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Background. Complex regulation exists between tumor metabolism and M2 macrophages. Long noncoding RNAs (lncRNAs) are
famous for their wide regulatory role.Tis study aimed to identify the lncRNAs involved in the crosstalk between tumormetabolism and
M2macrophages.Methods.Te Cancer GenomeAtlas was responsible for the public data. R software was responsible for the analysis of
public data. Results. Based on the input expression profle, we quantifed the M2 macrophage infltration using the CIBERSORT
algorithm and found thatM2macrophages were a risk factor for lung cancer. Also, we found thatM2macrophages were correlated with
multiple metabolism pathways.Ten, 67 lncRNAs involved in bothM2macrophages and related metabolism pathways were identifed.
A prognosis signature based on AC027288.3, AP001189.3, FAM30A, GAPLINC, LINC00578, and LINC01936 was established, which
had good prognosis prediction ability.Te clinical parameters and risk score were combined into a nomogram plot for better prediction
of the patient’s prognosis. A high ft of actual survival and nomogram-predicted survival was found using the calibration plot.Moreover,
in low-risk patients, immunotherapy was more efective, while cisplatin and docetaxel were more efective in high-risk patients.
Biological enrichment analysis indicated pathways of notch signaling, TGF-β signaling, interferon alpha response, and interferon-
gamma response were activated in the high-risk group. Meanwhile, the risk score was associated with tumor metabolism and M2
macrophages. Also, we found that the promoting efect of CAPLINC on M2 macrophage polarization might act through multiple
metabolism pathways. Conclusions. Our result can provide new insights into the interaction between M2 macrophages and tumor
metabolism, as well as the involved lncRNAs, which can provide the direction for future studies.

1. Introduction

As the most commonly diagnosed malignancy, lung cancer has
a high medical burden [1]. Annually, lung cancer can lead to
nearly 1.5 million new cases, and the number is rising re-
lentlessly [2]. Surgical treatment for lung cancer in the early
stages can efectively improve long-term survival. Nevertheless,
it is common for patients to have delayed diagnosis due to
hidden clinical symptoms, which can directly result in treatment
delay and poor survival [2]. It is, therefore, crucial to identify
possible diagnostic and therapeutic targets for lung cancer.

In the tumor microenvironment (TME), macrophages
play a key role [3]. In tumorigenesis, macrophages con-
tribute to the formation of an infammatory microenvi-
ronment, leading to high mutational characteristics in cells.
Also, as tumors progress, macrophages can stimulate tumor
cell migration and invasion, inhibit antitumor immunity,
and stimulate angiogenesis [4]. In general, functional M2
macrophages are associated with tumor promotion and have
attracted much attention [4]. In lung cancer, Lu et al.
revealed that the overexpressed Oct4 directly increases the
level of M-CSF in A549 cells, contributing to M2
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macrophage polarization and tumor progression [5]. Im-
munity and metabolism are closely linked in the tumor
microenvironment. For instance, Palsson-McDermott et al.
found that under the induction of LPS, PKM2 (pyruvate
kinase M2), a metabolic regulator, can form a complex with
Hif-1α, thereby regulating glycolytic reprogramming and
succinate production, which is a key determinant of mac-
rophage activation [6]. Additionally, Hinshaw et al. in-
dicated that Hedgehog signaling can signifcantly afect the
metabolic processes of macrophages, like lipid metabolism,
mitochondrial adaptations, and metabolic sensing [7].
Specifcally, a reduction in the fux through the UDP-
GlcNAc biosynthesis pathway was observed when Hedge-
hog signaling was inhibited in M2 macrophages [7]. Long
noncoding RNAs (lncRNAs) are a class of noncoding RNA
molecules longer than 200 nucleotides, which can greatly
infuence tumor development [8]. Cao et al. found that the
lncRNA MM2P could be the modulator of macrophage M2
polarization [9]. Research has also shown that lncRNAs have
a wide range of regulatory efects on tumor metabolism [10].
Consequently, exploring the lncRNAs that could afect tu-
mor metabolism and M2 macrophages may provide novel
insights for lung cancer therapy options.

