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ON THE STRUCTURE OF COMPUTABLE REDUCIBILITY ON
EQUIVALENCE RELATIONS OF NATURAL NUMBERS

URI ANDREWS, DANIEL F. BELIN, AND LUCA SAN MAURO

Abstract. We examine the degree structure ER of equivalence relations on � under computable
reducibility. We examine when pairs of degrees have a least upper bound. In particular, we show that
sufficiently incomparable pairs of degrees do not have a least upper bound but that some incomparable
degrees do, and we characterize the degrees which have a least upper bound with every finite equivalence
relation. We show that the natural classes of finite, light, and dark degrees are definable in ER. We show that
every equivalence relation has continuum many self-full strong minimal covers, and that d ⊕ Id1 needn’t
be a strong minimal cover of a self-full degree d. Finally, we show that the theory of the degree structure
ER as well as the theories of the substructures of light degrees and of dark degrees are each computably
isomorphic with second-order arithmetic.

§1. Introduction. The study of the complexity of equivalence relations has been
a major thread of research in diverse areas of logic. The most popular way for
evaluating this complexity is by defining a suitable reducibility. A reduction of an
equivalence relation R on a domain X to an equivalence relation S on a domain Y
is a (nice) function f : X → Y such that

x R y ⇔ f(x) S f(y).

That is, f pushes down to an injective map on the quotient sets XR �→ YS . It is
natural to impose a bound on the complexity of the reduction f, as otherwise, if the
size of XR is not larger than the size of XS , then the Axiom of Choice alone would
guarantee the existence of a reduction from R to S; thus we would not be able to
distinguish equivalence relations with the same number of equivalence classes. In
the literature, there are two main definitions for this reducibility, designed to deal,
respectively, with the uncountable case and the countable case:

• In descriptive set theory, Borel reducibility (�B) is defined by assuming that X
and Y are Polish spaces and f is Borel.

• In computability theory, computable reducibility (�c) is defined by assuming
that X = Y coincide with the set � of natural numbers and f is computable.

The theory of Borel equivalence relations (as surveyed in, e.g., [15, 17]) is a central
field of modern descriptive set theory and it shows deep connections with topology,
group theory, combinatorics, model theory, and ergodic theory—to name a few.
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COMPUTABLE REDUCIBILITY ON EQUIVALENCE RELATIONS 1039

Research on computable reducibility dates back to the work of Ershov [11, 12]
and the theory of numberings. It concentrates on two main focuses: first, to calculate
the complexity of natural equivalence relations on �, proving, e.g., that provable
equivalence in Peano Arithmetic is Σ0

1-complete [9], Turing equivalence on c.e. sets
is Σ0

4-complete [18], and the isomorphism relations on several familiar classes of
computable structures (e.g., trees, torsion abelian groups, and fields of characteristic
0 or p) are Σ1

1-complete [14]; secondly, to understand the structure of the collection
of equivalence relations of a certain complexity Γ (e.g., lying at some level of the
arithmetical [10], analytical [8], or Ershov hierarchy [7, 21]).

Regarding the latter focus, computably enumerable equivalence relations—
known by the acronym ceers [16], or called positive equivalence relations in the
Russian literature—received special attention. Historically, the emphasis was on
combinatorial classes of universal ceers, i.e., ceers to which all other ceers computably
reduce (see, e.g., [1, 2]). But recently, there has been a growing interest in pursuing
a systematic study of Ceers, the poset of degrees of ceers, whose structure turns out
to be extremely rich. Andrews, Schweber, and Sorbi [4] proved that the first-order
theory of Ceers is as complicated as true arithmetic (see also [5] for a structural
analysis of Ceers focused on joins, meets, and definability).

In this paper, we focus rather on ER, the poset of degrees of all equivalence
relations with domain �. Our interest in ER is twofold.

On the one hand, we want to explore to what extent techniques coming from the
theory of ceers can be applied to equivalence relations of arbitrary complexity. Some
proofs will move smoothly from Ceers to ER (proving that the underlying results
are independent from the way in which the equivalence relations are presented), but
the analogy between the two structures often breaks down (see, e.g., Theorem 3.8),
or new ideas will be required to recast analogous results from the setting of ceers
(see, e.g., Theorem 2.21).

On the other hand, we regard ER as a natural structure, interesting and worth
studying per se. After all, ER is to Ceers as, e.g., the global structure of all Turing
degrees (DT ) is to the local structure of c.e. degrees (RT )—and we consider it only
a historical anomaly that, for equivalence relations, the local structure has been
analyzed in great detail with no parallel investigation of the global structure.

We add a final piece of motivation. Dealing with a seemingly distant problem (i.e.,
Martin’s conjecture), Bard [6] recently proved that DT is Borel reducible to ER. This
may be regarded as evidence that ER is complex. In this paper, we push this analysis
further by fully characterizing the complexity of the theory of ER (Theorem 4.1).

The rest of this paper is organized as follows. In the remainder of this section,
we offer a number of preliminaries to make the paper self-contained. In Section 2,
we focus on first-order definability of some natural fragments of ER and analyze
when least upper bounds exist. In Section 3, we study minimal and strongly minimal
covers of equivalence relations, and we also introduce generic covers. Through this
study, we exhibit many disanalogies between ER and Ceers. Finally, in Section 4, we
show that the first-order theory of ER (and in fact, that of two natural fragments
of ER) is as complex as possible, being computably isomorphic to second-order
arithmetic.

Our computability theoretic terminology and notation is standard, and as in [24].
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1.1. Preliminary material. Throughout this subsection we assume that R and S
are equivalence relations. The R-equivalence class of a natural number x is denoted
by [x]R. For a set A ⊆ �, the R-saturation of A (i.e.,

⋃
x∈A[x]R) is denoted by [A]R.

We denote the collection of all R-equivalence classes by �R. If f is a computable
function witnessing that R �c S, then we write f : R �c S. If f : R �c S, then
f� is the injective mapping from �R to �S induced by f. In our proofs, it will
sometimes be useful to consider the orbit of a number or of an equivalence class
along all iterations of a given reduction: for x ∈ � and X ∈ �R, denote by orbf(x)
the set {f(i)(x) : i > 0} ⊆ � and by orbf(X ) the set {f�(i)(X ) : i > 0} ⊆ �R. The
following lemma, which is immediate to prove, will be used many times in the paper,
often implicitly.

Lemma 1.1. Let f : R �c S. For all X ∈ �R, X �m f�(X ) so also X �m S.

Definition 1.2. For any nonempty c.e. set W and equivalence relation R, we let
R�W be the equivalence relation given by x R�W y if and only if h(x) R h(y),
where h : � →W is any computable surjection (note that up to ≡c , the definition
does not depend on the choice of surjection h).

Remark 1.3. For any nonempty c.e. set W and equivalence relation R, observe
that h (as in the definition) gives a reduction of R�W to R, which we call the
inclusion map. Also, if f : X �c Y , then X ≡c Y � range(f).

If f : R �c S and range(f) ∩ X /= ∅ for some X ∈ �S , then we say that f hits X ;
otherwise, we say that f avoids X. We say that R is self -full if every reduction of R to
itself hits all elements of�R. The notion of self-fullness plays a prominent role in the
theory of ceers (see, e.g., [3–5]). To name just a couple of examples: the degrees of
self-full ceers are definable in Ceers, as they coincide with the nonuniversal degrees
which are meet-irreducible; moreover, the existence of self-full strong minimal covers
is fundamental to prove that the first-order theory of the degrees of light ceers is
computably isomorphic to true arithmetic.

By the notation f ⊕ g, we denote the following function:

f ⊕ g(x) =

{
f(x), if x is even,
g(x), if x is odd.

The uniform join1 R ⊕ S is the equivalence relation that encodes R on the evens
and S on the odds, i.e., x R ⊕ S y if and only if either x = 2u, y = 2v, and u R v;
or x = 2u + 1, y = 2v + 1, and u S v. For the sake of exposition, we often say
R-classes (respectively, S-classes) for the equivalence classes of R ⊕ S consisting of
even (odd) numbers. The operation ⊕ is clearly associative, up to ≡c , so we will
generally be lax and write expressions such as R0 ⊕ ··· ⊕Rn.

The following easy lemma was stated for ceers in [4, Fact 2.3] but goes through
for arbitrary equivalence relations with exactly the same proof.

Lemma 1.4. If X �c R ⊕ S, then there are R0 �c R and S0 �c S such that X ≡c
R0 ⊕ S0.

1To avoid potential ambiguities between the terms “uniform join” and “join,” we use the term “least
upper bound” to refer to a join of degrees in the poset ER.
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Proof. Let f : X �c R ⊕ S and denote range(f) by W. Then

X ≡c R ⊕ S�W ≡c R�V1 ⊕ S�V2,

where V1 := {x : 2x ∈W } and V2 := {x : 2x + 1 ∈W }. 

