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PA RELATIVE TO AN ENUMERATION ORACLE

JUN LE GOH, ISKANDER SH. KALIMULLIN, JOSEPH S. MILLER, AND MARIYA I. SOSKOVA

Abstract. Recall that B is PA relative to A if B computes a member of every nonempty Π0
1(A) class.

This two-place relation is invariant under Turing equivalence and so can be thought of as a binary relation
on Turing degrees. Miller and Soskova [23] introduced the notion of a Π0

1 class relative to an enumeration
oracle A, which they called a Π0

1〈A〉 class. We study the induced extension of the relation B is PA relative
to A to enumeration oracles and hence enumeration degrees. We isolate several classes of enumeration
degrees based on their behavior with respect to this relation: the PA bounded degrees, the degrees that have
a universal class, the low for PA degrees, and the 〈self 〉-PA degrees. We study the relationship between
these classes and other known classes of enumeration degrees. We also investigate a group of classes of
enumeration degrees that were introduced by Kalimullin and Puzarenko [14] based on properties that are
commonly studied in descriptive set theory. As part of this investigation, we give characterizations of three
of their classes in terms of a special sub-collection of relativized Π0

1 classes—the separating classes. These
three can then be seen to be direct analogues of three of our classes. We completely determine the relative
position of all classes in question.

§1. Introduction. Relativization is an important tool in computability theory. It
allows us to lift a computability-theoretic property of sets to a property that describes
a relation between two sets, the second treated as a Turing oracle. The algorithm is
simple: we replace every use of “computable” in the definition of the property by
“computable relative to the Turing oracle.” In many cases, this really means that we
replace “computably enumerable (c.e.)” by “c.e. relative to the Turing oracle.” For
example, the Turing jump of a set A is obtained by relativizing the halting set K, the
uniform join of all c.e. sets, to the set KA, the uniform join of all A-c.e. sets. The
usual proof that K is not computable relativizes to show that KA is not computable
from A. For a second example, recall that a set G is 1-generic if for every c.e. set of
strings W, there is an initial segment of G that is either in W or has no extension in
W. The existence of a Δ0

21-generic set yields incomparable Turing degrees bounded
by 0′T . Following the algorithm, we relativize the notion of a 1-generic set to an
arbitrary oracle A: we say that G is 1-generic relative to the Turing oracle A if for
every A-c.e. setW ⊆ 2<� there is an initial segment of G that is either in W or has no
extension in W. Relativizing the existence of Δ0

21-generic sets yields incomparable
Turing degrees in any interval of the form [a, a′].

Unlike Turing reducibility, the relation “c.e. in” is not transitive. The reason is
that the two sets that it relates are not treated in the same way: if A is c.e. in B,
then using finitary positive and negative information from the set B we can produce
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positive facts about the set A. There are two ways to make the roles of the sets A
and B equal. If we require that B produces full information about A, we get Turing
reducibility. If we restrict the use of our oracle B, so that only positive information is
used, we obtain enumeration reducibility. This approach is especially useful to model
relative computation of partial functions and was considered in a short period of
time by several authors, including Friedberg and Rogers [10], Myhill [25], Uspensky
[29], and Selman [27]. The definition we give here is by Friedberg and Rogers:

Definition 1.1. A set A ⊆ � is enumeration reducible to a set B ⊆ �, written
A ≤e B , if and only if there is a c.e. set Γ such that

A = {x : (∃v)[〈x, v〉 ∈ Γ & Dv ⊆ B]},

where Dv is the finite set with canonical code v. In this case we write A = Γ(B). We
call Γ an enumeration operator and its elements axioms.

Selman [27] gave a characterization of enumeration reducibility that relies on the
notion of relativization. He showed thatA ≤e B if and only if for all Turing oracles X,
if B is X -c.e. then A is also X -c.e. Note that Definition 1.1 can be seen as fixing an
algorithm by which an enumeration of B is transformed into an enumeration of A.
Selman’s result shows that the uniformity built into this definition is not necessary.

We can easily express Turing reducibility via enumeration reducibility:

Proposition 1.2. A ≤T B ⇔ A⊕ A is c.e. in B ⇔ A⊕ A ≤e B ⊕ B.

Consider the degree structures that represent each reducibility: DT is the partial
order of the Turing degrees and De is the partial order of the enumeration degrees.
The relationship above gives rise to an embedding � : DT → De defined by

�(degT (A)) = dege(A⊕ A).

This embedding preserves order and least upper bound. The range of this embedding
is a structure that is isomorphic to the Turing degrees. We call its elements total
enumeration degrees.

Definition 1.3. A set A is total if A ≤e A (or equivalently if A ≡e A⊕ A). An
enumeration degree is called total if it contains a total set.