Secondary analyses of big data and public studies have
enhanced researchers’ understanding of diseases since the
age of big data arrived [11–13]. Based on the convenience
brought by the open-access data, we systematically explored
the underlying interactions between M2 macrophages, tu-
mor metabolism, and lncRNAs. Also, a prognosis model
based on AC027288.3, AP001189.3, FAM30A, GAPLINC,
LINC00578, and LINC01936 was established. Te prognosis
model showed satisfactory performance in predicting pa-
tient survival. Also, patients in diferent risk groups might
have diferent response performances on immunotherapy
and chemotherapy. GAPLINC was selected for further
analysis. Our results improve the metabolism regulatory
network of M2macrophages, as well as the role of GAPLINC
in cancers, especially lung cancer.

2. Methods

2.1. Public Data Extraction. Te public second sequence fle
and clinical parameters of non-small cell lung cancer were
obtained fromTe Cancer Genome Atlas (TCGA) database,
LUAD, and LUSC projects. Te original fles of the second
sequence information are in “STAR-Counts” form, and
clinical parameters are in “BCR-XML” form. Te human
reference genomic fle GRCh38.p13 version obtained from
the Ensembl website was utilized for probe annotation. All
the data were sorted out using the R code. From the TCGA
database, microsatellite instability (MSI) and tumor muta-
tional burden (TMB) were obtained. Te score of mRNAsi
and EREG-mRNAsi of each lung cancer patient was ob-
tained from the previous study [14]. Te baseline in-
formation of involved patients is shown in Table 1.

2.2. Immune Cell Quantifcation. Using the CIBERSORT
algorithm, 22 immune cells were quantifed in TME, in-
cluding M2 macrophages [15]. CIBERSORT is a useful

method for the high-throughput characterization of dif-
ferent cell types (such as TILs) in complex tissues. Te
detailed gene expression profle of each patient was in the
input fle.

2.3. Biological Enrichment and Metabolism Quantifcation.
Underlying biological diferences were identifed using the gene
set enrichment analysis (GSEA) [16].Te hallmark pathway set
was selected as the reference enrichment fle.Te single-sample
GSEA (ssGSEA) algorithm was utilized to quantify the nor-
malized enrichment score of metabolism terms, whose refer-
ence fle wasKEGG.v7.5.1.GMT, which was downloaded from
the MSIGDB website. Gene Ontology (GO) analysis was
conducted using the clusterProfler package [17].

2.4. Prognosis Performance and Evaluation. For the selected
genes or other continuous variables, univariate Cox re-
gression was utilized to identify prognosis-related variables
(P< 0.05). LASSO regression was utilized to select optimi-
zation variables through dimensionality reduction. For the
variables screened by LASSO regression, multivariate Cox
regression was used to establish a signature for prognosis
prediction, whose formula is “risk score� expression of
variable A ∗ coef A + expression of variable B ∗ coef
B + . . .+ expression of variable N ∗ Coef N”. Kaplan–Meier
(KM) survival curve was utilized to compare the survival
diferences between diferent groups. Te receiver operating
characteristic (ROC) curve was used to assess the prediction
performance of variables on specifc outcomes. A nomogram
plot was utilized to combine clinical parameters and risk
score for better clinical practice. Calibration curves were

Table 1: Te baseline information of the included patients.

Clinical features Numbers Percentage (%)

Gender Female 411 40.1
Male 615 59.9

Age
≤65 431 42.0
>65 567 55.3

Unknown 28 2.7

T stage

T1 286 27.9
T2 576 56.1
T3 118 11.5
T4 43 4.2

Unknown 3 0.3

N stage

N0 655 63.8
N1 231 22.5
N2 115 11.2
N3 7 0.7

Unknown 18 1.8

M stage
M0 767 74.8
M1 32 3.1

Unknown 227 22.1

Stage

Stage I 524 51.1
Stage II 287 27.9
Stage III 170 16.6
Stage IV 33 3.2
Unknown 12 1.2
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utilized to calculate the ft between actual outcomes and the
nomogram-predicted survival. Decision curve analysis
(DCA) was utilized to assess the performance of the no-
mogram plot. For the prognosis model establishment,
randomization was used to assign patients to the training
and validation groups with a 1 :1 ratio.