If A ⊆ � × �, then R/A is the equivalence relation generated by the set of pairs

R ∪ A. We say that R/A is a quotient of R, and a quotient is proper if R/A ­= R. To
improve readability, we often omit braces, e.g., writing R(x,y) instead of R{(x,y)}.
Of particular interest for this paper will be quotients of uniform joins. A quotient
R ⊕ S/A is pure if it does not collapse distinct R-classes, or distinct S-classes, i.e.,

R ⊕ S/A� Evens = R ⊕ S� Evens and R ⊕ S/A� Odds = R ⊕ S� Odds .

The quotient R ⊕ S/A is a total quotient if every odd number is equivalent to an
even number and vice versa.

Lemma 1.5. Every pure quotient of R ⊕ S is an upper bound of R and S.

Proof. Assume that R ⊕ S/A is pure. It is immediate to observe that R is
computably reducible to R ⊕ S/A via the function x �→ 2x and S is computably
reducible to R ⊕ S/A via the function x �→ 2x + 1. 


Lemma 1.6. Let R ⊕ S/A be a total quotient of R ⊕ S. Suppose that f : X �c
R ⊕ S/A and range(f) ∩ Odds is finite. Then X �c R.

Proof. For each x ∈ range(f) ∩ Odds, fix an even number x′ so that x R ⊕ S/A
x′. Let

h(x) =

{
f(x), if f(x) is even,
f(x)′, if f(x) is odd,

and observe that h is a reduction of X toR ⊕ S/A with range contained in the evens,

so x �→ h(x)
2 is a reduction of X to R. 


Let us now fix notation for some natural families of equivalence relations of
natural numbers. They will serve as benchmark relations for our structural analysis
of ER. Some terminology naturally generalizes from the theory of ceers (see,
e.g., [5]).

• Define Idn by x Idn y if x ≡ ymod n. Define Id = Id� by x Id y if x = y.
For convenience in inductive arguments, we also consider Id0 to be the empty
relation. We defineI to be the family of equivalence relations that are equivalent
to some Idn for 1 � n ∈ �.

• An equivalence relation R is finite, if R has finitely many equivalence classes2.
Otherwise R is infinite. F and Fn denote respectively the family of all finite
equivalence relations and the family of equivalence relations with exactly n
equivalence classes. Observe that each element of F2 naturally encodes a set
and its complement: E(X ) ∈ F2 denotes the equivalence relation consisting of
exactly two classes, X and X .

2This terminology, which is standard in the theory of ceers, differs from usage in descriptive set theory,
where finite equivalence relations are those with all equivalence classes being finite. In [16], ceers with all
equivalence classes being finite are called FC (standing for finite classes).
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• An equivalence relation R is light if Id �c R. It is easy to see that the light
equivalence relations are exactly the infinite equivalence relations which have
a computable transversal, i.e., a computable sequence {xi}i∈� of pairwise
nonequivalent numbers;

• An equivalence relation R is dark if R is infinite and Id ęc R.
• For each of these families, the boldface version represents the collection of ER-

degrees containing members of the class. For example, F is the set of degrees
of finite equivalence relations, Dark is the set of degrees of dark equivalence
relations, etc.

As is clear from the above, ER is partitioned into F , Light, and Dark. Moreover,
I ⊆ F . Inside ER, computable equivalence relations can be readily characterized.

Observation 1.7 [16, Propositions 3.3 and 3.4]. The degrees of computable
equivalence relations form an initial segment of ER of order type � + 1, and are
exactly I ∪ {Id}.

Proof. First, note that

Id1 < ··· < Idn < Idn+1 < ··· < Id .

So, the family I ∪ {Id} of equivalence relations has order type � + 1.
Let R be a computable equivalence relation. Then the set

S := {x : min[x]R = x}

is computable. Let S = {c0 < c1 < c2 < ··· }. Then the function which sends each
[ci ]R to i is a computable function giving a reduction of R to Id|�R| (letting Id� = Id).
Further, this function is onto the classes of Id|�R| and the inverse function on classes
is also computable, so R ≡c Id|�R|. 


The following is an easy, but useful fact about taking a uniform join with Id1, and
how it essentially “cancels out” collapsing a computable class with another class.

Lemma 1.8. If E is an equivalence relation with a computable class C, and B is any
other E-class, then E/(minC,minB) ⊕ Id1 ≡c E.

Proof. To show E/(minC,minB) ⊕ Id1 �c E, let f : E/(minC,minB) �c E be defined
by sending every element of C to minB and be the identity on C . Then notice that
the class of C is avoided by f. This lets us extend f to a reduction of E/(minC,minB) ⊕
Id1 �c E by sending the Id1-class to the class C in E. The function g(x) = 2x for
every x /∈ C and g(x) = 1 for x ∈ C gives a reduction g : E �c E/(minC,minB) ⊕
Id1. 


Note that Ceers, F , and
⋃
i�n F i for each n are each initial segments of ER.

An obvious elementary difference between Ceers and ER is that the former degree
structure is bounded and the latter is not.

Observation 1.9. ER has a least element, but no maximal element.

Proof. Every constant function computably reduces Id1 to any given equivalence
relation. Hence, Id1 is the least degree of ER. On the other hand, for a given R, let X
be degT (R) and consider E(X ′). We have that E(X ′) ęc R, as otherwise X ′ would
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be �m R by Lemma 1.1, but R is strictly Turing belowX ′. So,R <c R ⊕ E(X ′) and
R is not maximal. 


We now turn to some facts about dark equivalence relations. The next two lemmas
are adapted from the setting of ceers [5, Lemmas 4.6 and 4.7]. The proof is essentially
the same.

Lemma 1.10. Dark equivalence relations are self-full.

Proof. Let R be dark. Suppose that there is f : R �c R which avoids a given
X ∈ �R. Let x ∈ X and consider orbf(x). From the fact that f is a self-reduction
of R and X /∈ range(f�), it follows that orbf(x) is a c.e. infinite transversal of R,
contradicting the darkness of R. 


Lemma 1.11. If R is dark, then R is not reducible to any of its proper quotients.

Proof. Towards a contradiction, suppose that a dark R is reducible to one of its
proper quotients R/A, via some f. Note that, since R is dark, R/A must be infinite.
Now, let X,Y ∈ �R be two equivalence classes that are collapsed inR/A and choose
x ∈ X and y ∈ Y . We claim that at least one of orbf (x) or orbf (y) cannot intersect
X ∪ Y . Indeed, suppose that i, j > 0 are minimal so that {f(i)(x), f(j)(y)} ⊆ X ∪
Y , and, without loss of generality, suppose i ≥ j. Since X and Y are collapsed inR/A,
we have that f(i)(x) R/A fj(y). But since f : R �c R/A and R/A ⊇ R, this would
imply that f(i–j)(x) R y, which either contradicts x�R y, if i = j, or contradicts
the minimality of i, if i > j.

So, one can assume that orbf(x) ∩ (X ∪ Y ) = ∅. Now suppose that, for
i > j, f(i)(x) R f(j)(x). Reasoning as above, we obtain that f(i–j)(x) R x, a
contradiction. Hence, orbf(x) would be a c.e. transversal of R. But this contradicts
the darkness of R. 


We now introduce the dark minimal equivalence relations.

Definition 1.12. An equivalence relation R is dark minimal if it is dark and its
degree is minimal over F , i.e., if S <c R then S is finite.

Dark minimal equivalence relations exist (see [5, Theorem 4.10] for examples
of dark minimal ceers) and they will occur several times in this paper, as their
combinatorial properties will facilitate our study of the logical complexity of ER.
We conclude the preliminaries highlighting a couple of fundamental features of dark
minimal equivalence relations.

Lemma 1.13. Let R be a dark minimal equivalence relation. Let W be a c.e. set
which intersects infinitely many R-classes. Then W must intersect every R-class.

Proof. Suppose W intersects infinitely many R-classes. Consider the equivalence
relation R�W and note that R�W ≡c R since R�W is not in F and R is minimal
over F . Thus, we have reductions R � R�W � R with the second reduction given
by inclusion. Since R is dark, it is self-full by Lemma 1.10, so the reduction of R to
itself through R�W must hit every R-class. In particular, W must intersect every R
class. 


For the next lemma, recall that two sets of natural numbers A,B are computably
separable if there is a computable set C such that A ⊆ C and C ∩ B = ∅.
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Lemma 1.14. Let R be a dark minimal equivalence relation. Then the elements of
�R are pairwise computably inseparable.

Proof. Let C be any computable set. Either C or � � C intersects infinitely
many R-classes. Thus by Lemma 1.13, either C or � � C intersects every R-class,
so C cannot separate two R-classes. 


§2. Definability in ER and existence of least upper bounds. A natural way of
understanding the logical complexity of a structure is by exploring which of its
fragments are definable. In this section, we show that many natural families of
equivalence relations are first-order definable without parameters.

2.1. Defining the class of finite equivalence relations. In the case of ceers, the
equivalence relations with finitely many equivalence classes are easily characterized:
A ceer R has n equivalence classes if and only if R ≡c Idn. Hence in Ceers, F
coincides with I (and therefore it has order type �). These form an initial segment
of Ceers and they are definable as the collection of nonuniversal ceers which are
comparable to every ceer.

In ER, the picture is much more delicate. For the moment, just observe that
F � I: to see this, take E(X ) with X noncomputable. Moreover, while Id bounds
I, no equivalence relation can bound F (see the proof of Observation 1.9).

