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BRAUER POINTS ON FERMAT CURVES

WILLIAM G. MCCALLUM

In honour of George Szekeres on his 90th birthday

If X is a variety over a number field K, the set of if-rational points on X is
contained in the subset of the adelic points cut out by the Brauer group; we call
this set the set of Brauer points on the variety. If S is a set of valuations of K,
we also define S-Brauer points in a natural way. It is natural to ask how good a
bound on the rational points is provided by the Brauer (or 5-Brauer) points.

Let p > 3 be a prime number, and let X be the Fermat curve of degree p,
xp + yp = 1. Let K be the field of p-th roots of unity, and let r be the p-rank
of the class group of K. In this paper we show that if r < (p + 3)/8, then the set
of p-Brauer points on X has cardinality at most p. We construct elements of the
Brauer group of X by relating it to the Weil-Chatelet group of the jacobian of X,
then use the method of Coleman and Chabauty to bound the points cut out by
these elements.

1. INTRODUCTION

The Hasse principle is said to hold for a class of varieties over a number field K if
for any variety X in the class, the set of rational points X{K) is non-empty whenever
the set of adelic points X(A.K) is non-empty. Manin [8] observed that the failure of
the Hasse principle can often be explained in terms of the Brauer group of X, Br (X).

The product rule implies that X(K) must be contained in the set of Brauer points

X(AKfT = Ixe X(AK) :Y^Wva(xv) = 0 for all a
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394 W.G. McCallum [2]

where the sum is over a complete set of inequivalent valuations of K and invw is the
canonical map Br (Kv) ~ Q/Z. The set of Brauer points is closed in the adelic topology,
and therefore contains the closure X(K) of the rational points. Manin considered
examples where elements in the Brauer group could be constructed that forced the set
of Brauer points to be empty (and hence also the set of rational points), even though
the set of adelic points was not. Thus the Hasse principle was violated.

If X(K) is not empty, it is natural to wonder how good a bound on X(K) is
X{AK)BT • For example, the following theorem is an immediate consequence of theorems
of Scharaschkin [13, Theorems 1.1 and 1.2].

THEOREM. (Scharaschkin) Let X be a smooth curve of positive genus with a
K-rational point. Let J be the jacobian of X and suppose that the Mordell-Weil group

and the Shafarevich-Tate group of J over K are finite. Then X{K) = X(AK)Br.

In considering the question of Brauer points, it is convenient to focus on a restricted
set of valuations. Suppose that X is proper, let A" be a model for X proper over OK ,
and let S be a set of inequivalent valuations of K. For a valuation v, let Kv be the
completion of K at v. If v is non-archimedean, let Ov be the ring of integers in Kv,

and j v : X x K KV «-» Xv = X x OK OV the natural map. If v is archimedean, we adopt
the convention that Br(A't,) = 0. For a € Br(X), let at, be the image of a under
Br {X) - > B r ( I x K Kv). Define

Brs (X) = {a e Br (X) : av € & Br (*„), v $ S}.

Note that if v $ S, then given xv £ X(KV) and a € Brs (X) we have a(xv) = 0. This
is clear if v is archimedean, and if v is non-archimedean then by definition there is an
element £„ € Br (Xv) such that av = j*{av), and since X is proper, there is a section
xv of Xv extending xv, so a(xv) — av(xv) = av(xv) e Br(Ov) — 0. It makes sense to
define the set of S -Brauer points with respect to X

X(AKiS)
Bls{X) = \x€ X{AKiS) • ̂ 2imva{xv) = 0 for all a € B r s ( X ) | ,

where A.K,S = Tl'V£s-Kv • The projection of X(AK) r onto its S-component is contained
in the set of S -Brauer points and hence so is X(K).

If H C Brs, we define X(AK,S) similarly, and refer to it as the 5-Brauer points
cut out by H; if H = (a), we talk about the S-Brauer points cut out by a.

Our question is now: how good a bound on X(K) is X(AK,S)BTS for different
choices of 5?

Let p be an odd prime, and let F be the p t h Fermat curve over Q, with projective
equation

(1) Xp + Yp = Zp.
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[3] Brauer points on Fermat curves 395

Then F has a proper model T over Z which has good reduction outside p . Let C be
the ideal class group of the ring of integers in the field Q(e 2 7 r ' / p ) . Let vp be the p-adic
valuation of Q.

