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Abstract
Accurate tracking and reconstruction of surgical scenes is a critical enabling technology toward autonomous robotic
surgery. In endoscopic examinations, computer vision has provided assistance in many aspects, such as aiding in
diagnosis or scene reconstruction. Estimation of camera motion and scene reconstruction from intra-abdominal
images are challenging due to irregular illumination and weak texture of endoscopic images. Current surgical 3D
perception algorithms for camera and object pose estimation rely on geometric information (e.g., points, lines, and
surfaces) obtained from optical images. Unfortunately, standard hand-crafted local features for pose estimation usu-
ally do not perform well in laparoscopic environments. In this paper, a novel self-supervised Surgical Perception
Stereo Visual Odometer (SPSVO) framework is proposed to accurately estimate endoscopic pose and better assist
surgeons in locating and diagnosing lesions. The proposed SPSVO system combines a self-learning feature extrac-
tion method and a self-supervised matching procedure to overcome the adverse effects of irregular illumination
in endoscopic images. The framework of the proposed SPSVO includes image pre-processing, feature extraction,
stereo matching, feature tracking, keyframe selection, and pose graph optimization. The SPSVO can simultaneously
associate the appearance of extracted feature points and textural information for fast and accurate feature tracking.
A nonlinear pose graph optimization method is adopted to facilitate the backend process. The effectiveness of the
proposed SPSVO framework is demonstrated on a public endoscopic dataset, with the obtained root mean square
error of trajectory tracking reaching 0.278 to 0.690 mm. The computation speed of the proposed SPSVO system
can reach 71ms per frame.

1. Introduction
Gastrointestinal cancer is the second leading cause of cancer death in the world and accounts for
about 35% of all cancer-related deaths [1, 2]. Some hospitals are now equipped with two-dimensional
endoscopic instruments for doctors, such as the da Vinci R© surgical system (Intuitive Surgical, Inc.,
Sunnyvale, CA), to assist in performing minimally invasive surgery (MIS) of the gastrointestinal tract,
abdominal cavity, chest cavity, and throat. The most direct and effective screening for gastrointestinal
cancers is two-dimensional endoscopy, such as capsule endoscopy, upper gastrointestinal endoscopy,
and colonoscopy [3–6].

In traditional endovascular MIS processes, the position of diseased tissue is generally estimated by
visually examining 2D endoscope images. However, the endoscope images usually lack sufficient tex-
ture. When combined with irregular illumination, extensive, similar areas, and low contrast, it becomes
difficult for surgeons to quickly and accurately locate lesions. Other problems due to hand-eye coordi-
nation and visual misdirection may also occur during operation [7]. Recently, computer vision-based
algorithms have attracted much attention for success in stereoscopic endoscope position tracking and
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providing intraoperative reconstruction of surgical scenes. Tatar et al. [8] attempted to use a depth cam-
era combined with a time-of-flight method to locate positions of surgical instruments. Lamata et al.
[9] investigated the features (mutual reflection, diffuse reflection, highlight parts, and colors) of human
liver photos based on the Lambert-body method and tried to reconstruct a 3D model of the liver by
adjusting the albedo and light intensity of the endoscopic images. Wu et al. [10] aimed to track geomet-
ric constraints of surgical instruments and reconstruct 3D structures from 2D endoscopic images with
a constrained decomposition method. Seshamani et al. [11] combined a video mosaic method and an
online processing technique to expand the field of view to better assist surgeons in performing surg-
eries and lesion diagnosis. Due to the complex features of an enterocele, endoscopic images often have
strong illumination variation and feature sparsity, resulting in difficulties for the aforementioned methods
to realize precise organ 3D reconstruction and lesion localization.

Recently, the Structure from Motion (SfM) approach was proposed to construct high-quality 3D
models of human organs based on endoscopic images. The SfM approach mainly consists of feature
extraction, keypoint matching, attitude estimation, and beam adjustment. Based on the SfM technique,
Thormaehlen et al. [12] generated a 3D model of the human colon with surface texture features. Koppel
et al. [13] developed an automated SfM approach to reconstruct a 3D model of the colon from endoscopic
images to assist surgeons in surgical planning. Mirota et al. [14] proposed a direct SfM approach to track
endoscope position using video data to improve the accuracy of Endonasal Skull Base Surgery naviga-
tion. Kaufman et al. [15] applied a direct Shape from Shading (SfS) algorithm to better extract detailed
information of surface textures from endoscopic images and combined the SfM method to reconstruct a
refined 3D model of human organs. Assisted by manual drawing of the outline of the major colonic folds,
Hong et al. [16] reconstructed a virtual colon segment based on an individual colonoscopy image to aid
surgeons in detecting colorectal cancer lesions. However, accurate reconstruction of human organs based
on SfM methods requires stable camera motion since it needs to match feature points between multi-
ple images and calculate the camera pose. Furthermore, data obtained from sensors such as monocular
cameras, Inertial Measurement Units, ultrasonic lidar, etc., are usually large, thus requiring comput-
ing resources to perform batch data processing. Hence, SfM techniques are usually applied offline. For
actual surgical operation, real-time feedback plays an important role in providing surgeons with timely
and accurate information to allow them to make optimal decisions and adapt their approach as necessary
during the procedure. A real-time online computer vision-based algorithm is hence highly desirable to
improve accuracy and precision of surgical interventions and reduce the risk of complications or adverse
outcomes.