We will show that I is definable in ER as the collection of degrees which have a
least upper bound with any other degree, and from that definition will easily follow
that F is also definable. To obtain this result, throughout this section we will focus
on the existence of least upper bounds of equivalence relations, obtaining several
structural results of independent interest.

The following lemma describes the shape of a potential least upper bound of
equivalence relations. An upper bound T of equivalence relations R,S is minimal if
there is no upper bound V of R,S such that V <c T .

Lemma 2.1. Suppose f : R �c T and g : S �c T . Then there is a pure quotient U
of R ⊕ S and reductions f0 : R �c U given by f0(x) = 2x and g0 : S �c U given by
g0(x) = 2x + 1 and h : U �c T so that f = h ◦ f0 and g = h ◦ g0.

In particular, if T is a minimal upper bound of equivalence relations R and S, then
T is equivalent to a pure quotient of R ⊕ S.

Proof. Let f : R �c T , g : S �c T , and A := {(2x, 2y + 1) : f(x) T g(y)}.
Then R ⊕ S/A is a pure quotient of R ⊕ S. Now, observe that R ⊕ S/A �c T via
the function h = f ⊕ g. And observe that f = h ◦ (x �→ 2x) and g = h ◦ (x �→
2x + 1). 


In ER, to have a least upper bound is a rather strong property. The next result
will state that any pair of equivalence relations which are sufficiently incomparable
cannot have a least upper bound.

Definition 2.2. Define R �F S, if there is computable set A so that R�A �c S
and R�A is finite.

Obviously, �c-reducibility implies �F -reducibility. The converse does not hold as
there are �c-incomparable X,Y ∈ F , but X ≡F Y .
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Theorem 2.3. If R and S are equivalence relations which are �F -incomparable,
then R and S do not have a least upper bound in ER.

Proof. Suppose towards a contradiction that T is the least upper bound for R
and S. By Lemma 2.1, we can assume that T is a pure quotient of R ⊕ S. We
will build by stages another pure quotient V (=

⋃
Vs) of R ⊕ S such that T ę V ,

contradicting the supposition. To do so, we let V0 be R ⊕ S and, at further stages,
we will collapse R-classes and S-classes in V to diagonalize against all potential
reductions from T to V. We note that we are constructing V to be c.e. in the Turing
degree degT (R) ∨ degT (S) ∨ degT (T ) ∨ 0′′.

2.1.1. The construction. At stage s, we may restrain some Vs -classes so that, at
the end of the construction, they will be V-classes. When we say that numbers are
restrained, we mean that they come from restrained classes.

2.1.2. Stage 0. Let V0 := R ⊕ S. Do not restrain any equivalence class.

2.1.3. Stage e + 1. If ϕe is nontotal, let Ve+1 := Ve . Otherwise, search for a pair
of distinct numbers (u, v) such that ϕe(u) ↓= xe, ϕe(v) ↓= ye , and

(a) either u T v ⇔/ xe Ve ye ,
(b) or u��T v and xe and ye have different parity and they are both unrestrained.
We will show in Claim 2.4 that such a pair will always be found. If the outcome

is (a), let Ve+1 := Ve and restrain the Ve-classes of xe and ye . If the outcome is (b),
let Ve+1 := Ve/(xe ,ye ) and we restrain the common Ve+1-class of xe and ye .

2.1.4. The verification. The verification relies on the following claim.

Claim 2.4. The action defined at stage e + 1 (i.e., the search of a pair of numbers
satisfying either (a) or (b)) always terminates.

Proof. Suppose that there is a stage e + 1 at which no pair (u, v) is found.
This means that ϕe is total and ϕe : T �c Ve ; otherwise, we would reach outcome
(a). Next, observe that ϕe cannot hit infinitely many equivalence classes of both
Ve�Evens and Ve�Odds; otherwise, since only finitely many equivalence classes are
restrained at each stage andVe coincides withR ⊕ S/A for a finite set A, there would
be a pair of numbers of different parity which are unrestrained and we would reach
outcome (b).

So, without loss of generality, assume that ϕe hits only finitely many classes in
Ve�Odds. Let f be the following partial computable function:

f(x) =

⎧⎨
⎩
ϕe(x)

2
, ϕe(x) is even,

↑, otherwise.

We have that f : T �dom(f) �c R and T �dom(f) is finite. Thus, T �F R. Since
S �c T and T �F R, we obtain that S �F R, which contradicts the fact that R and
S are �F -incomparable. 


It follows from the above construction that V is a pure quotient of R ⊕ S. In
particular, every time we collapse an odd with an even class, we restrain all members
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of that class, so it cannot be part of any future collapse. Hence, by Lemma 1.5, V
is an upper bound of R and S. Towards a contradiction, assume that T �c V via
some ϕi . Claim 2.4 ensures that the action defined at stage i + 1 terminates with
either disproving thatϕi is a reduction from T toVi or by providing two equivalence
classes that will be V -collapsed to diagonalize against ϕi . That is, the restraints and
the fact that V is a quotient of Vi guarantee that ϕi : T ęc V , a contradiction.

Corollary 2.5. No dark equivalence relation has a least upper bound with Id.

Proof. It suffices to show that no dark equivalence relation R can be F-
comparable with Id. On the one hand, note that Id �A ≡ Id for any cofinite A and
thus Id �A ęc R since R is dark. Therefore Id ęF R. On the other hand, suppose
R�A �c Id with R�A finite. Observe that R�A ­≡c Id, as otherwise R would be light
because Id �c R�A �c R. So, R�A <c Id and, by Observation 1.7, this means that
R�A is finite. As R�A is also finite, it follows that R is finite, contradicting its
darkness. 


Obviously, if R ∈ F , then R is F-reducible to any given equivalence relation
S. This property does not guarantee that R has a least upper bound with every
other equivalence relation (see Theorem 2.20). The next lemma says that the finite
equivalence relations are the only ones which are F-comparable with any other
equivalence relation.

Lemma 2.6. If R is infinite, then there is an infinite S so that R and S are �F -
incomparable.

Proof. If R is dark, let S be Id and use Corollary 2.5. If R is light, then let S
be any dark equivalence relation such that {Y ∈ �S : Y ęm R} is infinite. We will
show that such S exists after verifying its �F -incomparability with R.

Note that if R�A is finite, then R�A must be light, because R is light. It follows
that R ęF S. Next, let A be so that S�A is finite. There exists [y]S ⊆ A which is not
�m R. But, by Lemma 1.1 this shows that S�A ęc R.

To see that such an S exists, we begin with any dark ceer S0 and we partition �S0

into infinitely many infinite families Mi . Next, define

Ni :=

{ ⋃
I∈J
I : for J ⊆ Mi

}
.

Each Ni is obviously uncountable and so it contains a set Xi whose m-degree does
not reduce to the degree of R. Let S be a quotient of S0 such that Xi ∈ �S , for
all i. Since a quotient of a dark equivalence relation is dark, this S satisfies our
requirements. 


Combining the last lemma with Theorem 2.3, we immediately obtain the
following.

Corollary 2.7. If R is infinite, then there is an infinite S so that R fails to have a
least upper bound with S.

It might seem at this point that any pair of degrees ought to not have a least upper
bound, but we now show that there are pairs of infinite degrees which have a least
upper bound.
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Theorem 2.8. There are incomparable equivalence relations R,S /∈ F which have
a least upper bound.

Proof. Let R0 be a dark equivalence relation with all computable classes (the
existence of such equivalence relation follows from, e.g., [16, Proposition 5.6]) and
let S0 ∈ F � I. LetR := R0 ⊕ Id and S := S0 ⊕ Id. First, we note that R and S are
incomparable. Indeed, on the one hand, there must be a noncomputable S-class,
since S0 /∈ I. By Lemma 1.1, this suffices to guarantee that S ęc R, as all R-classes
are computable. On the other hand, suppose that i : R �c S. Then, the following
c.e. set

{x : i(2x) ∈ Odds and, for all y < x, i(2x) /= i(2y)}

would be an infinite transversal of R0, contradicting its darkness.
Next, we will prove that R ⊕ S ≡c R0 ⊕ S0 ⊕ Id is a least upper bound of R and

S. Let U be any equivalence relation with reductions f0 : R �c U and g : S �c U .
We claim that there is f1 : R �c U whose image is disjoint from the image of the
S0-classes given by g. To prove this, define the following collection of equivalence
classes of R:

C := {X ∈ �R : f�0 (X ) ∩ range(g�Evens) ­= ∅}.

Let C be {C0, ... , Ck} (C is finite since S0 ∈ F). Moreover, note that all elements of
C are computable. Let m = max({min(Ci) : i � k}).

The following function is constructed from f0 by suitably shifting the elements in
Id to avoid the finite overlap with g�Evens:

f1(x) :=

⎧⎪⎨
⎪⎩
f0(2(u + k +m) + 1), (∃u)(x = 2u + 1),
f0(2(i +m) + 1), (∃i � k)(x ∈ Ci),
f0(x), otherwise.

