30 , ruling out $s=60,120$. Similarly one can rule out $s=20$ (and its multiple $s=40$) and $s=16$ (and its multiple $s=48$). This leaves the seven values

$$
s=2,4,6,8,10,12,24
$$

and, for each of these, $\cos (2 \pi / s)=\cos (\pi / b)$ does indeed have surd form. Thus $\cos (k \pi / b)$ has surd form if. and only if, $b=1,2,3,4,5,6,12$. This proves that the only rational multiples of π between 0 and $\pi / 2$ whose cosines have surd form are $\pi / 3, \pi / 4$, and $\pi / 6$ (whose cosines are well known) together with

$$
\begin{aligned}
& \quad \begin{aligned}
\cos (5 \pi / 12) & =\sin (\pi / 12) \\
\cos (2 \pi / 5) & =\sin (\pi / 10)
\end{aligned}=(\sqrt{6}-\sqrt{2}) / 4 \\
& \cos (\pi / 5)
\end{aligned}=\sin (3 \pi / 10)=(\sqrt{5}+1) / 4,1+4, ~=(\sqrt{6}+\sqrt{2}) / 4 .
$$

If $\theta+\phi=\pi / 2$, then $\sin \phi=\cos \theta$ and ϕ is acute if, and only if, θ is acute. So Bob Burn had already got a complete list of the angles he sought.

References

1. I. Stewart, Galois theory, Chapman \& Hall (1973).
2. A. Fröhlich and M. J. Taylor, Algebraic number theory, Cambridge University Press (1991).
3. I. N. Stewart and D. O. Tall, Algebraic number theory, Chapman \& Hall (1979).
K. ROBIN McLEAN

Department of Education, University of Liverpool, PO Box 147, Liverpool L69 3BX

Correspondence

DEAR EDITOR,
An alternative form for χ^{2}.
The usual formula for χ^{2} is: $X^{2}=\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$. Expanding the brackets in the usual way and remembering that both the O_{i} and E_{i} sum to the total frequency, the following is obtained:

$$
X^{2}=\sum \frac{O_{i}^{2}}{E_{i}}-\text { total frequency }
$$

I recently came across a student using this formula, so clearly it is not new, but I thought it might not be well known.

Yours sincerely,
ANTHONY C. ROBIN
29 Spring Lane, Eight Ash Green, Colchester CO6 3QF