The Visual Simultaneous Localization and Mapping (VSLAM) method is a real-time online data
processing technique which requires less computing resources compared to the SfM approach. VSLAM
utilizes endoscopic video or image sequences to estimate the pose and location of the endoscope and
to reconstruct the abdominal cavity and other scenes of the MIS [17–19]. The goal of VSLAM is to
improve the visual perception of surgeons, and it plays an important role in developing online surgical
navigation systems and medical augmented reality technology. Much research in recent years has focused
on improving the accuracy and efficiency of VSLAM methods for medical applications, particularly in
the context of MIS systems. Mountney et al. [20] first explored the application of VSLAM in MIS by
extending the Extended Kalman Filter SLAM (EKF-SLAM) framework to handle complex light reflec-
tion and low-texture environments. However, the obtained point clouds were too sparse and could not
represent 3D shapes and detailed surface textures of human organs. Mountney and Yang [21] proposed
a novel VSLAM method to online estimate tissue deformation and motion of the laparoscopic camera
by establishing a periodic tissue deformation parameter model and generating a joint registered 3D map
with preoperative data. However, the slow speed of the system’s map-building algorithm can lead to poor
real-time tracking and loss of feature points. In [22], Klein and Murray proposed a Parallel Tracking and
Mapping (PTAM) algorithm, a monocular VSLAM approach based on keyframes. The PTAM can run
in real time on a single CPU and handle large-scale environments and a variety of lighting conditions.
However, it requires high-quality feature detection and feature matching for camera locating and scene
mapping.
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The aforementioned methods are generally based on monocular endoscopes, where it is difficult
to process endoscopic images with small viewing angles and rapid frame transitions. Lin et al. [23]
extended the application scope of PTAM to stereo endoscopy, which allows for simultaneous stereo-
scopic tracking, 3D reconstruction, detection of deformation points in the MIS setting and can generate
denser 3D maps compared to EKF-SLAM methods. However, this stereo system suffers from time-
consuming feature point matching. Later, Lin et al. [24] improved texture feature selection, green channel
selection, and reflective area processing of the endoscopic images and proposed a revised VSLAM
method to restore the surface structure of a 3D scene of abdominal surgery based on SLAM. However, the
proposed method relies heavily on tissue surface vascular texture. In cases where the tissue being imaged
has little or no vascularity, this method may not be effective in detecting unique features. Recently,
Mur-Artal [25] provided an ORBSLAMsystem constructed via a robust camera tracking and map-
ping estimator with remarkable camera relocation capabilities. Mahmoud [26] applied the ORBSLAM
algorithm to track the position of the endoscope without additional tracking elements and provide 3D
reconstruction in real time. This extended the ORBSLAM to reconstruct semi-dense maps of soft organs.
However, although the above two ORBSLAM methods based on feature point approaches reduce com-
putational complexity, the reduction in the amount of information compared to the original graph also
implies that some useful information is lost. While the two ORBSLAM methods reduce computational
complexity, the reduction in useful information can lead to inaccurate camera location and visceral
surface texture mapping.

Feature point detection is a fundamental and important processing step in Visual Odometry (VO)
or VSLAM. Local features, such as the Scale Invariant Feature Transform (SIFT), Speed Up Robust
Feature (SUFT), Oriented FAST, and Rotated BRIEF (ORB), for camera pose estimation are commonly
hand-crafted by calling OpenCV algorithms from a third-party function library. However, the feature
points extracted by these algorithms are often unevenly distributed, with large amounts of useful data
lost, resulting in inaccurate camera positioning and scene mapping [27–29]. Moreover, the surface of the
human viscera often has poor texture. Endoscope images often have a small field of view and are com-
monly taken with lighting changes and specular reflection, Fig. 1. Weak textures and specular reflections
pose challenges to VSLAM [27], making many SfM or SLAM frameworks such as ORB-SLAM3 [30]
ineffective in these situations. In this paper, a self-supervised feature extraction method “SuperPoint”
[31] and a matching feature technique “SuperGlue” are applied to address challenges such as illumi-
nation changes, weak textures, and specular reflections in the human viscera. Moreover, this approach
accelerates convolutional Neural Network (CNN) computations to enable real-time endoscopic pose
estimation and viscera surface map construction.