2.5. Sensitivity of Immunotherapy and Chemotherapy. Te
evaluation of immunotherapy was conducted using the
Tumor Immune Dysfunction and Exclusion (TIDE) analysis
[18]. In the TIDE analysis, the “cancer type” was selected as
“NSCLC.”Trough TIDE analysis, each patient was assigned
a TIDE score based on their gene expression information, in
which a score <0 was defned as an immunotherapy re-
sponder; otherwise, a nonresponders. Te sensitivity of
patients to chemotherapy was evaluated by the Genomics of
Drug Sensitivity in Cancer (GDSC) database [19].

2.6. Statistical Analysis. For the public data, R software was
utilized for algorithm operation, statistical analysis, and
plotting. GraphPrism was used for the data generated by the
experiments. P value less than 0.05 was regarded as statis-
tically signifcant.

3. Results

3.1.M2Macrophages inLungCancer. Tewhole fowchart of
this study is shown in Figure S1. Based on the input ex-
pression profle, we quantifed the M2 macrophage in-
fltration using the CIBERSORTalgorithm (Figure 1(a)). KM
survival curves indicated that patients with higher M2
macrophages had a poor prognosis (Figure 1(b)). Further-
more, we compared the M2 macrophage diference in pa-
tients with diferent clinical parameters. Results indicated
M2 macrophages might be associated with worse N and
clinical stages, but not T stages (Figures 1(c)–1(e)). Bi-
ological enrichment based on the hallmark set showed that
pathways of the mitotic spindle and fatty acid metabolism
were activated in the patients with high M2 macrophage
levels (Figure 1(f )).

3.2. M2 Macrophages Are Correlated with Multiple Meta-
bolism Pathways. Ten, we tried to explore the potential
interaction betweenM2macrophages and tumormetabolism.
Te 21 common metabolism pathways were quantifed using
the ssGSEA analysis (Figure 2(a)). Figure 2(b) presents the
coregulation relationship between these metabolic pathways
and M2 macrophages. A positive correlation was found be-
tween M2 macrophages and fatty acid biosynthesis
(Figure 2(c), correlation� 0.175, P< 0.001), fatty acid elon-
gation (Figure 2(d), correlation� 0.087, P � 0.006), fatty acid
degradation (Figure 2(e), correlation� 0.172, P< 0.001),
primary bile acid biosynthesis (Figure 2(f),
correlation� 0.211, P< 0.001), glycerophospholipid meta-
bolism (Figure 2(g), correlation� 0.102, P � 0.001), ether
lipid metabolism (Figure 2(h), correlation� 0.161, P< 0.001),
arachidonic acid metabolism (Figure 2(i), correlation� 0.131,

P< 0.001), alpha-linolenic acid metabolism (Figure 2(j),
correlation� 0.064, P � 0.043), sphingolipid metabolism
(Figure 2(k), correlation� 0.220, P< 0.001), fatty acid
metabolism (Figure 2(l), correlation� 0.150, P< 0.001), reg-
ulation of lipolysis in adipocytes (Figure 2(m),
correlation� 0.113, P< 0.001), fat digestion and absorption
(Figure 2(n), correlation� 0.116, P< 0.001), cholesterol
metabolism (Figure 2(o), correlation� 0.241, P< 0.001),
biosynthesis of unsaturated fatty acids (Figure 2(p),
correlation� 0.122, P< 0.001), glycerolipid metabolism
(Figure 2(q), correlation� 0.138, P< 0.001), and PPAR sig-
naling pathway (Figure 2(r), correlation� 0.292, P< 0.001).