THEOREM A. Suppose r ank z / p Z (C/pC) < (p + 3 ) /8 . Let S - {vp} (so that

AQ,5 = <QP/)- Then

It seems quite likely that the hypothesis is always satisfied: For p ^ 12,000,000. the
largest value of the rank is 7 [3]. If Vandiver's conjecture is true then the rank is equal
to the index of irregularity, whose expected value is, heuristically, O (log p/ log log p) (see
[14], Exercise 6.6). However, the best proven bound on the rank is rankZ/pZ (C/pC) <
p/2, which follows from a Carlitz's bound on the size of the minus part of the ideal class
group [4, (21)] using the fact that the p-rank of the plus part is less than the p-rank
of the minus part [14, Theorem 10.11].

The proof of Theorem A makes use of certain quotient curves. Let fj.p C C be
the group of p-th roots of unity, and let G be the quotient of /ip by the diagonally
embedded fip. Then G acts as a group of automorphisms on F, via

(x, Y, z) H» (dx, c2r,&z), (d, C2, c3) e 4.
Let T C G be a subgroup of order p , and let Fr = F/T. Since G ~ (Z/pZ)2 , there
are p + 1 choices for T. hence we obtain p + 1 quotient curves Fr. Three of them have
genus 0, the other p - 2 have genus (p — l ) / 2 . We call these latter p - 2 curves the
quotient Fermat curves. If a, b, and c are integers such that a + b + c — 0, then we
define a subgroup Ta:b:C c G by

r«,6,c = {(C1.C2.C3) : Ci°C2C3
c = 1 } / diagonal .

We set Fatb,c — Fra b c • Then Fa:biC has positive genus if and only if p { abc. Clearly
Fa,b,c depends only on a, b, and c modulo p . We choose a and b in their congruence
classes so that a ̂  0 and 6 ^ 0 . Then -Fa,6,c has affine equation

(2) ^ = (-l)V(l-x)*,

and the map 0o,b,c : F —> Fatb,c is given by the equations

(X,Y,Z) H-> (x,y) = (XpZ-p
)X

aYb(-Z)c).

There is a proper model J-a,b,c f°r Fa,b,c with good reduction outside p to which 7
extends, so by functoriality of the Brauer group,

(3) 0a,b

for any set 5 of primes containing p.
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THEOREM B. In addition to the hypotheses of Theorem A, let 7 = aabbcc and
suppose that

(4) 7 P ^ 7 (modp2).

Then

Furthermore, there exists a quotient curve -Fa,6,c such that (4) is satisfied.

In view of (3), Theorem A follows from Theorem B.

The basic method used in proving Theorems A and B is the same as that used in
[10], but the connection between that method and Brauer-Manin obstruction was not
dealt with there. Although the bound on rational points in [10] is now obsolete, the
question of whether the rational points coincide with the Brauer points remains open;
either an affirmative or a negative answer would be interesting. The bound given here
is stronger than the one given in [10] because of the explicit computation of Coleman
integrals given in Section 4.

2. OUTLINE OF THE P R O O F

Let X be a complete proper curve over a field if, with a rational base point
O € X(K). Let J be the jacobian of X, and let j : X «-» J be the embedding which
takes O to the identity element, e. Let Bro (X) be the image of Br(if) in BT(X)

coming from the map X —> spec ( i f ) . Then, as explained in [8], there is an exact
sequence

0 -¥ Br {X)/ Br0 (X) -»• if1 (if, Pic X) -> H3(K,1(XY

Since X (K) ^ 0, we have an isomorphism

fT^/if .J) =2 ffl (if, Pic X) .

Furthermore, if if is a number field or a completion of a number field, then H3 (K, Kx ) =

0, so we get an isomorphism

<£: if x(if, J) ~

It is shown in [8] that if if is a local field, d€Hl{K,J), x € X(K), then

invw(0(d)(aO) -invv{4>{d)(O)) = (j(x),d)

where ( , ) is the Tate local pairing

J(K)xHx{K,J)
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[5] Brauer points on Fermat curves 397

Suppose now that if is a number field, S an inequivalent set of valuations of K, and
define IIIs(.K", J) by exactness of the sequence

0 -> U1S(K, J) -> H\K, J)^J[ H^Kv, J).
vis

LEMMA 1. Suppose S contains at ieast one non-archimedean valuation, and let
X be a proper model for X over OK • Then <j>(Uls(K,J)) is contained in the image
ofBTs(X) in BT(X)/BTO(X).