Feature matching is another critical step in feature-based VO or SLAM techniques. This involves
finding the same features in two images and establishing correspondences between them to achieve
camera pose estimation and map updates. The performance of the feature-matching process directly
affects the accuracy and stability of the VO or SLAM system. Chang et al. [32] used feature matching
to perform heart surface sparse reconstruction through structural propagation. The algorithm obtained
parallax data between point pairs to estimate stereo parallax of each frame and motion information
between consecutive frames. However, the method obtained a sparse parallax field, and further com-
plex interpolation calculations were required to obtain a denser reconstructed scene of the heart surface.
Lin et al. [33] utilized a vessel-based line-matching approach based on block-matching geometry to
avoid pixel-wise matching. However, the application of local characteristics of image features of the
viscera can lead to mismatched point pairs and thus incorrect camera location. Direct methods such
as DSO [34] or DSM [35] and hybrid methods such as SVO [36] assume that ambient illumina-
tion remains constant, which is difficult to ensure due to severe illumination variations of endoscopic
images. The Self-Supervised Learning (SSL) approach can match images by using image content itself
as supervision, without requiring explicit labels or annotations. SSL methods have shown promising
performance in image-matching tasks such as stereo matching and optical flow estimation of real-life
scenarios and have enhanced robustness to local illumination changes [37]. However, the performance
of SSL in endoscopic image matching is unknown and remains to be studied. This paper proposes an
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(a) (b) (c)

Figure 1. Frames from “colon_reconstruction_dataset.” (a) a Small field of view, (b) specular
reflections, (c) lighting changes.

improved SSL method with adaptive deep learning to address data association between endoscopic
images.

This paper introduces SPSVO, a self-supervised surgical perception stereo visual odometer for endo-
scope pose (position and rotation) estimation and scene reconstruction. The proposed method overcomes
adverse effects of endoscopic images on feature extraction and tracking, such as irregular illumination,
poor surface texture, low contrast and extensive, and similar areas. The main contributions of this paper
are as follows:

• A VO system is proposed that integrates a SuperPoint feature extraction method based on CNN
and a SuperGlue feature-matching network. The SPSVO system enables extraction of enriched
feature points compared with common hand-crafted local feature-detecting methods, such as
ORB, SIFT, and SUFT.

• An image illumination pre-processing technique is proposed to address mirror reflection and
illumination variations of endoscopic images.

• The SPSVO system includes image pre-processing, feature extraction, stereo matching, feature
tracking, keyframe selection, and pose graph optimization.

• The performance of the proposed system is evaluated based on a public dataset:
“colon_reconstruction_dataset” [38]. Results indicate that the proposed system outperforms
ORB-SLAM2 [39] and ORB_SLAM2_Endoscopy [40] methods in feature detection and track-
ing. ORB-SLAM2 cannot extract sufficient feature points to initialize the scene map of viscera
and thus results in loss of the endoscope track.

• The proposed system is capable of accurate and rapid operation within the human viscera; the
computation speed of the SPSVO system is as fast as 131ms per frame, enabling real-time
surgical navigation.

The rest of this paper is organized as follows: Section 2 presents related work on endoscopic VSLAM
methods. Section 3 presents the proposed SPSVO system. Section 4 presents experimental results and
analysis. Finally, conclusions are drawn in Section 5.
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Figure 2. Classic VSLAM framework.

2. Related work
2.1. VSLAM and VO for endoscopy
VSLAM is a technique that uses camera vision for simultaneous robot self-locating and scene map con-
struction [41]. It enables autonomous robot exploration in unknown or partially unknown environments.
The architecture of a classical VSLAM system typically includes a front-end visual odometer, backend
optimization, loop closure detection, and finally mapping, as shown in Fig. 2.

VSLAM has the potential to estimate the relative pose of the endoscope camera and construct a vis-
cera surface texture map, which is important for lesion localization and surgical navigation. However,
complicated intraoperative scenes (e.g., deformable targets, surface texture, sparsity of visual features,
viscera specular reflection, etc.) and strict accuracy requirements have posed challenges to the appli-
cation of VSLAM to minimally invasive surgery. Recently, Lamarca et al. [42] proposed a monocular
non-rigid SLAM method that combines shape from template (SfT) and non-rigid structure from motion
(NRSfM) methods for non-rigid environment scene map construction. However, this method is sus-
ceptible to variations in illumination and does not perform well under poor visual texture conditions,
rendering it unsuitable for reconstruction of viscera with non-isometric deformations. Later, Gong et
al. [43] constructed an online tracking and relocation framework which employs a rotation invariant
Haar-like descriptor and a simplified random forest discriminator to select and track the target region
for gastrointestinal biopsy images. Song [44] constructed a real-time SLAM system to address scope-
tracking problems through an improved localization technique. Much work has focused on adapting
VSLAM to enable application to an endoscopic scene, addressing problems such as poor texture [45, 46],
narrow field of view [11], and specular reflections [47]. Still, the variable illumination problem remains
unaddressed. Intraoperative scenarios require accurate camera localization; complex viscera images can
lead to mismatched point pairs and thus incorrect camera location. Data association also remains a
challenging problem for VSLAM systems in MIS scenarios [48]. This paper focuses on addressing the
problems of variable illumination and data association for intraoperative scenes.