3.3. Establishment of the Prognosis Model. We have found
that M2 macrophages are correlated with multiple meta-
bolism pathways. Following this, the genes involved in these
metabolism pathways were screened. Ten, the lncRNAs
meeting the criteria of |Cor> 0.3| and P< 0.05 were iden-
tifed, which might be involved in the crosstalk of tumor
metabolism and M2 macrophages. Among these lncRNAs,
67 lncRNAs were remarkably correlated with M2 macro-
phages; therefore, they are selected for the following analysis
(Figure S2). LncRNAs that were signifcantly related to
patients’ survival with P< 0.05 were screened using the
univariate Cox regression. LASSO regression was utilized to
identify the optimal variable (Figures 3(a) and 3(b)). Mul-
tivariate Cox regression selected six lncRNAs used for
prognosis signature establishment, consisting of
AC027288.3, AP001189.3, FAM30A, GAPLINC,
LINC00578, and LINC01936 (risk score�AC027288.3 ∗
−0.118 +AP001189.3 ∗ 0.269 + FAM30A ∗ −0.151 +GAPLIN
C ∗ 0.175 + LINC00578 ∗ −0.122 + LINC01936 ∗ −0.168) (Fig
ure 3(c)). In the training cohort, high-risk patients were
more likely to be dead cases (Figure 3(d)). KM survival curve
indicated that high-risk patients had a worse survival than
low-risk patients (Figure 3(e), HR� 3.37, P< 0.001).
Moreover, the ROC curve showed a good prediction ability
of the risk score on patient’s prognosis (Figure 3(e), 1-, 3-,
and 5-year AUC� 0.71, 0.71, and 0.755, respectively). Results
in the validation cohort show the same trend (Figure 3(f)), as
well as satisfactory prediction performance (Figure 3(g),
HR� 1.93, P< 0.001; 1-, 3- and 5-year AUC� 0.71, 0.71, and
0.755, respectively).

3.4. Clinical Correlation and Nomogram. Te diference in
clinical parameters can directly lead to diverse prognosis
outcomes. Consequently, we investigated the level of risk score
and model lncRNAs in patients with diferent clinical features.
Results showed that AC027288.3, FAM30A, LINC00578, and
LINC01936 were upregulated in the female patients, while risk
score was upregulated in male patients (Figure 4(a));
LINC00578 was upregulated in patients <65 years old, while
LINC01936 was upregulated in the patients >65 years old
(Figure 4(b)); AC02788.3, FAM30A, and LINC01936 were
upregulated in the T1-2 patients, while risk score was upre-
gulated in the T3-4 patients (Figure 4(c)); AC02788.3,
FAM30A, and LINC01936 were upregulated in the N0 pa-
tients, while GAPLINC and risk score were upregulated in the
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N1-3 patients (Figure 4(d)); FAM30A was upregulated in
the M0 patients, while GAPLINC was upregulated in the
M1 patients (Figure 4(e)); AC02788.3 and FAM30A were
upregulated in the stage I-II patients, while risk score was
upregulated in the stage III-IV patients (Figure 4(f )).
Next, the clinical parameters and risk score were com-
bined into a nomogram plot for better prediction per-
formance of patients’ prognosis (Figure 4(g)). A high ft
between actual survival and nomogram-predicted survival
was found using the calibration plot (Figures 4(h)–4(j)). Te
DCA curve showed that the nomogram had a better per-
formance than both risk score and clinical parameters
(Figure 4(k)). Univariate and multivariate analyses showed
that our model is a risk factor independent of other clinical
parameters (Figures S3A and S3B).

3.5.High-andLow-RiskPatientsHaveDiferentSensitivities to
Immunotherapy and Chemotherapy. Te TIDE algorithm
was used to calculate the TIDE score of each patient,
which can refect the patient’s response to immunotherapy
(Figure 5(a)). A positive correlation was found between
the risk score and the TIDE score (Figure 5(b),
correlation� 0.172, P< 0.001). According to the results, low-
risk patients had a lower TIDE score and a higher proportion

of patients who responded to immunotherapy (Figures 5(c)
and 5(d), 41.6% vs. 29.9%). Additionally, high-risk patients
were more sensitive to cisplatin and docetaxel (Figure 5(e)).