PROOF: Let d e UIs(K, J), and let a € Br(X) be an element representing the
class of 4>(d). Since dv = 0 for all v £ S, av is contained in Bro (Xv) for all v £ S.
Furthermore, since S contains a non-archimedean valuation, there exists an element
b € Br (K) such that av = bv for all v £ S. Then a — b represents the same class as a
and is contained in Brs (X). D

Thus, if we define

J(AKiS) : J2(x,dv)v = 0 Vd e UIS(K, J)\,
v€S *

then

(5)

Now. let p be an odd prime number and let X — Fa,b,c. embedded in its jacobian
J via the base point O = (0,0). Let Fa,b,c be the model for -FQ,6|C obtained by taking
the normalisation of the projective completion of the affine curve over Zp defined by
the equation (2). Then Taf,,c has good reduction outside p.

Let K — Q(Cp), and let C be the ideal class group of K. In Section 3 we shall
prove the following proposition.

PROPOSITION 2 . Suppose that rankz/pZ {C/pC) < (p + 3)/8, and let S =

{vp}. Then there exists ( d ^ ) € JJmnHI5(Q, J)\pn) such that (d^), the localisation

at p, is not zero.

Let B C J(QP) = J(&s) be the subgroup cut out by d. Then it follows from (5)
that

(6)

Let
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be the logarithm map for J (Q P ) as a p-adic Lie group (see [2], Section 7.6). It follows
from the fact that d p ^ 0 that B has positive codimension in J(QP) • Hence A(J(Qp))
has positive codimension T e ( J ( Q p ) ) . Thus we may choose a non-zero element u> €
H°(JQP, fi1) , the dual Qp-vector space to T e ( j (Q p ) ) , such that the composite

vanishes on j(-F0,6,c(QP)B r s ( ^

For r/, a holomorphic differential on Fa,b,c or on J, defined over C p , let

= [
7(0,0)

v

be the integral of r\ in the sense of Coleman [5]. (It exists since Faib,c has potential good
reduction.) It is shown in [5] that there is no conflict in notation here: Au as defined
above using the logarithm is the same as the Coleman integral of w. Let rj = j*u>, and
let A,, be the integral of r) on Fa<b,c • By functoriality of the integral, if follows from
(6) that

(7) A, (FOl6lB(Qp)Br* = 0 .

As explained in [10], (7) already implies that Fa i 6 | C(Qp)B r s has cardinality at most
2p — 3 . To do better than that, we find in Section 4 a basis for £T°(7Q ,fi1) whose
elements we can integrate explicitly on a certain affinoid contained in Fatt,iC(Cp).

We say (for reasons to do with the associated Jacobi-sum Hecke character) that
Fa,b,c is wild if (4) is satisfied, and tame otherwise. The special fibre of Ta,b,c has a
cusp at the point £ where x(£) = —a/c, and no other singularities. If Faib,c is wild,
then Taib,c is regular [11], In this case, let X C FaiblC{<£P) be the affinoid reducing to
the special fibre of Ta>b,c with the cusp deleted. Since every Qp rational point on -Fo,b,c
reduces to a nonsingular point on the special fibre of .FOi(,iC, Faib,c(QP) C X.

PROPOSITION 3 . Let r\ be a non-zero holomorphic differential on FaibtC, de-

fined over C p . Suppose that Fa,b,c is wild. Then A,, has at most p zeros in X.

It is shown in [11, Lemma 4.7] that there exists a,b,c such that Faib,c is wild.
Then (7) implies Theorem B, and hence Theorem A. It remains to prove Propositions
2 and 3.

3. CONSTRUCTION OF AN ELEMENT OF THE BRAUER GROUP

In this section we prove Proposition 2. Since FatbtC has an automorphism y i—> CPy,
where Cp is a primitive p- th root of unity, J has complex multiplication by Z[£p]. hence
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an endomorphism n - 1 - CP • Let K = Q(£), let A = Gal {K/Q), and let p be the
prime of K lying above p. We claim that in order to construct the element d in the
conclusion of Proposition 2, it suffices to construct an element d' € ^B3n I I I s ^ , J)[7rn],
S = {vp}, whose localisation at p is non-zero. We see this as follows: First, since
7rp~! ~ p in OK, there is an isomorphism ^m n U1S(K, J)[K"} ~ ]imn 111q(K,J)[pn].