2.2. SLAM based on SuperPoint and SuperGlue
CNNs have made outstanding achievements in computer vision to aid lesion diagnosis or intraopera-
tive scene reconstruction [48–52]. Researchers have studied and improved many aspects of VSLAM
with learning-based feature extraction techniques to address variable illumination and poor visceral sur-
face texture in complex surgical scenarios [53, 54]. Bruno et al. [49] presented a novel hybrid VSLAM
algorithm based on a Learned Invariant Feature Transform network to perform feature extraction in a
traditional backend based on an ORB-SLAM system. Li et al. [52] attempted to use an end-to-end deep
CNN in VSLAM to extract local descriptors and global descriptors from endoscopic images for pose esti-
mation. Schmidt et al. [50] proposed Real-Time Rotated descriptor (ReTRo), which was more effective
than classical descriptors and allowed for the development of surgical tracking and mapping frame-
works. However, the aforementioned methods are based on traditional Fast Library for Approximate
Nearest Neighbors (FLANN) techniques to track keypoints and match extracted features. FLANN does
not perform well at feature point matching of high-similarity images, resulting in mismatches between
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Figure 3. Structure of the SPSVO system.

extracted new features and potential features. Its performance is even worse under variable illumination;
therefore, FLANN is not always applicable for MIS [55].

This paper proposes to apply a SuperPoint approach for keypoint detection and to utilize the
SuperGlue technique to deal with complex data associations in intraoperative scenes. SuperPoint [31]
is a self-supervised framework for detecting features and describing points of interest, while SuperGlue
[37] is a network that can simultaneously filter outliers and match features. Recently, researchers have
studied the effectiveness of SuperPoint and SuperGlue in VSLAM systems for MIS [56, 57]. Barbed
et al. [56] demonstrated that SuperPoint delivers better feature detection in VSLAM than using hand-
crafted local features. Laura et al. [58] applied SuperPoint to a monocular VSLAM system to estimate
the pose of the ureteroscope tip. Sarlin et al. [57] proposed a Hierarchical Feature Network (HF-Net)
algorithm based on SuperPoint and SuperGlue to predict local features and global descriptors for a
6-DoF localization of the camera. However, existing algorithms require substantial computing power
to run in real time, which presents a significant obstacle to building maps in real time. In this work, a
SPSVO algorithm is proposed to accelerate the CNN to realize real-time endoscopic pose estimation
and viscera surface map construction.

3. Proposed SPSVO approach
3.1. System overview
The proposed SPSVO approach consists of four main modules: feature extraction, stereo matching,
keyframe selection, and pose graph optimization, as shown in Fig. 3. The SPSVO can perform fea-
ture matching and keypoint tracking between stereo images and images in different frames, and can
avoid incorrect data associations by using matching results of relevant key points. For real-time perfor-
mance, the SPSVO performs feature tracking of images from only the left eye to reduce computation
time. Nvidia TensorRT Toolkit is used to accelerate feature extraction and matching. On the backend,
the SPSVO uses a traditional pose graph optimization framework for map construction. The above mod-
ules are designed to enable real-time application of the SPSVO within human enterococci and achieve
accurate tracking by combining the efficiency of traditional optimization methods and the robustness of
learning-based techniques.
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Original image Image after using CLAHE

(a) (b)

Figure 4. Image pre-processing. (a) Original image and (b) image after using CLAHE.

3.2. Image pre-processing
For image pre-processing, the SPSVO uses Contrast-Constrained Adaptive Histogram Equalization
(CLAHE) [59] to enhance contrast, brightness, details, and texture of the input image. Due to severe
variability in illumination in optical colonoscopy, some parts of the L-channel color space of the image
are overexposed, resulting in image specular reflections, while some images are underexposed and lead
to dark areas. In this work, pixels with a luminance greater than 50 are marked as reflective regions,
and pixel values in the reflective region are set to the average of surrounding pixels. Possible noise is
eliminated by a morphological closure operation. Performance of the CLAHE is demonstrated in Fig. 4.
The proposed CLAHE effectively improves the uniformity of illumination and improves the contrast of
endoscopic images. Due to the proximity of the endoscope light source to the inner wall of the organ and
rapid movement of the endoscope, this pre-processing step allows the system to eliminate the effects of
mismatches caused by specular reflections.