3.6. Risk Score Was Associated with Tumor Metabolism and
M2 Macrophages. Biological enrichment analysis in-
dicated that pathways of notch signaling, TGF-β sig-
naling, interferon alpha response, and interferon-gamma
response were activated in the high-risk group
(Figure 6(a)). Meanwhile, we found a signifcant corre-
lation between risk score and M2 macrophages
(Figure 6(b), correlation � 0.130, P< 0.001). In addition,
M2 macrophage-related molecules were highly expressed
in the high-risk patients (Figure 6(c)). Furthermore,
high-risk patients might have higher fatty acid elongation
and biosynthesis of unsaturated fatty acids but lower fatty
acid biosynthesis, fatty acid degradation, primary bile
acid biosynthesis, glycerophospholipid metabolism, ether
lipid metabolism, arachidonic acid metabolism, and
linoleic acid metabolism levels (Figure 6(d)). A higher
TMB, mRNAsi, and EREG-mRNAsi level were observed
in the high-risk patients, but not MSI (Figures 6(e)–6(h)).
Next, we explored the biological role of identifed model
lncRNAs, including AC027288.3, AP001189.3, FAM30A,
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GAPLINC, LINC00578, and LINC01936. Results showed
that for the patients with high AC027288.3 expression,
the pathways of myogenesis, allograft rejection,
epithelial-mesenchymal transition, coagulation, and
angiogenesis were enriched in (Figure S4A); for the pa-
tients with high AP001189.3 expression, the pathways of
angiogenesis, TGF-β signaling, IL6/JAK/STAT3 signal-
ing, coagulation, complement, epithelial-mesenchymal
transition, and apical junction were enriched in
(Figure S4B); for the patients with high FAM30A expression,
the pathways of allograft rejection, interferon-gamma re-
sponse, IL6/JAK/STAT3 signaling, interferon alpha response,
infammatory response, and IL2/STAT5 signaling were
enriched in (Figure S4C); for the patients with highGAPLINC
expression, the pathways of angiogenesis, TGF-β signaling,
IL6/JAK/STAT3 signaling, interferon alpha response, protein
secretion, and bile acid metabolism were enriched in
(Figure S4D); for the patients with high LINC00578 ex-
pression, the pathways of epithelial-mesenchymal transition,

infammatory response, allograft rejection, angiogenesis, and
IL6/JAK/STAT3 signaling were enriched in (Figure S4E); for
the patients with high LINC01936 expression, the pathways of
allograft rejection, interferon gamma response, myogenesis,
infammatory response, KRAS signaling, and epithelial-
mesenchymal transition were enriched in (Figure S4F).
Moreover, results indicated that risk score was positively
correlated with the M0 macrophages, not the M1 macro-
phages (Figures S5A and S5B).

3.7. GAPLINC May Afect M2 Macrophages Polarization
throughMultiple Metabolism Pathways. Based on the public
data analysis, we found a positive correlation between
GAPLINC and M2 macrophages (Figure 7(a),
correlation� 0.310, P< 0.001). Also, M2 macrophage-related
molecules were overexpressed in the patients with high
GAPLINC expression (Figure 7(b)). KM showed that
GAPLINC is a risk factor for lung cancer patients (Figure 7(c),
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Figure 3: Construction and validation of prognosis signature. (a and b) LASSO regression of input genes; (c) multivariate Cox regression
based on the genes identifed by LASSO regression; (d) overview of the risk score in the training cohort; (e) KM survival and ROC curve of
high- and low-risk patients in the training cohort; (f ) overview of the risk score in the validation cohort; (g) KM survival and ROC curve of
high- and low-risk patients in the validation cohort.
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Figure 4: Continued.
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HR� 1.34,P � 0.004). Considering the efect of GAPLINC on
lung cancer immunotherapy, we further explored its un-
derlying mechanisms. We observed a higher expression level
of PD-1 and PD-L2, while a lower expression level of PD-L1
and CTLA4 was observed in patients with a high GAPLINC
level (Figures 7(d)–7(g)). No signifcant diference was ob-
served in TMB level between patients with high and low
GAPLINC expression (Figure 7(h)). Meanwhile, we noticed
that the patients with high GAPLINC might have lower MSI
and mRNAsi levels (Figures 7(i)–7(j)). Also, no remarkable
diference was found in EREG-mRNAsi (Figure 7(k)). Next,
we explore the metabolic diferences in patients with high
and low GAPLINC expression, as well as high and low M2
macrophage infltration. Results showed that fatty acid
biosynthesis, fatty acid elongation, fatty acid degradation,
primary bile acid biosynthesis, ether lipid metabolism,
arachidonic acid metabolism, sphingolipid metabolism,
fatty acid metabolism, fat digestion and absorption,
cholesterol metabolism, biosynthesis of unsaturated fatty