Hence from d' we get an element d" € ]$mn I l l s (if, J)\pn] locally non-zero at p.
Second by applying a suitable idempotent from the group algebra ZP[A] we may assume
d" is an eigenvector for the action of Gal (K/Q) and locally non-zero at p. Finally,
the complex multiplication gives a natural action of Zp[£] on ]^mnlIl(K, J)\pn]. Let
•co = (— p) ' ' p ~ ' € Zp[C]. Then the action of A on w is given by the cyclotomic
character, so, multiplying d" by a suitable power of w we get an element fixed by
A. Since the order of A is prime to p, this element is the restriction of an element
d € ]^mn U1(Q, J)\pn] as required.

Now', let Ks be the maximal extension of K which is unramified outside p,
and let Gs = Gal(Ks/K). Since J has good reduction outside S, Uls{K,J) =
Hl(Ks/K, J{KS)) • The Kummer sequence

0 -> J[7rn] -> J(KS) ^ > J(KS) -> 0

yields a surjective map

H\Ks/K,J[Kn}) -* Hl(Ks/K,J(Ks)[7Tn}),

so to construct d' e ^mn U1S{K, J)[nn], we construct c e |imn H
1 (Ks/K, J[nn]). For

each n we have an exact sequence of Gs -modules

0 -> J[Kn} -¥ J[nn+l) •£> J[jr] -> 0.

Let

6n : H1{KS/K,J[K]) -f H2(KS/K, J[*n))

be the associated coboundary map. Also, let

be the coboundary of the sequence

0 -> J[n] -> J(KP) - ^ J(KP) -> 0.

To construct c, it suffices to show there is an element c(1) € Hl(Ks/K, J[TT]) such

that

(8) 6ncW = 0 Vn > 0.
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and

(9) c ^ g i m J p .

Indeed, (8) implies that c ^ can be lifted to c<n> e Hl (Ks/K, J[nn)) for arbitrarily

large n, and, since the groups H1(Ks/K, J[nn]) are finite, this implies that there is

a compatible sequence of such c^nK The images of these in H1(Ks/K,J)[irn] give an

element (d^")) € ̂ m His (if, -OK"], aQd condition (9) ensures that dp ^ 0.

LEMMA 4 . We have

dimz/pZ ( H
 k e r *n) > dimz/pZ H1 (Ks/K, J[n)) - dimz/pZ H2 (Ks/K, J[n}).

n>0

P R O O F : Let 6'n : H
1 (Ks/K, J[nn]) -> H2(KS/K, J[n}) be the coboundary of the

sequence

0 -> J[?r] -4 J[7Tn+1] -> J[7Tn] -> 0.

Consider the diagram

H1 {Ks/K, J[n]) — ^ H2 (Ks/K, J[i:n})

H2{KS/K,J[K^))

\
H2(KS/K,J[TT})

The groups ker<5n form a descending filtration on H1(KS/K,J[TT]) with intersec-
tion H, say. Further, <$n+i restricted to ker5n maps to the image of H2(Ks/K, J[n])

in H2(Ks/K,J[irn+1]), which is H2(KS/K, J[v])/im 6'n. Thus we get a series of in-
duced maps for n ̂  0

5*n+1 : kev6n -> H2(KS/K, J [7r] ) / im^,

where we adopt the convention that ker<50 = H1(Ks/K, J[n}) and \m5'0 = {0} . Fur-
ther, it is easy to see that ker 5* = ker Sn, and with a little more thought one can see
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[9] Brauer points on Fermat curves 401

that imJ* = im6'n/imS'n_l. The images im8'n eventually stabilise on some subgroup
im S'CQ , and by summing dimensions over n we find that

oo oo

n=0 n=0

= dim im 6'^ ^ dim H2 (Ks/K, J[n}). g

To describe Sp (J(KP)), it is convenient to choose an isomorphism of Galois modules
J[ir] ~ nP, inducing an isomorphism

h : Hl(Kp, J[n}) ~ Hl(Kp,»p) = K;/ICp
p.

For i > 0, let £/< be the image of 1 + n{Op in Kp/Kp
p, and let C/o = Kp/KpP.

THEOREM 5 . (Faddeev [6, Theorem 4)] We have

U(p+3)/2 C (ip

Furthermore, each containment is strict.

Let lp be the localisation map

lp : Hl{Ks/K,J[n}) -> H 1 ^ , J[TT]).

LEMMA 6. The isomorphism J[w] ~ \xv induces isomorphisms

tl : HX(KS/K,J[K)) ~ Hl{Ks/K,nv) = {x € K*/K*p : v(x) = 0 (mod p), v^vp},

L2 : H
2{KS/K, J[«]) ~ H2{KS/K^P) = C/pC.