3.3. Proposed SuperPoint model
The SuperPoint network consists of four parts: encoding network, feature point detection network,
descriptor detection network, and loss function. The encoder network converts the input image into
a high-dimensional tensor representation for the decoder, making it easier to detect and describe key
points. The feature point detection network is a decoding structure that calculates keypoint probabil-
ity for each pixel and embeds a sub-pixel convolution algorithm to reduce computational effort. The
descriptor detection network is also a decoding structure that extracts semi-dense descriptors first, per-
forms a bicubic interpolation algorithm to obtain full descriptors, and uses L2-normalization to obtain
unit-length descriptors. The loss function is a measure of the difference between the network output
and ground truth label, guiding the network to optimize and improve its performance in detecting and
describing key points of the input image. This provides better performance for related applications
such as VSLAM, 3D reconstruction, and autonomous navigation. The SuperPoint network is trained
in PyTorch. The input of the SuperPoint network is a single image I with I ∈ RH×W , where H is the
height and W is the width of the image, in pixels. The output of the network is positions of key points
extracted in each image and their corresponding descriptors.
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Table I. The parameters used in ORB-SLAM2 and SPSVO are presented. Default param-
eters indicate in italics, the optimal parameters indicate in bold. Parameters A, B, C, and
D all use default values in order to follow the principle of variable control. A: Scale fac-
tor between levels in ORB scale pyramid. B: Number of levels in ORB scale pyramid.
C: Initial response threshold of FAST detector. D: Minimum response threshold of FAST
detector.

ORB-SLAM2 SPSVO
Threshold of feature points A B C D Threshold of feature points

Value 1 700 1.20 8 20 7 700
Value 2 1200 1.20 8 20 7 1200
Value 3 1600 1.20 8 20 7 1600

Based on Barbed [56], the loss function can be expressed as

LSP (X, X′, D, D′; Y , Y ′, S) = LP (X, Y) + LP (X′, Y ′) + λLd (D, D′, S) (1)

where the X and X áre outputs of the original detection header of image I and warped image I,́ respec-
tively. The associated detection pseudo-labels are Y and Y.;́ D and D áre outputs of the raw description
header. S ∈ RH/8×W/8×H/8×H/8 is the homography estimation matrix. LP represents the loss of feature points
during detection, which can be used to measure the difference between detected outputs and the pseudo-
label. The Ld is the loss function of the descriptor; λ is a weight parameter used to balance the weight
of Lp and Ld .

As shown in Fig. 1(b), there are generally multiple specular reflection areas (white spot areas) that
exist in an endoscopic image. Most existing feature detection methods tend to detect many feature points
around contour areas or specular reflection areas [56]. For VSLAM, the more evenly the feature points
are distributed in the image, the more accurately feature matching can estimate spatial pose relation. To
make feature points extracted by SuperPoint evenly distributed in the region of interest, the specularity
loss (LS), which reconsiders weights of all extracted key points in specular regions, is proposed. The
revised loss function is defined as

LESP (I, I ′, X, X′, D, D′; Y , Y ′, S) = LSP (. . .) + λSLS (X, I) + λSLS (X, I ′) , (2)

in which λS is a scale weighting factor determined by characteristics of the dataset and contribution of
each objective function to the model performance. In this work, λs = 100. The LS is defined as

LS (X, I) =
∑ H, W

h, w = 1
[
m (I)hw · d2s (softmd (X))hw

]

ε + ∑ H, W
h, w = 1

m (I)hw

, (3)

where softmd() and d2s() are SoftMax functions. The ε is a constant with ε = 10−10 [31, 56]. The m(I)hw

is a weighting mask, where m(I)hw > 0 for pixels near a specularity and 0 otherwise. The value of LS is
close to zero when there is no key point at that location.

The default thresholds of the parameters of the ORB-SLAM2 and SPSVO are determined based on
[30, 51], as shown in Table 1. The algorithms were run with default thresholds at the beginning and
calibrated by comparing with the results of the ground truth values through increasing or decreasing the
thresholds. In this work, ±40% variations were made with respect to the default thresholds. Figure 5
shows the comparison of the number of keypoints matched per keyframe with feature points threshold of
1600, as can be observed that the proposed SPSVO outperforms the ORB-SLAM2 in terms of matched
feature points (approximately 700 points versus 500 points).

Comparison of the distribution of feature points extracted by the SPSVO algorithm and ORB-SLAM2
on the “colon_reconstruction_dataset” [38] is shown in Fig. 6; the image resolution is 480 × 640.
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Figure 5. Comparison of number of keypoints matched per keyframe with feature points threshold of
1600.

(a) (b)

Figure 6. Comparison of feature extraction results of the ORB-SLAM2 and SPSVO methods.
(a) ORB-SLAM2 and (b) SPSVO.