It is straightforward to check that f1 is a computable reduction from R to U which
satisfies the property that range(f1) ∩ range(g�Evens) is empty. It is exactly this
property which allows to combine g and f1 in a natural way so as to obtain the
desired reduction from R0 ⊕ S0 ⊕ Id to U :

h(x) :=

⎧⎪⎨
⎪⎩
f1(2u), (∃u)(x = 3u),
g(2u), (∃u)(x = 3u + 1),
f1(2u + 1), (∃u)(x = 3u + 2).

This concludes the proof. 


We are now in position to show that I is definable.

Theorem 2.9. I is definable in ER as the collection of degrees which have least
upper bounds with every other degree.

Proof. We first verify that every member of I has a least upper bound with every
other equivalence relation.

Lemma 2.10. If E ∈ I, then E has a least upper bound with any equivalence
relation R.
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Proof. Let E = Idk . If R has at least k classes, then R is the least upper bound
of Idk and R, as Idk �c R. Otherwise, let n < k be |�R|. We prove that R ⊕ Idk–n

is the least upper bound of Idk and R. First, it is immediate that both R and Idk
reduce to R ⊕ Idk–n. Next, suppose that R and Idk are reducible to some S and let
f : R �c S. Then, f can only hit n equivalence classes of S, but |�S | ≥ k because
Idk �c S. Let A = {a1, ... , ak–n} be a set of representatives from k – n equivalence
classes which f avoids. By letting g agree with f on elements from R and send the
classes of Idk–n to the numbers in A, we get a reduction g : R ⊕ Idk–n �c S. 


Corollary 2.7 guarantees that no infinite equivalence relation can have a least
upper bound with every other equivalence relation. So, to prove the theorem, it
suffices to show that the same is true for any finite equivalence relation which is
noncomputable.

We note that the following lemma also follows from Theorem 2.20, but we include
a proof here for self-containment of this section.

Lemma 2.11. If R ∈ F � I, then there is S ∈ F � I so that R and S do not have
a least upper bound.

Proof. Let |�R| = k, and sinceR /∈ I, fix C to be a noncomputable R-class. Let
� = X1 ∪ ··· ∪ Xk be a partition of � so that each Xi is m-incomparable with all
noncomputable Y ∈ �R. Next, let S be the equivalence relation with classes Xi for
i � k. Towards a contradiction, suppose that T is a least upper bound of R and S.
We may assume that T is a pure quotient R ⊕ S/A by Lemma 2.1.

First, observe that T has exactly k classes: if there were fewer, then R ęc T ; if
there were more, then we can take Z to be a pure quotient of R ⊕ S which has
exactly k classes and we would have T ęc Z. Thus C is collapsed via A with some
class Xi in T.

Now, let f : T �c R ⊕ S, and consider the image of C in the composed
reduction R �c R ⊕ S/A �c R ⊕ S. Since C ęm Xj for any j � k, the image must
be contained in the evens. Similarly, consider the image of Xi under the composed
reduction S �c R ⊕ S/A �c R ⊕ S. SinceXi ęm K for anyK ∈ �R, the image must
be contained in the odds. But C and Xi are A-collapsed in T, which contradicts f
being a reduction. 


This completes the proof of Theorem 2.9. 

The next corollary immediately follows from the definability of I .

Corollary 2.12. For all k,

• Idk is definable as the unique degree in I which has exactly k – 1 predecessors;
• Fk is definable in ER as the degrees which bound Idk and not Idk+1;
• F is definable in ER as the degrees which do not bound every member of I .

2.2. Defining the identity. In this section, we give a combinatorial characterization
for the degrees which have least upper bounds with every member of F . We will
then use this analysis to give a definition of the degree Id (and thus Light and Dark)
in ER as a combination of its minimality over F along with the property of having
least upper bounds with every degree in F .
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We will need the following combinatorial lemma:

Lemma 2.13. Let R be an equivalence relation with a uniformly computable
sequence (Ci)i∈� of distinct computable R-classes. Let S ⊂ � be a finite set. Then
there is a reduction of R to itself which avoids every Ci for i ∈ S.

Proof. We construct the reduction f : R �c R in stages. At every stage s, we will
construct a partial function fs and a parameter Xs , which will be a finite subset of
�. At stage s + 1, we will ensure fs+1(s) is defined.

Stage 0. Let f0 = ∅ and X0 = S.

Stage s + 1. We distinguish three cases.

(1) If s /∈
⋃
n∈Xs Cn, let fs+1 := fs ∪ {(s, s)} and let Xs+1 := Xs .

(2) s ∈ Cn for some n ∈ Xs and there is some k < s in Cn. Then let fs+1 :=
fs ∪ {(s, f(k))} and Xs+1 := Xs .

(3) s ∈ Cn for n ∈ Xs and s is min(Cn). Then let m be least so that m /∈ Xs and
rangefs ∩ Cm = ∅. Letfs+1 := fs ∪ {(s,minCm)} and letXs+1 := Xs ∪m.

We argue by induction that every fs is a partial reduction of R to itself and no
member of Cn, for n ∈ S, is in the range of fs . For each s, let Ys =

⋃
i∈Xs Ci . We

note that fs is the identity on Ys and range(fs�Ys) ⊆ Ys , so we only need to show
that a R b ↔ fs(a) R fs(b) for a, b ∈ Ys and that no element of Ys is sent into a
class Cn for n ∈ S. Note that when a number n first enters Xk for k < s , then Cn is
neither in the domain nor range of fk–1. Thus, for every n ∈ Xs , case (2) ensures
that each class is sent via f to the same location. That is, a R b → f(a) R f(b)
for a, b ∈ Ys . In case (3), we define f for an element of a class Ci with i ∈ Xs , and
note that we send it to a class which is not in the range of fs . Thus, if a�R b then
fs(a) �R fs(b) for a, b ∈ Ys . Similarly, note that in case (3), we only send these new
classes to classes Cm for m outside of Xs . In particular,m /∈ X0, so we never put Cm
for m ∈ S into the range of fs .

The next lemma identifies a natural way in which a uniformly computable sequence
of computable classes may arise.

Lemma 2.14. Let f : R �c R and let C ∈ �R be a computable R-class. Suppose
that f�(C ) is not a computable R-class. Then either there is some i ∈ � so that f(i)

avoids C or there is a uniformly computable sequence of distinct computable R-classes
(Ci)i∈� .

Proof. Suppose that there is no i ∈ � so that f(i) avoids C, and let Ci = {x :
f(i)(x) ∈ C}. It is immediate that this is a uniformly computable sequence of
computable classes. We need only verify that they are distinct. Suppose thatCi = Cj
with i < j. Further, suppose that i is minimal for such an example. Then i = 0, as
otherwise, we would have Ci–1 = Cj–1 since f is a reduction of R to R. Thus we have
some Cj = C0 = C . But then f�(C ) = f�(Cj) = Cj–1 is computable, contrary to
hypothesis. 


Putting the previous two lemmas together, we get a general result about avoiding
classes.
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Corollary 2.15. Iff : R �c R andC ∈ �R is a computable R-class so thatf�(C )
is a noncomputable R-class D, then there is some reduction g : R �c R so that g avoids
C. Thus also f ◦ g avoids D.

Proof. We have two cases from Lemma 2.14. The first possibility is that g = f(i)

avoids C for some i. The second possibility is that there is a uniformly computable
sequence of distinct computable R-classes (Ci)i∈� . Then we can apply Lemma 2.13
to give a reduction g which avoids C. Then f ◦ g avoids D. 


We now present the combinatorial condition which we will show is equivalent to
having a least upper bound with every member of F .

Definition 2.16. An equivalence relation R is noncomputably avoiding if, for every
finite collection C of noncomputable equivalence classes of R, there is a reduction
f : R �c R which avoids all the equivalence classes in C.

First we observe that avoiding any one noncomputable class is equivalent to
avoiding any finite set of noncomputable classes.

Lemma 2.17. Let R be an equivalence relation so that for any noncomputable class
C, there is a reduction of R to itself that avoids C. Then R is noncomputably avoiding.

Proof. We proceed by induction on k to show that for any set of size k of
noncomputable classes, there is a reduction of R to itself which avoids every class
in the set. For k = 0, the claim is trivial. For k = 1, the claim follows from the
assumption about R.

Next, for k > 1, let S = {C1, ... , Ck+1} be a collection of noncomputable classes.
By inductive hypothesis, there is a reduction f : R �c R which avoids C2, ... , Ck+1.
We consider three cases depending on what type of class is sent to C1 via f : If there
is no class sent toC1 via f, then f avoids every class in S. If there is a noncomputable
class X sent via f to C1, then by assumption there is a reduction g : R �c R which
avoids X. Then f ◦ g avoids every class in S. Lastly, if a computable class X is sent
via f to C1, then Corollary 2.15 shows that there is a reduction g : R �c R which
avoids X. Then f ◦ g avoids every class in S. 


Next, we show that the property of noncomputable avoidance is degree invariant.

Observation 2.18. If R is noncomputably avoiding and R ≡c S, then S is also
noncomputably avoiding.

Proof. Let S be equivalent to some noncomputably avoiding R via f : R �c S
and g : S �c R. Given any noncomputable S-class C, we need to build h : S �c S
such that h avoids C.

