(s, t) = Vr(s d r A t d r) (s and t are definitionally equal), 
Co(s) = Vn(s d, n) and C(<rT)(s) = At(C0(t) -> CT(st)) (s is a convertible term). In 
intuitionistic arithmetic I we can derive Ax(TT(x) ->• CT(x))Axy(CT(x) A CT(y) -> 
E(x, y) v —iE(x, y)). Let v0, vi, V2, ... be the variables of type 0 of T. If s is a term 
s(x) is the function whose value is the Godel number of the result of replacing vi in s 
by the numeral (x)i for all i ^ 0. Thus, l"iAxTT(s(x)) if s is a T-term. If A is a formula 
of T without variables of types # 0, then A*(x) is the result of replacing each part 
s = t of A by E(s(x), t(x)). 

Theorem. hxA => l"iAxA*(x). We can extend this result to get an interpretation 
in I of T+ = T + Im, where I" is I with quantification over all f.t. By Godel's result 
(loc. cit.) then, T, T+ and I all have the same quantifier free theorems (in their common 
notation). (Received March 5, 1965.) 

W. W. TAIT. Intensional interpretations of junctionals of finite type II. 
The notation follows the previous abstract (I). Ti is like T except that we add a 

constant Bo for bar recursion of type 0 [Spector, Recursive function theory (Proc. 
of Symposia in Pure Math., vol. V) AMS, pp. 1-27] and a constant K of type 
(0, 0). (Bar recursion of type 0 is essentially recursion on the unsecured sequences of 
a variable functional of type ((0, 0), 0).) The defining axioms for Bo are given by 
Spector (loc. cit.), and the axioms for K is given relative to a fixed free choice sequence 
y of numbers: namely, Kn = y(n). We define r d v s as in (I), but relative to the new 
axioms as well. If r does not contain K, then r q v s is written r d ' s. T^(x), means x 
is a closed term of Ti not containing K, E(x, y) = Vz(x q1' z A y q1' z) and Co(x) = 
Vn(xd,n) , C((0)0)>0)(x) =AyVn(xKd , r n ) , and for (a. T) # ((0, 0) 0), C(0>T)(x) ^ 
Ay(Ca(y) -> CT(xy)). Then by the same lemmas as in I : 

Theorem. hTlA => hIlAxA*(x), where I i is obtained by adding quantification over 
free choice sequences and the axiom of bar induction (see below) to I. Let T2 have 
constants and defining equations for bar recursion of each f.t., together with those 
of T. Let I2 be I i together with the axiom of generalized bar induction: Ax(R(x) v 
-,R(x)) A Ay(AyD(y(y)) -> VxR(y(x))) A Ax(R(x) - Q(x)) A Ax(AyQ(x*y) -v Q(x)) -
Q(<» , where xvy is <xi, . . . , x n , y> when x = <xi, . . . ,xn>, and < > is the empty 
sequence number. This is equivalent to ordinary bar recursion when D is decidable. 
By the same methods: 

Theorem. hT, A => hIa AxA*(x). By Spector's theorem (loc. cit.) the Godel inter­
pretation of classical analysis holds in T 2 (= S-i), and so we can interpret classical 
analysis in I2. The converse of this is evident. Unlike Ii , however, no constructive 
foundation for I2 is known. Ordinary bar induction is founded on Brouwer's theory 
of spreads, where the elements of the spreads are finite sequences of elements from 
some decidable species D. Generalized bar induction requires D to be undecidable. No 
constructive theory of spreads with undecidable D has been worked out. (Received 
March 5, J965.) 
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RICHMOND H. THOMASON. A decision procedure for Fitch's propositional calculus. 
Consider the L-system (in the sense of Gentzen 4422) LF, having multiple con­

stituents on the right and the usual structural rules and logical rules for classical 
disjunction, as well as the following rules: 

a, A h B a I- A, jS a, Bh/S 

a h A D B a, A 3 B h j? 

« l - A v B J a r A J a, AhjS a, B h 0 

a h A, B, P a, ~A h P a, A V B 1- j8 " 

a h ~A, /} a h « B J a, - A , ~B h 0 

a h ~ ( A v B),/S a, ~(A V B) h P 

cchA.P a, A h P 

a h A, /? a, A h /» 

This system is equivalent to the propositional calculus of Fitch (XXI 414), in the 
following sense: Ai An h Bi, ..., B m is provable in LF if and only if there is a 
proof in Fitch's system of Bi v ... V B m on the hypotheses Ai, ..., An (or, in case 
m = 0, a proof of po A -'po on hypotheses Ai, ..., An). 

By means of arguments similar to those of Gentzen, an elimination theorem (or 
Hauptsatz) can be established for LF ; accordingly, the methods commonly used to 
devise decision procedures for L-systems of propositional logic will yield such 
a procedure for LF (Received February I, 1965.) 

NOTICE 

FELLOWSHIP AND RESEARCH OPPORTUNITIES IN MATHEMATICS 

The Division of Mathematics, National Academy of Sciences—National Research 
Council, calls attention to a variety of fellowship and other support for basic research in 
mathematics at both the predoctoral and postdoctoral levels to be awarded during the 
year 1964-65. Copies of the complete announcement are available from the Division of 
Mathematics, National Academy of Sciences—National Research Council, 2101 
Constitution Avenue, N.W., Washington, D.C. 20418. 

NOTEBOOKS OF EMIL POST 

The Fine Hall Library at Princeton University has a Xerox copy of the original notes 
of the late Emil Post consisting of 41 volumes of approximately 200 pages each distri­
buted as follows: 

Vols. 1-17 Theory of finite processes 
18-35 Creative logic 
36-39 Closed truth systems 
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