According to the results of Table 1, the upper threshold of feature point extraction is set to 1600 to
ensure that both algorithms have the potential to obtain perfect system performance in most scenarios.
It can be seen that the SPSVO extracts more effective features than ORB-SLAM2. The large number
and even distribution of feature points will provide more scene information, thus improving the accuracy
of camera localization. Furthermore, the feature points extracted by SPSVO are evenly distributed and
located in textured areas, which is beneficial for subsequent VSLAM tasks such as keypoint matching,
camera localization, map construction, and path planning.
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Algorithm 1. SuperGlue Stereo Matching
Input: features_0 features_0
Output: the matched feature points
foreach exists(features_0 [idx]) || exists(features_1 [idx] do

norm0 = Normalize (features_0, image_width, image_height);
norm1 = Normalize (features_1, image_width, image_height); then
superglue.infer(norm_features0, norm_features1, indices0, indices1);
for(size_t i = 0; i < indices0.size(); i++) do

d = 1.0 - (mscores0[i] + mscores1[indices0[i]]) / 2.0; then
reject outliers
end

end

(a) (b)

Figure 7. Comparison of feature matching. (a) ORB_SLAM2 and (b) SPSVO.

3.4. Feature matching
The SuperGlue algorithm is commonly applied to simultaneously address feature matching and out-
lier filtering for real-time pose estimation in indoor and outdoor environments [60–62]. SuperGlue
needs to be trained on the true value of the trajectory in the abdominal cavity to achieve an adaptive
intra-abdominal environment. A bi-directional brute force matching algorithm is utilized to establish
correspondence between features in consecutive frames of an image sequence. Additionally, SPSVO
uses the Random Sample Consensus algorithm to remove false matches of feature points for robust
geometric estimation, see Algorithm 1. Figure 7 shows the results of the proposed algorithm for stereo
matching. The successfully matched feature pairs are connected by lines. It can be seen that the SPSVO
can accurately match a large number of key points. Moreover, the SPSVO has good consistency in
feature matching between frames, where a feature point can be consistently matched across multi-
ple frames. Consistent matching indicates that the proposed SPSVO can effectively estimate camera
position.

3.5. Keyframe selection
Keyframe selection plays an important role in reducing computational cost, decreasing redundant infor-
mation, and improving accuracy of VSLAM [22, 25, 63]. The general criteria for keyframe selection
are (1) distribution of the keyframes should not be too dense or too sparse; (2) the number of keyframes
should generate sufficient local map points [54]. Unlike other SLAM or VO systems, SPSVO integrates
a learning-based matching method that can effectively match frames with large differences in baseline
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Algorithm 2. The keyframe selection
Input: last_keyframe current_frame num_match
Output: bool(is_new_keyframe);
foreach exists(current_frame [idx]) do

Matrix4d current_pose = get_current_pose(); then
Matrix4d last_keyframe_pose = get_last_keyframe_pose(); then
if (num_feature_matches < min_num_feature_matches ||

delta_rotation_angle > max_rotation_angle ||
delta_translation_distance > max_translation_distance ||
num_frames_since_last_keyframe > max_frames_since_last_keyframe){

is_new_keyframe = true;
}
return is_new_keyframe;
end

end

length. Therefore, during feature-matching SPSVO only matches the current frame with keyframes,
which can reduce tracking error. The keyframe selection criteria should take into account the movement
between frames, information gain, tracking stability, and previous experience. Based on the key frame
selection principle [30, 51], the keyframe selection criteria corresponding to the matching process of
SPSVO are defined as:

• The distance between the current frame and the nearest keyframe (L) satisfies the condition of
L > Df ;

• The angle between the current frame and the nearest keyframe (θ ) satisfies the condition of
θ > θf ;

• The number of map points (NA) tracked by the current frame satisfies the condition Nu
1 < NA < Nl

2;
• The number of the map points (NB) tracked by the current frame satisfies the condition NB < N3;
• The number of frames since the last keyframe inserted (NC) satisfies the condition of NC > N4 .

in which, Df , θf , Nu
1 , Nl

2, N3, N4 are preset thresholds. A frame is selected as a keyframe if it meets any
of the above conditions, see Algorithm 2. The proposed keyframe selection criteria consider both image
quality and keypoint quality. These can play an important role in filtering useless or incorrect information
and avoiding adverse impacts on endoscope localization and scene mapping.

3.6. Keyframe selection
The Levenberg Marquardt (LM) algorithm is used as the optimization solver in the backend of the
proposed SPSVO to construct the Covisibility Graph. For each optimizing iterative loop, when LM
optimization converges, both inputs and outputs of the optimization process are set as inputs of the loss
function for decoding network training. The optimization variables are keyframes and map points, and
the corresponding constraints are the monocular and stereo constraints.

3.6.1 The monocular constraint
If a 3D map point wPi is observed by the left eye camera, the reprojection error ek,i of the i-th point in
the k-th frame is defined as

ek,i = ∧
pi − πi

(
wcRwPi + wct

)
, (4)
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where wPi is the i-th point observed by frame k, w is the world coordinate system and c is the camera
coordinate system. R and t are the rotation and translation of the camera. ∧

pi = (
∧
ui,

∧
vi) is the observation

data of the map point on the frame, and πi( · ) is the camera projection model representing coordinates
of the 3D map point projection on the left eye image, expressed as

πi

⎛
⎝

⎡
⎣ xi

yi

zi

⎤
⎦

⎞
⎠ =

[
fx

xi
zi

+ cx

fy
yi

zi
+ cy

]
, (5)

where [ xi yi zi ]T are the world coordinates of point wPi, and fx, fy, cx, cy are the intrinsic parameters of
camera.