acids, glycerolipid metabolism, and the PPAR signaling
pathway had consistent expression patterns in patients
with high GAPLINC and high M2 macrophages
(Figures 8(a) and 8(b)). We next identifed the molecules
that were signifcantly correlated with GAPLINC and also
involved in these metabolism pathways. GAPLINC might
afect tumor metabolism and M2 macrophages by regu-
lating these molecules (Figure 8(c)). Finally, GO analysis
indicated that GAPLINC was involved in the structural
constituent of the skin epidermis (GO: 0030280),
receptor-ligand activity (GO: 0048018), signaling receptor
activator activity (GO: 0030546), glycosaminoglycan
binding (GO: 0005539), hormone activity (GO: 0005179),
chemokine activity (GO: 0008009), intermediate flament
(GO: 0005882), secretory granule lumen (GO: 0034774),
vesicle lumen (GO: 0031983), cytoplasmic vesicle lumen
(GO: 0060205), keratin flament (GO: 0045095), cornifed
envelope (GO: 0001533), epidermis development (GO:
0008544), epidermal cell diferentiation (GO: 0009913),
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Figure 6: Metabolism andM2macrophage infltration diferences in patients with diferent risk groups. (a) Biological enrichment of the risk
score based on the hallmark gene set; (b) correlation between the risk score and M2 macrophage infltration; (c) M2 macrophage-related
molecules were highly expressed in the high-risk patients; (d) metabolism diference between high- and low-risk patients; (e)–(h) TMB,MSI,
mRNAsi, and EREG-mRNAsi diference between high- and low-risk patients.
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Figure 7: GAPLINC induces M2macrophages polarization. (a) Correlation between GAPLINC andM2macrophages based on public data;
(b) M2 macrophage-related molecules were highly expressed in the patients with high GAPLINC expression; (c) KM survival curve of
patients with high and low GAPLINC expression; (d)–(g) hub immune checkpoints level in patients with high and low GAPLINC ex-
pression; (h)–(k) TMB, MSI, mRNAsi, and EREG-mRNAsi diference in patients with high GAPLINC expression.
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Figure 8: Continued.
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skin development (GO: 0043588), keratinocyte diferen-
tiation (GO: 0030216), keratinization (GO: 0031424), and
cornifcation (GO: 0070268) (Figure 8(d)).

4. Discussion

Lung cancer is still a threatening disease globally. Despite the
progress of medical technology, the incidence and death cases
of lung cancer still keep rising due to lifestyle and environ-
mental factors [20]. Tus, an in-depth exploration of lung
cancer biological mechanisms is important and meaningful.

LncRNAs widely existed in all levels of cells and are
famous for their extensive regulation efect [21, 22].
Recently, the association between lncRNAs and

metabolism has aroused the interest of researchers. By
interacting with RNA, chromatin, and proteins, lncRNAs
can correspondingly infuence mRNA stability, chro-
matin structure, and protein function, making them a key
factor in tumor metabolism [23]. Previous studies have
shown that lncRNAs can regulate HMGCR and LDLR in
an SREBP2-dependent manner, further afecting lipid
homeostasis [24]. In nasopharyngeal cancer, Zheng et al.
indicated that lncRNA TINCR can bind ACLY and
prevent its ubiquitin degradation to maintain the total
level of intracellular acetyl CoA, further afecting cancer
progression and chemoresistance [25]. Also, lncRNAs
have been reported to be involved in the regulation of the
synthesis of triglycerides, phospholipid metabolism, and

(c)

ONTOLOGY

Biological Process
Cellular Component
Molecular Function

(0, 2]
(2, 4]
(4, 6]
(6, 8]
(8, 10]
(10, 15]
(15, 20]
>=20
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(d)

