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Identifying crystal structure is a crucial step in the analysis of proteins, micro- and macro-molecules, 
pharmaceuticals, geological specimens, and synthetic materials [1-3].  The most common practices 
involve analysis of diffraction patterns produced in laboratory X-ray diffractometers, transmission 
electron microscopes, and synchrotron X-ray sources.  However, these techniques are slow, require 
careful sample preparation, can be difficult to access, and are prone to human error during analysis.  
Traditional electron backscatter diffraction (EBSD) is comparatively faster and easier to perform; 
however, contains the caveat that you have already determined the phases in your sample. 
 
This work presents a newly developed methodology that represents a paradigm change in electron 
diffraction-based structure analysis techniques, with the potential to revolutionize multiple 
crystallography-related fields.  A machine learning-based approach for rapid and autonomous 
identification of the crystal structure of metals and alloys, ceramics, and geological specimens, without 
any prior knowledge of the sample, is demonstrated utilizing the electron backscatter diffraction 
technique.  This methodology can be utilized to assist in identifying an unknown phase or produce phase 
maps of the crystal structure at each location (see Fig. 1 for the methodology of this machine learning 
approach). 
 
The applicability of this approach is evaluated on diffraction patterns from samples unknown to the 
computer without any human input or data filtering.  Furthermore, the internal operations of the neural 
network are elucidated through visualizing the symmetry features learned by the convolutional neural 
network and it is determined that the model looks for the same features a crystallographer would use, 
even though it is not explicitly programmed to do so. Instead, the deep learning system takes in raw data 
and automatically discovers the representations that maximize classification performance [4]. Fig. 2 
shows examples of the regions in the EBSD patterns where deep learning was most strongly activated: 
zone axes.    This study opens the door to fully automated, high-throughput determination of crystal 
structures via several electron-based diffraction techniques.  Convergent beam electron diffraction 
(CBED) is an excellent candidate for transfer learning of this model since it also utilizes Kikuchi 
diffraction lines.  Moreover, the deep learning methodology employed herein could be applied to other 
disciplines outside of materials science including geology, pharmacology, and even structural biology 
[5]. 
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Figure 1.  Illustration of the inner workings of a convolutional neural network.  Each convolutional layer extracts 
features from its preceding layer, using filters (or kernels) learned from training the model, to form feature maps. 
These feature maps are then down-sampled by a pooling layer to exploit data locality. A traditional dense neural 
network, a simple type of classification network, is placed as the last layer of the CNN, where the probability that 
the input diffraction pattern belongs to a given class (e.g. Bravais lattice or point group) is computed. 
 

 
Figure 2.  Visualizing the features utilized for classification of a diffraction pattern to face-centered cubic (FCC).  
An electron backscatter diffraction pattern from nickel (Ni) and aluminum (Al) were selected from nearly 
identical orientations. The corresponding heatmap displays the normalized importance of information in the 
image for correctly classifying it as FCC.  It is observed that for each of these two images, the symmetry 
information near the [1-12] zone axis produces the highest activation, followed by the [112]  zone axis, and 
symmetry shared by the [001] and [0-13] zone axes. 
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