3.6.2 The stereo constraint
If a 3D map point wPj is observed by both left and right cameras at the same time, the reprojection error
is defined as

ek,j = ∧
pj − πj

(
wcRwPj + wct

)
, (6)

where ∧
pj = (

∧
uj,

∧
vj,

∧
rj) is the observation data of the map point on the k-th frame of the right image, and

∧
rj is the horizontal coordinate of the right image. πj( · ) is the camera projection model representing the
3D map point projection on the stereo image and defined as

πj

⎛
⎝

⎡
⎣ xj

yj

zj

⎤
⎦

⎞
⎠ =

⎡
⎢⎣

fx
xj

zj
+ cx

fy
y
zj

+ cy

fx
xj−b

zj
+ cx

⎤
⎥⎦ , (7)

where b represents the baseline of the stereo camera. [ xj yj zj ]T are the world coordinates of point
wPj.

3.6.3 Graph optimization
Assuming that the distribution of key points satisfies a Gaussian distribution [64], the final cost function
of the proposed SPSVO can be defined as

J =
∑

k,i

ρk,i

((
ek,i

)T (
�k,i

)−1 (
ek,i

)) +
∑

k,j

ρk,j

((
ek,j

)T (
�k,j

)−1 (
ek,j

))
, (8)

where ρk,i and ρk,j are robust kernel functions to further reduce the impact of any possible outliers. (ek,i)T

and (ek,j)T are the transpose of matrix ek,i and ek,j, respectively. �k,i and �k,j are covariance matrices, and
(�k,i)−1, (�k,j)−1 are the inverse of these covariance matrices, respectively.

4. Experimental validation of the proposed SPSVO method
In this section, the performance of the proposed SPSVO is evaluated based on the
“colon_reconstruction_dataset” [38] and compared with ORB-SLAM2. SPSVO is a stereo VO
system without loop closure detection module. Furthermore, the colon_reconstruction_dataset does
not involve scene re-identification or map closure situations, so the impact of loop closure detection
module on algorithm comparison is very limited. Therefore, to ensure fair and accurate comparison,
loop closure detection is turned off in ORB-SLAM2. Frame threshold is defined as the number
of times a map point is observed by a keyframe for monocular and stereo constraints in graph
optimization.
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(a) (b)

Figure 8. Comparison between the endoscope trajectories estimated by ORB-SLAM2 and SPSVO, and
the true trajectories. (a) ORB-SLAM2 and (b) SPSVO.

4.1. Dataset
The “colon_reconstruction_dataset” contains 16 stereo colonoscope sequences (named as Case 0–
Case 15, there are total of 17,362 frames) with corresponding depth and ego-motion ground truth.

4.2. Implementation details
The proposed SPSVO algorithm runs in a C++ environment on a laptop with an i7-10750H CPU and
NVIDIA GTX1650Ti. SPSVO uses Nvidia TensorRT Toolkit to accelerate feature extraction and match-
ing networks and uses the LM algorithm of the g2o library for nonlinear squared optimization. OpenCV
and the Ceres library are applied to implement computer vision functions and statistical estimation,
respectively.

4.3. Results on the colon reconstruction dataset
The performances of the ORB-SLAM2 and SPSVO were tested with the
“colon_reconstruction_dataset”; however, the ORB-SLAM2 could only successfully obtain the
endoscope trajectories of “Case 0,” and results are shown in Figs. 8, 9 and Table 2. The data sequences
of “Case 0” contain 4751 frames of images for each left and right camera and have slower camera
motion speed and smaller translation and rotation amplitude compared to “Case 1” to “Case 10.” It
can be observed from Fig. 8 that ORB-SLAM2 has larger drift error compared to the proposed SPSVO
method.

Comparisons between estimated trajectories and true trajectories of the endoscope are shown in
Fig. 10. Colored solid lines represent estimated trajectories of the SPSVO. gray dotted lines repre-
sent real motion trajectories of the endoscope corresponding to the “colon_reconstruction_dataset”
[38]. Statistics for SPSVO are shown in Table 3. The average measurement error of SPSVO for the
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(a) (b)

Figure 9. Variation of the absolute pose error (APE) between the estimated trajectories of ORB-SLAM2
and SPSVO and the true trajectories. (a) ORB-SLAM2 and (b) SPSVO.

Table II. Statistical error analysis of estimated trajectories of ORB-SLAM2 and SPSVO on Case0
sequence (unit: mm).