Figure 8: GAPLINC may afect M2 macrophages’ polarization through multiple metabolism pathways. (a) Metabolism diferences in
patients with high and low GAPLINC expression; (b) metabolism diferences in patients with high and low M2 macrophage infltration;
(c) GAPLINC afects tumor metabolism and M2 macrophages by regulating specifc molecules; (d) GO analysis of GAPLINC.
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so on [26]. Meanwhile, lncRNA has a link with the M2
polarization of macrophages. Cao et al. found that the
lncRNA MM2P can afect M2 macrophage polarization
by enhancing the phosphorylation of STAT6, thereby
promoting cancer progression [9]. Liang et al. revealed
that lncRNA RPPH1 could interact with TUBB3, there-
fore inducing M2 macrophage polarization through an
exosome manner [27]. Terefore, identifying the
lncRNAs acting as the “bridge” connecting tumor
metabolism and M2 macrophages can provide novel
insights for future studies.

We frst quantifed the M2 macrophages through the
CIBERSORT algorithm. Results showed that the patients
with high M2 macrophage level tended to have worse
survival outcomes, and multiple oncogenic pathways were
activated. Our results are consistent with previous studies.
Chen et al. revealed that miR-19b-3p can promote lung
cancer metastasis by inducing M2 macrophage polarization
in a Hippo-dependent manner [28]. Lu et al. revealed that
Oct4 can contribute to M2 macrophage polarization by
increasing the M-CSF level, therefore promoting cancer
development [5]. Tese results refect the validity of our
analysis. Te pathways identifed can provide direction for
the following studies focused on M2 macrophages in lung
cancer.

Next, we found that multiple metabolic pathways
were associated with M2 macrophages. Some of these
have been revealed. Under a normal physiological mi-
croenvironment, macrophages can phagocytize and
eliminate cell debris and dying cells, which provides
nutrition for macrophages [29]. However, in TME,
macrophages often undergo metabolic reprogramming
and gradually lose the ability to kill tumor cells [30].
Terefore, it is necessary to take into account the complex
metabolic regulation of macrophages when studying their
interactions with tumor cells. Glucose and glutamine are
both sources of fuel for macrophages’ tricarboxylic acid
(TCA) cycle. M2 macrophages are highly dependent on
glutamine infux into the TCA cycle, in contrast to M1
macrophages [31]. Studies showed that macrophage
polarization may be afected by the nutrients they con-
sume [32]. Another example is the oxidation of fatty
acids, which provides macrophages with a crucial energy
source for maturation into M2 macrophages. For this, M2
macrophages internalize triacylglycerol substrate
through CD36 and perform lipolysis [33]. Te meta-
bolism pathway we identifed can improve the meta-
bolism regulatory network of M2 macrophages.

Moreover, we established a prognosis signature based
on AC027288.3, AP001189.3, FAM30A, GAPLINC,
LINC00578, and LINC01936. Te prognosis model
showed satisfactory performance in predicting patient
survival. Also, patients in diferent risk groups might
respond diferentially to immunotherapy and chemo-
therapy. GAPLINC was selected for further analysis.
Previous studies have explored the role of GAPLINC in
cancers. Luo et al. found that GAPLINC can facilitate
colon cancer progression by afecting the miR-34a/
c-MET axis [34]. Also, GAPLINC can increase SNAI2

expression by interacting with PSF and NONO, thereby
promoting colon cancer invasion [35]. In gastric cancer,
GIAPLINC can modify CD44-dependent cell invasion in
cancer cells, which relates to a poor prognosis [36].
Moreover, GAPLINC was found to be involved in the
regulation of epithelial-mesenchymal transition, further
facilitating liver cancer invasion and migration [37].
Zhao et al. found that the TGF-β could facilitate cell
invasion and migration in lung cancer by regulating
GAPLINC [38]. Nonetheless, few studies concentrated on
the interaction between GAPLINC and M2 macrophages.
A new understanding of GAPLINC’s role in cancer may
be provided by our results, especially in lung cancer,
making it an underlying biological target.

Several limitations should be discussed. First, as
a result of the low proportion of Asian and African
populations in the enrolled samples, there may be racial
bias in the results. Second, clinical information was in-
complete; for example, a large number of patients do not
have their M-stage information. Our conclusions would
be more credible if all the data were complete and openly
accessible.
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