If C /∈ range(f�), then f ◦ g is a reduction of S to itself which avoids C. So, let
K be an R-class so that f�(K) = C . It suffices to find a reduction � of R to itself
avoiding K. Once we have this, h = f ◦ � ◦ g is a reduction of S to itself avoiding C.

If K is noncomputable, then we use the hypothesis that R is noncomputably
avoiding to give the reduction �, and we are done. So, suppose K is computable.
Observe that g ◦ f : R �c R and (g ◦ f)�(K) is not computable because C is not
computable. Thus, we can apply Corollary 2.15 to get a reduction � of R to itself
avoiding the class K. 
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Noncomputably avoiding equivalence relations exist. For instance, any equiva-
lence relation having all computable classes (and note that there are dark equivalence
relations with this property; see, e.g., [13, Lemma 3.4] or [16, Proposition 5.6])
is obviously noncomputably avoiding. A less trivial example is provided by the
following observation.

Observation 2.19. The degree of universal ceers is noncomputably avoiding.

Proof. Let U be a universal ceer. Let V = U ⊕U and note that V ≡c U since
V is also a ceer. Any noncomputable class C is either contained in Evens or Odds.
So, we can reduce V to the copy of U on the Odds or, respectively, Evens of V.
This gives a reduction of V to itself avoiding the class C. Thus, V is noncomputably
avoiding by Lemma 2.17 and U is noncomputably avoiding by Lemma 2.18. 


We now give the main result of this section characterizing the degrees which have
a least upper bound with every equivalence relation in F .

Theorem 2.20. An equivalence relation R is noncomputably avoiding if and only if
R has a least upper bound with every equivalence relation in F .

Proof. (⇒) Let R be noncomputably avoiding. Fix S ∈ F and let k = |�S |. Fix
a1, ... , ak representing the k distinct S-classes. Let j � k be the minimum of k and
the number of computable R-classes, and fix C1, ... , Cj to be computable R-classes.
We will show that X := R�

⋃
i�j Ci ⊕ S is a least upper bound for R and S. First

note that X is an upper bound for R (and trivially S) via the functionf(x) = 2ai + 1
if x ∈ Ci for i � j and otherwise f(x) = 2x.

By Lemma 2.1, it suffices to show that X is reducible to any pure quotientR ⊕ S/A
of R ⊕ S. Fix a pure quotient R ⊕ S/A. Let h : R �c R be a reduction of R to itself
which avoids every noncomputable R-class which is A-collapsed with an S-class in
R ⊕ S/A. Let K1, ... , Km enumerate the R-classes so that h�(Ki) is A-collapsed with
an S-class. Note that these all must be computable, and m � j. If any Ki0 equals
some Ci1 for i0, i1 � m, then reorder the K ’s so that i0 = i1.

Let g be a reduction of R to itself which swaps Ki with Ci for i � m. That is,

g(x) =

⎧⎪⎨
⎪⎩
x, x /∈

⋃
i�m Ci ∪

⋃
i�m Ki ,

minKi, x ∈ Ci ,
minCi , x ∈ Ki.

Then all R-classes which are sent via h ◦ g to an R-class A-collapsed with an S-class
are among the classes Ci for i � m. Thus, taking the restriction of h ◦ g to the set⋃
i�j Ci gives a reduction f of R�

⋃
i�j Ci to R which avoids every R-class which is

A-collapsed with an S-class. Then we can make a reduction f′ of R�
⋃
i�j Ci ⊕ S

to R ⊕ S/A by following f on R�
⋃
i�j Ci and being the identity map on S-classes.

(⇐) Assume that R has a least upper bound with every finite equivalence relation,
and fix a noncomputable class A ∈ �R. Let Y be a set so that Y and Y are m-
incomparable with every noncomputable R-class. Let T be the least upper bound of
R and E(Y ). We will show that the existence of the least upper bound T will imply
that there is a reduction f : R �c R which avoids the class A. By Lemma 2.17, this
suffices to show that R is noncomputably avoiding.
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By Lemma 2.1, we may assume T = R ⊕ E(Y )/∼, a pure quotient ofR ⊕ E(Y ).
Since T �c R ⊕ E(Y ), we see that no noncomputable R-class C can be collapsed
in T to an E(Y )-class. This is because then f : T �c R ⊕ E(Y ) would give an m-
reduction fromC ⊕ Y (orC ⊕ Y ) to either someE(Y )-class (giving an m-reduction
of C to Y or Y ) or to an R-class (giving an m-reduction of Y or Y to an R-class).
So, we know T = R ⊕ E(Y )/∼ where ∼ collapses at most 2 R-classes, each of which
must be computable, with the odd classes.

Fix any R-class B /= A and let

S := R ⊕ E(Y )/(2 minA,2 minY+1),(2 minB,2 minY+1),

i.e., we collapse A with the Y -class in E(Y ) and B with the Y class in E(Y ). Next,
consider the reduction g : T �c S. Consider the two T-classes of Y andY (possibly
collapsed also with computable R-classes). Since these do not m-reduce to any R-
class, their g-images must intersect the odds. Thus, the image of the evens under
g, with the exception of two classes, must avoid each class containing the odds. In
other words, we have a reduction h : R�Z � R where Z = C for C the union of
the (at most 2) computable R-classes which are ∼-collapsed in T with odd classes,
and h avoids the classes A and B. Thus, by extending h to the computable classes,
we get a reduction ĥ : R �c R and if A has an ĥ-preimage, this preimage must be
a computable class. If A is not in the image of ĥ (e.g., if T = R ⊕ E(Y ) and ∼
does not collapse any computable R-class to an E(Y )-class), then we are done. So,
suppose the class D is computable and is sent to A via ĥ. Then we apply Corollary
2.15 to show that there is a reduction of R to itself which avoids A. 


We turn to showing that Id is definable in ER as the unique noncomputably
avoiding degree minimal over F . From there, we define Light and Dark.

Theorem 2.21. In ER, Id is definable as the unique noncomputably avoiding degree
which is minimal over F .

Proof. The fact that Id is minimal over F is easy (Id �W ≡c Id|W | for any c.e.
W), and Id is obviously noncomputably avoiding.

We now verify that Id is the only minimal noncomputably avoiding degree. Every
other degree minimal over F is self-full by Lemma 1.10 and has a noncomputable
class by Lemma 1.14. Clearly any self-full equivalence relation with a noncomputable
class is not noncomputably avoiding. 


Corollary 2.22. Light and Dark are definable in ER.

Proof. d ∈ Light if and only if Id � d. d ∈ Dark if and only if d /∈ F ∪ Light. 


Having defined the degree Id, we wonder which other degrees are definable in ER.
In particular, we ask if the degree of the universal ceer is definable:

Question 1. Is the degree of the universal ceer, or equivalently the substructure
Ceers, definable in ER?

§3. Covers and Branching. We now turn our attention to further structural
properties in ER. We consider the existence of minimal covers and strong minimal
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covers, and we explore which degrees are branching. Here, many of the results differ
from their analogues in the theory of ceers.

In a degree structure, a minimal cover for a degree d is a minimal upper bound
of {d}, i.e., a degree c > d such that there is no degree strictly between c and d; a
minimal cover c of d is strong if anything strictly below c is bounded by d, i.e.,

(∀b)(b < c ⇒ b � d).

A degree is branching if it is the meet of two incomparable degrees.
In Ceers, not all degrees are branching. Andrews and Sorbi [5] proved that a ceer

R is self-full if and only ifR ⊕ Id1 is the unique strong minimal cover of R. Further,
it has the following upward covering property: If X > R, then X ≥ R ⊕ Id1. This
implies that the degree of R cannot branch. In fact, they show that the branching
degrees in Ceers are precisely the non-self-full degrees [5, Theorem 7.8]. In ER,
the situation is quite different. In this section, we will show that every degree has
continuum many strong minimal covers, and therefore every degree is branching.
Before proving these results, we will concentrate on the ⊕ Idk operation for self-
full equivalence relations (where R ⊕ Idk >c R). We show that though R ⊕ Id1 is a
minimal cover of any self-full equivalence relation R (Corollary 3.4), it is not always
a strong minimal cover. That is, surprisingly and in contrast with the case of ceers,
there are equivalence relations R such that R ⊕ Id1 >c S, for some S, but S is not
computably reducible to R.

Theorem 3.1. If R is self-full and R �c S �c R ⊕ Idk , then there is some j � k
so that S ≡c R ⊕ Idj .

Proof. We prove this by induction on k. For k = 0, the result is trivial. Next, let
f : R �c S, g : S �c R ⊕ Idk , and suppose that S is not equivalent to R ⊕ Idj for
any j � k.

Claim 3.2. The range of f intersects every S-class.

Proof. If the range of f did not intersect every S-class, then we would have
R ⊕ Id1 �c S. But then we could use the inductive hypothesis, since R ⊕ Id1 �c
S �c R ⊕ Id1 ⊕ Idk–1. Thus, we would know that S ≡c R ⊕ Id1 ⊕ Idj for some j �
k – 1, but then it would follow that S ≡c R ⊕ Idj′ for some j′ � k. 