Indicators
Max Mean Min RMSE STD

ORB- ORB- ORB- ORB- ORB-
SLAM2 SPSVO SLAM2 SPSVO SLAM2 SPSVO SLAM2 SPSVO SLAM2 SPSVO

Case 0 70.379 6.447 27.455 1.089 9.81 0.003 30.643 1.332 13.610 0.767

10 cases is between 0.058 and 0.740 mm, with the RMSE between 0.278 and 0.690 mm. This indi-
cates that the proposed SPSVO method can accurately track the true trajectory of the endoscope.
Figure 11 shows the variation of the absolute pose error between estimated and true trajectories
with respect to time. It can be observed that the proposed SPSVO method has high accuracy and
reliability for endoscope trajectory estimation. ORB-SLAM2 cannot extract enough feature points
to initialize the viscera scene map, resulting in a loss of feature tracking and failure to construct
endoscopic trajectories. Therefore, quantitative results for ORB-SLAM2 on Case1-Case10 are not
presented.

4.4. Computational cost
Computational time of the SPSVO and ORB-SLAM2 on Case 0 sequence for one frame of the
“colon_reconstruction_dataset” [38] is shown in Table 4. For fair comparison, 1000 points were
extracted in this experiment, loop closure, relocalization, and visualization parts were disabled. Keypoint
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Comparison between SPSVO-estimated and true trajectories of the endoscope. (a) Case 1,
(b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, (f) Case 6, (g) Case 7, (h) Case 8, (i) Case 9, and (j)
Case 10.
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(g) (h)

(i) (j)

Figure 10. continue.

detection takes 25 ms for keypoint extraction of one stereo image. 29 ms are required for stereo match-
ing and feature tracking between frames. Pose estimation is fast and only costs 8ms for one image.
Therefore, SPSVO can operate at 14 fps; this speed can be further boosted by parallel implementa-
tion. It can be observed that the proposed SPSVO method has faster processing speed compared to
ORB-SLAM2.

5. Conclusions
An important goal in VSLAM for medical applications is accurate estimation of endoscopic pose to
better assist surgeons in locating and diagnosing lesions. Extreme illumination variations and weak
texture of endoscopy images result in difficulties for accurate estimation of camera motion and scene
reconstruction. This paper proposed a novel self-supervised Surgical Perception Stereo Visual Odometer
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(a) (b)

(c) (d)

(e) (f)

Figure 11. Variation of the absolute pose error (APE) between SPSVO-estimated and true trajectories.
(a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, (f) Case 6, (g) Case 7, (h) Case 8, (i) Case 9,
and (j) Case 10.
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(g) (h)

(i) (j)

Figure 11. continue.

(SPSVO) framework for real-time endoscopic pose estimation and viscera surface map construction. The
proposed SPSVO method reduced adverse effects of local illumination variability and specular reflec-
tions by using a self-supervised learning (SSL) approach for feature extraction and matching, as well
as image illumination pre-processing. In the proposed SPSVO, keyframe selection strategies and the
Nvidia TensorRT Toolkit were applied to accelerate computation speed for real-time lesion localization
and surgical navigation. Comparison between estimated and the ground truth trajectories of the endo-
scope were obtained from the colon_reconstruction_dataset. Through experimental tests, the following
conclusions are made:

1. The proposed SPSVO system achieves superior performance in variable illumination environ-
ments and can track key points in human enterococci with intraperitoneal cavities. Simulation
results show that SPSVO has average tracking error of 0.058–0.704 mm with respect to true
camera trajectories in the given dataset. Comparison with existing methods also indicates that
the proposed method outperforms ORB-SLAM2.
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Table III. Statistical error analysis of SPSVO-estimated trajectories (unit: mm). RMSE is the
Root Mean Square Error, STD stands for the Standard Deviation. SSE refers to the Sum of
Squared Errors.

Indicators
Sequence Max Mean Min RMSE SSE STD
Case 1 1.729 0.704 0.038 0.680 0.153 0.347
Case 2 1.482 0.470 0.111 0.558 0.035 0.300
Case 3 3.047 0.363 0.025 0.493 0.060 0.333
Case 4 1.516 0.621 0.155 0.630 0.065 0.276
Case 5 0.826 0.381 0.205 0.398 0.040 0.117
Case 6 1.178 0.0524 0.199 0.570 0.027 0.224
Case 7 0.173 0.058 0.009 0.068 0.001 0.034
Case 8 3.699 0.440 0.018 0.058 0.076 0.375
Case 9 3.588 1.743 0.529 0.704 0.113 0.346
Case 10 1.504 0.201 0.032 0.278 0.012 0.192

Table IV. Computational cost of ORB-SLAM2 and SPSVO on Case 0.

Time Keypoint detection Feature tracking Pose estimation Total
ORB_SLAM2 33 ms 37 ms 7 ms 87 ms
SPSVO 25 ms 29 ms 8 ms 71 ms

2. The proposed SPSVO system combines advantages of traditional optimization and learning-
based methods and demonstrates an operating speed of 14 frames per second on a normal
computer. This is adequate for real-time navigation in surgical procedures.

3. The proposed method can effectively eliminate effects of irregular illumination and specular
reflections and can accurately estimate the position of the endoscope.
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