FurtAermore, the image of Hl{Ks/K,np) in H1(Kp,fj,p) is a maximal isotropic sub-
group for the local Hilbert pairing.

PROOF: The isomorphisms may be obtained by considering cohomology of the
exact sequence

0 -> np -> OKs * - ^ OKs * -+ 0

or by identifying the Galois cohomology groups with etale cohomology groups and
taking cohomology of the Kummer sequence

0 -> (ip - » G m -»• G m -> 0

of etale sheaves on Spec(C>K'[l/p]) • Note that the class group of OK[1/P] is the same
as the class group of Spec (O), since p is principal, and that p is the only prime of
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K above p, so that the Brauer group of OK[1/P] is trivial. The last statement is a
straightforward application of Tate global duality. D

LEMMA 7 . We have

dim (/-^imJp)) < dimHl(Ks/K,J[n]) + dimC/pC - (p + 3)/4.

PROOF: We have

dim^^imtfp)) = dimker^, + dim(im£p nim(5p).

By Lemma 6 and the fact that dimKp /K£p = p + 1, we have

(10) dimker^p = dim H^Ks/K, J[ir]) - (p+ l)/2.

From Theorem 5 we have dimimJp = (p + l ) /2 . We claim that

(11) dim(im^pnim(Jp) ^ (p - l)/4 + dim (C/pC).

This follows from the fact that Ui and Uj pair nontrivially with respect to the Hilbert
pairing if i + j = p, trivially if i + j > p. Since im^p is isotropic with respect to the
Hilbert pairing and im<5p D £/(p+3)/2i the dimension of im£p n im<5p is decreased by 1
from dimim<5p for each i ^ (p — 3)/2 such that there exists TJ e Hl(Ks/K,np) with
T)p € Ui \ Ui+i. For i — 0,1 we may choose rj = IT, £ respectively. If i is even and less
than (p — l)/2 and if p \ B{, the i-th Bernoulli number, then we may choose 7? to be
the cyclotomic unit

n
a6(Z/pZ)*

(see [14, Proposition 8.12]). Thus

- 2 - #{.82^ : 2k < (p - l)/2, p \ B2k)

where i(jp) is the index of irregularity of p, that is, the number of Bernoulli numbers
i?2fc, 2 ^ 2k ^ p - 1 such that p | B2k- Finally, (11) follows from the fact that, by
Ribet's converse to Herbrand's theorem [12],

(C/pC).
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[11] Brauer points on Fermat curves 403

The lemma now follows from adding (10) and (11). D

P R O O F OF PROPOSITION 2: We want to show that there is an element c'1' €
H1 (Ks/K, J[n]) contained in f|ker<5n but not contained in £p1(im6p). This will

n
follow if dim(p)ker<5nJ > dim (^ 1 ( im5p) ) . By Lemmas 7 and 6,

dim(P|ker<5n) ^ dimHl(Ks/K.,J[n}) -dimC/pC
n

and by Lemma 4

dim (^(imJp)) ^ dimH^Ks/K, J[n}) + dimC/pC - {p + 3)/4. g

4. COMPUTATION OF THE INTEGRALS

Consider the model T C P | for F given by the equation

Xp + Yp = Z",

and the model /"a,b,c f°r Fa,b,c given by the normalisation of the projective completion
of the affine curve over Zp with equation

yp = (-l)cxa(l-x)b.

PROPOSITION 8. The special fibre of Ta,b,c is a curve of geometric genus zero
with one singularity, a cusp, at the point £ with maximal ideal

(12) m€

In terms of the coordinates s and t defined by

(13) x=— (1 + s), y = aabbcc(l+t),

the cusp is at s — 0. t = 0, and the special fibre has equation

(14) t" = ^ S V ( S ) , * € Z[S], ^(0) = 1

in an affine neighbourhood of the cusp. Furthermore, if Fab<c is wild, then Fa.b.c is

the minimal regular model for Fatb,c over Zp.

PROOF: The final statement is [11, Proposition 6.1]. The rest is simple direct
calculation. We note only that the fact that the cusp has arithmetic genus (p — l ) /2 .
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equal to the genus of Fa<b,c, provides a simple way of proving that it is the only singu-
larity on the reduction; however, this can also be seen by performing the normalisation
of Fa,b,c explicitly. D

In what follows, we consider Fo,b,c as an object in the rigid analytic category over
Cp, the completion of the algebraic closure of Qp. For general facts about rigid analysis,
we refer the reader to [1]. We assume throughout that -Fa.b.c is wild. Let X be the
affinoid in Fa,b,c reducing to the nonsingular locus of Taib,c- Since X is isomorphic
to the affine line, X is isomorphic over Cp to a closed p-adic disc [1, 6.4.2, Corollary
3, and 3.6, Proposition 12]. Our aim in this section is to calculate the integral on the
affinoid X of a general differential ui.