Claim 3.3. The range of g intersects every R ⊕ Idk-class.

Proof. If the range of g did not intersect everyR ⊕ Idk-class, then we would have
S �c R ⊕ Idk–1. But then, since R �c S �c R ⊕ Idk–1, we could use the inductive
hypothesis to show that S ≡c R ⊕ Idj for some j � k – 1. 


Let h : = g ◦ f be the composite reduction of R to R ⊕ Idk through S. Fix any
odd number a and let Ci := {x : h ◦ ( h2 )(i)(x) R ⊕ Idk a}. Note that the Ci ’s so
defined for i ≥ 1 are a uniform sequence of computable R-classes. Thus Lemma
2.13 yields a contradiction by showing that R is not self-full. 


Applying this to k = 1, we get that if R is self-full, thenR ⊕ Id1 is a minimal cover
of R.

Corollary 3.4. Let R be self-full. Then R ⊕ Id1 is a minimal cover of R.
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Now, we will show that, contrary to the case of ceers, there are self-full equivalence
relations R so thatR ⊕ Id1 is not a strong minimal cover of R. To do so, we introduce
generic covers of equivalence relations. Intuitively, a generic cover S of a given
equivalence relation R codes R into the evens and is generic given this property.

Definition 3.5. A generic cover S of an equivalence relation R is any equivalence
relation of the form R ⊕ Id/ graph(f), where f : Odds → Evens is 1-generic over the
Turing degree of R.

Clearly, R is computably reducible to any generic cover of R via the map x → 2x.
We now see how reductions into the odds must intersect the classes of S.

Lemma 3.6. Let S be a generic cover of R and Z ⊆ Odds be an infinite set which
is c.e. in the Turing degree of R. Then, Z intersects every S-class infinitely. It follows
that S ęc R.

Proof. Assume that S, R, and Z are as in the statement of the lemma. In
particular, S = R ⊕ Id/ graph(f). Observe that the following sets of strings are c.e. in
degT (R),

Va,k := {� ∈ Evens<Odds : (∃kx)(x ∈ Z ∧ �(x) = 2a)}.

Further, since Z is infinite, Va,k is dense in Evens<Odds. Therefore f meets every Va,k
by genericity of f, and Z intersects the S-class of every even number, so every S class,
infinitely often.

Next, suppose f : S �c R and take any odd number a. Let Z = {b ∈ Odds :
f(b) R f(a)}. Necessarily Z is an infinite R-c.e. set since Z contains [a]S ∩ Odds
(and the set Odds intersects every S-class infinitely by the above). Therefore, Z meets
every S-class, contradicting that f is a reduction. 


So, R is properly reducible to a generic cover of R, but the way in which S covers
R is quite different from the way in which R ⊕ Id1 covers R:

Lemma 3.7. If S is a generic cover of R, then, for all n, the only equivalence relations
which reduce to both R ⊕ Idn and S are the equivalence relations reducible to R.

Proof. Suppose that, for some equivalence relation X, there are f : X �c R ⊕
Idn and g : X �c S. Let A and B be any two X -classes. Note that A,B �m R ⊕
Idn ≡T R by Lemma 1.1. Consider the R-c.e. sets Odds ∩ range(g�A) and Odds ∩
range(g�B). These must both be finite, as otherwise Lemma 3.6 would show that
g�A would hit g�(A) or g�B would hit g�(B). Thus range(g) ∩ Odds is finite. So,
Lemma 1.6 shows that X �c R. 


In Ceers, R ⊕ Id1 is a strong minimal cover (in fact, the only one) of a given
self-full ceer R. Hence, any ceer which is below R ⊕ Id1 is already reducible to R.
But the dual property also holds: R ⊕ Id1 reduces to any ceer which is above R (see
[5, Lemma 4.5] for details). The next theorem uses generic covers to show that these
properties both fail in ER.

Theorem 3.8. The following hold.

(1) Let R be any self-full equivalence relation. There is S such that R <c S but
R ⊕ Id1 ęc S.
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(2) There exist a self-full equivalence relation R such that, for some S,S <c R ⊕ Id1

but S ęc R.

Proof. (1): Let S be a generic cover of R. S is above R and, by Lemma 3.7, we
have that S is incomparable with R ⊕ Id1.

(2): Let S0 be any self-full equivalence relation, let R be a generic cover of S0, and
denote S0 ⊕ Id1 by S. It is immediate that S �c R ⊕ Id1 as S0 �c R. But S and R
are incomparable by Lemma 3.7. 


Having shown that R ⊕ Id1 is not a strong minimal cover for some self-full R,
it is natural to ask whether every self-full degree has a strong minimal cover. The
next theorem answers this question affirmatively. In fact, all equivalence relations
aside from Id1 have continuum many strong minimal covers, and such covers can
be chosen to be self-full.

Theorem 3.9. Let R be any equivalence relation ­= Id1. Then there are continuum
many strong minimal covers of R which are self-full.

Proof. In [5, Theorem 4.10], it is proven that there is a ceer E0 which satisfies
the following properties:

(1) E0�Evens = Id;
(2) There are infinitely many classes which contain no even number;
(3) If W is any c.e. set which intersects infinitely many E0-classes which contain

no even number, then W intersects every E0-class.

There, it is shown that such a ceer is a self-full strong minimal cover of Id. Here, we
let S0 be the quotient of E0 formed by collapsing 2n with 2m if and only if n R m.
Note that S0�Evens = R.

Let S be the set of quotients of S0 which collapse every S0-class which contains
no even number to exactly one S0-class which does contain an even number.
That is,

S := {S0/A : S0/A�Evens = R and [Evens]S0/A
= �}.

Since E0, and thus also S0, has infinitely many classes which contain no even
number, and |�R| > 1, we have |S| = 2ℵ0 . Thus, there are continuum many elements
of S which are not �c R, and there is a continuum sized �c-antichain in S. It suffices
to show that for S ∈ S, if X <c S, then X �c R. It suffices by Remark 1.3 to prove
that either S �c S�W or S�W �c R for any c.e. set W.

We argue by cases:

(1) If W intersects only finitely many E0-classes which do not contain an even
number, then we build a reduction of S�W to R as follows:

Let a1, ... , an represent the E0-classes which contain no even number and
are intersected by W. Let b1, ... , bn be even numbers so that ai S bi . Then
define g(x) to be the first member of Evens ∪ {ai : i � n} found to be E0-
equivalent to x (note that we are using thatE0 is a ceer). Then let h(x) = g(x)
if g(x) is even and h(x) = bi if g(x) = ai . This gives a reduction of S�W to
S whose range is contained in the evens. So, this gives a reduction of S�W to
S�Evens = R.
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(2) If W intersects infinitely many E0-classes which do not contain an even
number, then we know that W intersects every E0-class. We then give a
reduction of S to S�W by sending x to the first member of W found to be
E0-equivalent to x. Since S is a quotient of E0, this is the identity map on
classes, so a reduction of S to S�W .

Lastly, we check that S is self-full. Suppose f is a function reducing S to itself. Let
W be range(f). Since R <c S, we cannot be in case (1) above, so W must intersect
every E0-class, so also every S-class. 


Corollary 3.10. In ER, every degree is branching.

Proof. Every degree d has two incomparable strong minimal covers. The meet
of these two degrees is d. 


So, contrary to the case of ceers, the self-full equivalence relations cannot be
characterized in terms of their strong minimal covers. We ask:

Question 2. Is the collection of self-full degrees first-order definable in ER?

§4. The complexity of the first-order theory of ER. In this last section, we
characterize the complexity of Th(ER), the first-order theory of ER. Our analysis
contributes to a longstanding research thread. Indeed, computability theorists have
been investigating the first-order complexity of degree structures generated by
reducibilities for decades.

Since a reducibility r is typically a binary relation on subsets of �, one
can effectively translate first-order sentences regarding the corresponding degree
structure Dr to second-order sentences of arithmetic, obtaining a 1-reduction from
Th(Dr) to Th2(N). Remarkably, the converse reduction often holds, e.g., the first-
order theories of the following degree structures are 1-equivalent (and so, by Myhill
Isomorphism Theorem, computably isomorphic) to second-order arithmetic: the
Turing degrees DT [22]; the m-degrees Dm, the 1-degrees D1, the tt-degrees Dtt , the
wtt-degrees Dwtt [20]; and the enumeration degrees De [23]. Here, we add ER to this
list, namely, we prove:

Theorem 4.1. Th(ER) is computably isomorphic to Th2(N).

In fact, we will show that the theorem is also true for each of the definable
substructures Dark and Light of ER.

4.1. Our strategy. Equivalence relations are straightforwardly encoded into
subsets of �; hence Th(ER) �1 Th2(N) trivially holds. So, to prove Theorem 4.1,
it suffices to prove the converse reduction. Our strategy for coding second-order
arithmetic into ER is based on coding all countable graphs as second-order objects
into this degree structure. The justification for such approach relies on well-known
facts. Second-order arithmetic is 1-reducible to second-order logic on countable sets,
which is in turn 1-reducible to the theory of second-order countable graphs [19]. So,
one can effectively translate any question about second-order arithmetic into a ques-
tion about a graph which encodes the standard model of Robinson’s arithmetic Q.