Let O0 = (0,0), Oi = (1,0), and O& = oo. Recall from [11, Lemma 7.2] that
there exists a rigid analytic isomorphism T: X ~ B[l], defined over Qp, such that

T(O 0 )=0 , 7X00 = 1, T(Ooo) = - - .
c

Let m be the maximal ideal in the ring of integers of Cp. If 77 is a holomorphic
differential on X whose expansion in T has integer coefficients, we write 77 for its
reduction modulo m. Any differential may be multiplied by a constant so that 77 is
denned and not zero. We recall the following proposition from [11, Proposition 8.5].

PROPOSITION 9 . Let 77 be a holomorphic differential on Fatb,c> defined over
Cp, and Jet A,, be the Coleman integral of 77 satisfying At7(O0) = 0. Then A,, is
analytic on X. Further, if rj is defined and not zero, then A is the unique polynomial
in T such that

(15) dX=9j,

(16) A(f) = /x ( f )+afP + /3f2p, ^GFp[f], d e g ^ ^ p - 2 , a,/3€Fp,

and

(17) A(0) = A(l) = \{-b/c) = 0.

PROOF OF PROPOSITION 9: We apply Proposition 3 to the following basis of
holomorphic differentials. If z € <Q>, let [z] denote the integer part of z. Let

For k € #0,6,0 let

Vk = 1 dX.
yk
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The set { rjk : k € Ha<b,c } is a basis for the space of holomorphic differentials on Fa,b,c ••

each element of which is an eigenvector for the complex multiplication action.

If m € Z, let r{m) denote the unique residue of m (mod p) such that 0 ^ r(m) ^

p - 1. Then [9]
ord(0,o) (Vk) = P - 1 - r(ka),

ord(0,i) {Vk) = P ~ 1 ~ r(M),

ordoo(r?fc) =p- l-r(kc),

and r?fc has no other zeros. It follows that, on X,

(18) Vk = constant x u(T) x Tv-l-r(ka\T - i)*"1--***) (T + -\ dT,

where u(T) has constant term 1 and all other coefficients in m. Replace % by a
suitable multiple so that the constant in (18) is 1. We claim that

(19) A,fc = rp-r(fco' (r - i)p-r ( f c 6 ) (T + - Y

First, note that the coefficient of Tp~1 in the expression on the right is

- (p - r{kb)) + (p- r(kc)) - = kb - kc- = 0 (mod p).
c c

Thus \nk has the form (16). Therefore, dXVk = f(T)dT for some polynomial of
degree at most p - 3; on the other hand, f(T) has a zero of the same order as rjk at
T = 0 ,1 , -b/c, and the sum of these orders is 2g - 2 = p — 3, hence / (T) dT = rjk with
a suitable choice of the constant. Thus, A^ satisfies (15). Finally, it clearly satisfies
(17) and our claim follows from Proposition 9.

We have shown that for each %, A/t (T) is a polynomial in T of degree at most p.

Now let r\ be any holomorphic differential. Since the rjk form a basis for the holomorphic
differentials, some multiple of 77 is an integral linear combination of the %, with at least
one of the coefficients a unit. Therefore Â  is a non-trivial linear combination of the
polynomials (19). It is not hard to see that these polynomials are linearly independent
(by noting that they all have different orders of vanishing at T = 0, for example). Thus
A,, is a non-zero polynomial in T of degree at most p. Proposition 3 now follows from
the theory of analytic functions on a closed p-adic disc (see, for example, [7]). D

Although it is not needed for results in this paper, we remark in conclusion that
if -q = T)k, then A,, vanishes only at the three points OQ, O\ and 00. Indeed, it must
vanish at those points, because they are torsion points on the jacobian. On the other
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hand, it follows from (19) that A,, has p — r(a) zeros in the residue class of Oo, p — r(b)
zeros in the residue class of O\, and p — r(c) zeros in the residue class of OQO , and no
other zeros on X. Further, since it vanishes at Oo, O\, and OQO, it follows from (18)
that it vanishes to order p — r(a), p — r(b), and p — r(c), respectively. Therefore, its
only zeros are at those three points.
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