Finally, let us mention that our encodings are similar to the way in which graphs
are coded in Ceers, as in [4]. But there are three major differences. Firstly, in what
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follows we code any countable graph, rather than just computable graphs. Secondly,
we must code subsets of the set of vertices of our graph. Thirdly, since we are
giving codes for subsets, we do not need to code functions between different codings
of natural numbers; that means that we do not need to distinguish the natural
numbers from non-standard models of Robinson’s Q as being embeddable into any
other such model (thus needing to code functions), because the second-order theory
distinguishes the standard model of Robinson’s Q as the only one with no proper
inductive subset.

4.2. Coding graphs into Dark. To code graphs in Dark, we heavily use dark
minimal degrees: We fix a collection {Di : i ∈ �} of pairwise nonequivalent dark
minimal equivalence relations. In fact, since Ceers is an initial segment of ER, we
may choose dark minimal ceers (as constructed in [5]).

Definition 4.2. Let d1, d2 be two dark minimal degrees. We say that incomparable
degrees a, b are a covering pair of d1, d2 if, for each x ∈ {a, b}, the set of dark minimal
degrees below x is precisely {d1, d2}, and there is no y < a, b so that d1, d2 < y.

We now describe how to encode a countable graph by parameters in Dark.

Definition 4.3. For any degree c, let Gc be the graph with vertex set composed
of the dark minimal degrees below c and edges the collection of pairs d1, d2 so that
there are distinct a, b � c which form a covering pair of d1, d2.

The next lemma provides an easy way of forming covering pairs of dark minimal
equivalence relations.

Lemma 4.4. If D,E are dark minimal equivalence relations, then D ⊕ E and D ⊕
E/(0,1) form a covering pair of D and E.

Proof. It is immediate that D and E are both computably reducible to D ⊕ E
and D ⊕ E/(0,1) (the latter being a pure quotient).

We show that the only dark minimal degrees below either D ⊕ E or D ⊕ E/(0,1)
are the degrees of D and E.

Suppose f : X �c D ⊕ E, for a dark minimal X. Since X is dark minimal, its
equivalence classes are computably inseparable by Lemma 1.14, so range(f) must
be either contained in the evens or the odds, which implies X �c D or X �c E. But
then X ≡c D or X ≡c E, by minimality of D and E.

On the other hand, suppose f : X �c D ⊕ E/(0,1), for a dark minimal X. Since
the equivalence classes of X are computably inseparable by Lemma 1.14, range(f)
is contained in either

(1) Evens ∪ [1]D⊕E/(0,1)
,

(2) or Odds ∪ [0]D⊕E/(0,1)
.

Without loss of generality, we assume the former. Let h be the function given
by h(x) = x if x is even and 0 if x is odd. Then h ◦ f : X �c D ⊕ E/(0,1) and
range(h ◦ f) ⊆ Evens. This induces a reduction of X to D. But then X ≡c D, by
minimality of D.

Next, we consider the degrees strictly below D ⊕ E which might bound both
D and E. Suppose that X �c D ⊕ E. Then by Lemma 1.4, X ≡c D0 ⊕ E0 where
D0 �c D and E0 �c E. So either

https://doi.org/10.1017/jsl.2022.28 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.28


1058 URI ANDREWS ET AL.

(1) X ∈ F ,
(2) or X ≡c D ⊕ E,
(3) or X ≡c D ⊕ F for some F ∈ F ,
(4) or X ≡c E ⊕ F for some F ∈ F .

In the first case, X obviously does not bound D or E. In the second, X is not
strictly below D ⊕ E. In cases (3) and (4), X does not bound both D and E. To see
this, suppose X ≡c D ⊕ F for some F ∈ F . Then any reduction of E to X gives a
reduction of E to D ⊕ F . But by computable inseparability of the classes of E, this
reduction is either contained in the evens, giving E �c D, or contained in the odds,
giving E is finite, either way leading to a contradiction. Thus, there is no equivalence
relation X which is strictly reducible to D ⊕ E and bounds both D and E.

Next we observe that D ⊕ E and D ⊕ E/(0,1) are incomparable. The fact that
D ⊕ E ęc D ⊕ E/(0,1) follows from darkness of D ⊕ E and Lemma 1.11. The fact
that D ⊕ E/(0,1) ­<c D ⊕ E follows from the previous paragraph.

Finally, by incomparability of D ⊕ E and D ⊕ E/(0,1), any degree below both
would have to be strictly below D ⊕ E, so cannot bound both D and E. 


We are ready to show that we can uniformly code any countable graph as a second-
order structure into Dark, which, combined with the remarks offered in Section 4.1,
will yield the following theorem.

Theorem 4.5. The theory of the degree structure Dark is computably isomorphic
to second-order arithmetic.

Proof. We first embed any countable graph as a first-order structure into Dark.

Lemma 4.6. For any countable graph G, there is some c ∈ Dark so Gc ∼= G .

Proof. We may assume that the universe of G is� (if G is finite, then the dark ceer
C constructed below can be taken simply as the uniform join ofDi andDu ⊕Dv/(0,1)
for pairs where u G v). Recall that {Di : i ∈ �} represents a collection of distinct
dark minimal degrees.

Let X be the collection of equivalence relations

{Di : i ∈ �} ∪ {Di ⊕Dj/(0,1) : i G j}

and fix an enumeration of X = (Xi)i∈� . Fix S to be an immune set. Then we define
C by 〈x, i〉 C 〈y, j〉 if and only either i = j is the nth element of S and x Xn y or
i, j /∈ S.

We now argue that C is dark and Gc ∼= G , where c is the degree of C. The proof
is split into several claims.

Claim 4.7. C is dark.

Proof. IfWe intersects infinitely many columns of �, then by immunity of S, it
enumerates two elements 〈x, i〉, 〈y, j〉 with i, j /∈ S. But then 〈x, i〉 C 〈y, j〉 andWe
is not a transversal.

IfWe intersects only finitely many columns, thenWe is enumerating a subset of
Y = {〈x, i〉 : i � m} for some m. But C �Y is equivalent to a finite uniform join of
dark ceers Xi . ThusWe cannot be a transversal. 
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Next we see that the only dark minimal degrees bounded by c, i.e., those which
are vertices in Gc, are {Di : i ∈ �}.

Claim 4.8. If D �c C and D is dark minimal, then D ≡c Du for some u.

Proof. Since D is dark minimal, its classes are computably inseparable by Lemma
1.14. So, eitherD �c Du , for some u, orD �c Di ⊕Dj/(0,1), for some pair i, j. In the
former case, dark minimality ofDu ensuresD ≡c Du , and in the latter case Lemma
4.4 ensures D ≡c Di or D ≡c Dj . 


We now know that the map i �→ di is onto Gc. It only remains to show that it is
an embedding of G.

Claim 4.9. If u G v, then u Gc v.

Proof. There are three columns of C, coding Du,Dv , and Du ⊕Dv/(0,1).
Therefore, Du ⊕Dv,Du ⊕Dv/(0,1) are both �c C . By Lemma 4.4, these form a
covering pair of Du and Dv , so we have u Gc v. 


Claim 4.10. If u Gc v, then u G v.

Proof. Suppose that a, b � c form a covering pair of du and dv and u, v
are not adjacent in G. Let A ∈ a, B ∈ b, Du ∈ du , and Dv ∈ dv . Consider the
composite reductions fu : Du �c A �c C and fv : Dv �c A �c C . By computable
inseparability of the classes of Du (Lemma 1.14), range(fu) must be contained in a
single column of C. By incomparability of the dark minimal equivalence relations
and Lemma 4.4, this column must be either Du or Du ⊕Dw/(0,1) for some w with
u G w. In particular, the column used for fu cannot be the same as the column
used for fv . It follows that Du ⊕Dv �c A. Similarly for B, contradicting that
a and b form a covering pair of du, dv . 


This completes the proof of Lemma 4.6. 


Next, we show that for any c, we can code any subset of Gc.

Lemma 4.11. Let E be a countable set of dark minimal degrees. There is a degree
a ∈ Dark so that the set of dark minimal degrees � a is exactly E.

Proof. Apply the construction of the dark equivalence relation C of Lemma 4.6
to the empty graph and the collection of degrees in E. That is, let (Ei)i∈� be dark
minimal equivalence relations representing the classes in E. Then let 〈x, i〉 C 〈y, j〉
if and only if i = j is the nth element of S (a fixed immune set) and x En y or if
i, j /∈ S. Lemma 4.8 shows that the degrees of dark minimal equivalence relations
below C are precisely E, and Lemma 4.7 shows that C is dark. 


For a ∈ Dark, let Ma be the set of dark minimal degrees � a. Put together, we
now know that every second-order countable graph is encoded as (Gc,A) for some
c ∈ Dark, where A is the set ofMa for a ∈ Dark which are contained in Gc.

So, Th(Dark) is ≥1 the theory of second-order countable graphs. As remarked in
Section 4.1, this is enough to conclude that Th(Dark) is computably isomorphic to
second-order arithmetic. Then, Theorem 4.1 immediately follows from the fact that
Dark is definable in ER (Corollary 2.22).
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4.3. Coding graphs into Light. We now focus on light degrees, with the goal of
showing that Th(Light) is also computably isomorphic to second-order arithmetic.
The encoding of graphs in the light degrees will be as follows:

Definition 4.12. A degree e is a light minimal degree if Id < e and there is no x
so that Id < x < e.

Let e1, e2 be two light minimal degrees. We say that a, b are a light covering pair
of e1, e2 if for each x ∈ {a, b}, the set of light minimal degrees below x is precisely
{e1, e2} and there is no y below a and b which is above e1, e2.

Definition 4.13. For a light degree c, let Hc be the graph with vertices the light
minimal degrees below c and edges the collection of pairs e1, e2 so that there are
a, b � c which form a light covering pair of e1, e2.

We now show that we can uniformly encode every second-order countable graph
into Light.

Theorem 4.14. The theory of Light is computably isomorphic to second-order
arithmetic.

Proof. Rather than directly defining light covering pairs of light minimal degrees
(as we did in Lemma 4.4), we inherit them from the dark case through the following
map: let � be the map from Dark∪F to Light given by �(D) = D ⊕ Id, and � the
induced map on degrees. The next two claims give two crucial properties of �.

Claim 4.15. � gives a homomorphism of Dark∪F into Light whose image is an
initial segment.

Proof. It is immediate that D �c E implies �(D) �c �(E). Now, suppose Id �c
X �c �(D) = D ⊕ Id, for some equivalence relation X. From Lemma 1.4, it follows
X ≡c D0 ⊕ A, where D0 �c D and A �c Id. Since D0 is dark or finite, A must be
light, since Id �c X . So, A ≡c Id. Thus, X ≡c D0 ⊕ Id = �(D0). 


Claim 4.16. If D is a dark minimal ceer, then �(D) is of light minimal degree.

Proof. Suppose Id <c X �c �(D). Then by the proof of Claim 4.15, X ≡c �(E)
for some E � D. But D is a ceer, so E cannot be in F as that would make E ∈ I
and X ≡c Id. So, E ∈ Dark, and thus E ≡c D by dark minimality of D. 


Lemma 4.6 guarantees that any graph G is encodable into Dark via someGc. The
next lemma says that we can use � to transfer our coding of graphs into Dark into
an encoding in Light.

Lemma 4.17. For any countable graph G, there is a degree c ∈ Dark so thatGc ∼= G
is isomorphic to a substructure of H�(c)

Proof. Fix dark minimal ceersDi ∈ di and let c be as constructed in Lemma 4.6
so Gc ∼= G . Lemma 4.16 shows that every �(di) is in H�(c). Let X be the subset of
vertices inH�(c) comprised of �(di) for i ∈ �. We do not claim that there are no other
light minimal degrees bounded by �(c). We now show that � gives an isomorphism
of Gc with the substructure ofH�(c) with universe X.

By Claim 4.15, � gives a homomorphism of the degrees below c onto the light
degrees below �(c). We argue that such a homomorphism, when restricted to the
dark minimal degrees and their covering pairs, is in fact an embedding.
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First observe that each distinct pair of dark minimal Di and Dj below c are sent
via � to incomparable degrees. Indeed, if �(Di) �c �(Dj), then Di �c Dj ⊕ Id. By
the computable inseparability of the classes of Di , the reduction is either to Dj or
Idk , both of which are impossible.

Now, for distinct Di,Dj , observe that �(Di ⊕Dj) and �(Di ⊕Dj/(0,1)) are sent
to incomparable degrees. To see this, recall that, by Lemma 4.4, Di ⊕Dj and Di ⊕
Dj/(0,1) are incomparable. Since neither of these have a computable class (because
this would contradict the computable inseparability of the equivalence classes ofDi
and Dj , granted by Lemma 1.14), it follows that neither can reduce to the other
⊕ Id, as such a reduction could not make any use of Id.

Claim 4.18. If di Gc dj, then �(di) H�(c) �(dj).

Proof. Let di Gc dj . To show that �(di) H�(c) �(dj) holds, we need to check that
�(Di ⊕Dj) and �(Di ⊕Dj/(0,1)) form a light covering pair of �(Di) and �(Dj).
It only remains to check that there is no Y �c �(Di ⊕Dj), �(Di ⊕Dj/(0,1)) such
that �(Di), �(Dj) �c Y . Suppose that such a Y existed. Consider the composite
reduction fi : Di �c Y �c Di ⊕Dj ⊕ Id. The computable inseparability of the
classes of Di and the incomparability of Di and Dj force fi to go into the first
column. Similarly, the reduction offj : Dj �c Y �c Di ⊕Dj ⊕ Id must go into the
second column. It follows thatDi ⊕Dj �c Y . SinceY �c �(Di ⊕Dj/(0,1)), there is a
reduction Di ⊕Dj �c Di ⊕Dj/(0,1) ⊕ Id, and thus �(Di ⊕Dj) �c �(Di ⊕Dj/(0,1)),
but we have already established that these are incomparable. 


Claim 4.19. If �(di) H�(c) �(dj), then di Gc dj .

Proof. Let �(di) H�(c) �(dj), and let �(A0) ∈ a, �(B0) ∈ b be a light covering
pair of �(di), �(dj). By the computable inseparability of the classes of Di and Dj ,
Di,Dj �c A0 and Di,Dj �c B0. Since � is a homomorphism onto the light degrees
below �(c), any y witnessing that a, b is not a covering pair of di , dj would be so
that �(y) witnesses a, b are not a light covering pair of �(di) and �(dj). Thus we have
di Gc dj . 


This concludes the proof of Lemma 4.17. 

Next, we show that we can code any subset of any countable set of vertices. This

will be used both for encoding the second-order part of graphs and also for selecting
the substructure of H�(c) which is isomorphic to G.

Lemma 4.20. Let {bi : i ∈ �} be a collection of distinct light minimal degrees and
S ⊆ �. Then, there is a degree c so that bi � c if and only if i ∈ S.

Proof. Fix a sequence of representativesLi ∈ bi . Intuitively, we constructX ∈ c
to encode each Li with i ∈ S on the columns of � and then generically collapse
equivalence classes between columns. Enumerate S = {a0 < a1 < ··· }.

First we define X0 by

〈n, i〉 X0 〈m, j〉 ⇔ i = j ∧ (n Lai m).

Let Coli = {〈x, i〉 : x ∈ �}, i.e., the ith column of�. For all i, denote byTi ⊆ Coli
a transversal ofX0 which hits all classes contained in the ith column. Next, let (fi )i∈�
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be a (mutually) 1-generic sequence of permutations of� over a Turing degree which
computes every Li .

Then let X = X0/Z with

Z = {(Tu[v], T0[fu(v)]) : u, v ∈ �},
where we let Tu[v] denote the vth element of Tu (i.e., Z collapses the vth class in the
uth column to the fu(v)th class in the 0th column of X0).

Claim 4.21. For all i ∈ S, Li �c X .

Proof. This follows from the fact thatX0 encodes eachLi for i ∈ S as a column,
and the quotient X does not collapse equivalence classes from the same column. 


Suppose towards a contradiction that g : Lj � X for some j /∈ S.

Claim 4.22. There is some k so that range(g) ⊆∗ Colk .

Proof. Let V be the set of finite sequences of finite injective partial maps (pi)i�m
so that for some x, y, letting i, l, n,m be such that g(x) X0 Ti [n] and g(y) X0 Tl [m],
we have pi(n) = pl (m) ↔ x��Lj y. Observe that if range(g) is not almost contained
in a single column, then V is dense (i.e., for any finite sequence of finite injective
partial maps (pi)i�m there is a sequence (qi)i�n with n ≥ m of injective partial maps
so pi ⊆ qi for i � m, and (qi)i�n ∈ V ). But then by genericity of (fi)i∈� , it will
meet V, which contradicts g being a reduction of Lj to X. 


Let i be fixed so that range(g) ⊆∗ Coli . Since range(g) intersects only finitely
many columns, we can assume that it intersects the minimal possible number
of columns. If range(g) ⊆ Coli , then Lj �c Li , which is a contradiction to Lj
and Li being inequivalent light minimal equivalence relations. So, suppose that
range(g) intersects Colk for k ­= i . Let us consider the finite equivalence relation
Y = Lj�g–1(Colk). If all Y -classes were computable, then we could adjust g to send
each of these sets to a representative of the same class in Coli contradicting that
g uses the minimal possible number of columns. So Y ∈ F � I and Y � Lj and
Y � Lk . But Theorem 2.21 shows that there is a least upper bound Z of Id and Y.
Then Id <c Z � Lj,Lk contradicting thatLj andLk are inequivalent light minimal
equivalence relations. 


If a is light, then let Ma be the set of light minimal degrees below a. It follows
that for every second-order countable graph G, there are parameters e, b so that
(G,P(G)) ∼= (He ∩Mb,A) where A is the collection of sets He ∩Mb ∩Ma for
various light degrees a.

As remarked in Section 4.1, this suffices to conclude that the theory of Light is
computably isomorphic to second-order arithmetic.
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