It is not difficult to see that the total enumeration degrees do not exhaust all
enumeration degrees. Medvedev [21] proved that there are quasiminimal degrees,
nonzero degrees that do not bound any nonzero total enumeration degree. In fact,
the enumeration degree of any 1-generic set has this property. Thus, the Turing
degrees are a proper substructure of the enumeration degrees.

Relativization with respect to a Turing oracle gives rise to relations on the
total degrees. In order to extend these relations to all enumeration oracles we
need to extend the method of relativization. Relativizing to an enumeration oracle
A is straightforward: simply replace “A-c.e.” with “enumeration reducible to A”
(i.e., ≤e A). From the perspective of Selman’s characterization of enumeration
reducibility, relativizing to an enumeration oracle can be viewed as relativizing to a
set of Turing oracles. We will use the notation 〈A〉 whenever we are thinking of A
specifically as an enumeration oracle.
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Let us consider the two examples of relativization from above. A first attempt
to extend the Turing jump to enumeration oracles seems not to lead us to a useful
notion: if we define K 〈A〉 to be the uniform join of all sets that are enumeration
reducible to A, then we get a set equivalent to the original: K 〈A〉 ≡e A. However,
looking back at the proof that K is not computable, we notice that the complement
of K plays an essential role. We could have defined the Turing jump of the degree
degT (A) to be the degree degT (KA), and it just happens that a set and its complement
have the same Turing degrees. This approach lends itself to a meaningful extension
of the Turing jump to all enumeration oracles: the skip of A is the set A� = K 〈A〉.
This definition is invariant under enumeration equivalence and gives rise to the
skip operator mapping an enumeration degree a to a�. For total degrees, the skip
operator agrees with the Turing jump operator: we have that �(a′) = �(a)�. The skip
was introduced and studied by Andrews et al. [1], who gave evidence that it is the
natural extension of the jump operator to enumeration oracles.1

Extending the second example above is more straightforward. A set G is 〈A〉-
generic if for every set W ⊆ 2<� that is enumeration reducible to A, there is an
initial segment of G that is either in W or has no extension in W. Relativizing the
proof that 1-generic sets have quasiminimal degree gives us a strong quasiminimal
cover b for every enumeration degree a, i.e., every total degree bounded by b is
bounded by a.

In this paper, we study the natural extension of the relation “B is PA relative to
A” (or relatively-PA, for short) from Turing to enumeration oracles. Recall that a
Turing oracle B is PA if B computes a member of every nonempty Π0

1 class. We say
that B is PA relative to A if B computes a member of every nonempty Π0

1(A) class.
Note that this relation is invariant under Turing reducibility on both arguments,
and hence induces a relation on Turing degrees. In Section 2, we recall the definition
of a Π0

1〈A〉 class given by Miller and Soskova [24], which follows the general scheme
outlined above. We use this to extend the relation relatively-PA from the Turing to
the enumeration degrees. We also investigate three classes of enumeration degrees—
the continuous degrees, the 〈self 〉-PA degrees, and the cototal degrees—that are
interesting case studies for the extension of the relation relatively-PA.

When we extend a relation on the Turing degrees to the enumeration degrees, it
is natural that some but not all properties are preserved. We can identify classes of
enumeration degrees depending on whether or not they break or preserve a property.
For example, the skip operator is always order preserving, but unlike the jump, it
does not always map a degree to a strictly higher degree. The class on which this
behavior of the jump is preserved is the cototal enumeration degrees, studied in [1, 16,
20, 23]. In Section 3, we explore two specific properties of the relation relatively-PA
in the Turing context:

(1) If B is PA relative to A, then B ≥T A.
(2) There is a single Π0

1(A) class whose members are all PA relative to A.

Enumeration degrees that preserve the first property are called PA bounded and
those that preserve the second property have a universal class. Ganchev et al. [11]
introduced these classes and proved several relationships between them and the

1The enumeration jump had already been defined slightly differently by Cooper [7].
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continuous, the cototal, and the 〈self 〉-PA degrees. We prove that the PA bounded
enumeration degrees are exactly the continuous degrees. The class of enumeration
oracles that have a universal class is more difficult to pin down. Nevertheless, we
develop a complete analysis of where this class sits in terms of other studied classes
of enumeration degrees. We introduce the low for PA enumeration degrees and
prove that they are disjoint from the continuous degrees, even though both possess
universal classes.

In Section 4, we discuss a collection of classes of enumeration oracles that were
introduced by Kalimullin and Puzarenko [15]. They grouped oracles into classes
based on whether or not the principal ideal (with respect to enumeration reducibility)
that an oracle defines possesses a certain property coming from descriptive set theory
or from classical computability theory. In particular, they introduced the classes
of enumeration degrees with the reduction property, the separation property, and
the computable extension property, as well as the degrees with a universal function.
They also determined how these classes relate to each other and to the total and
quasiminimal degrees. These relationships mirror those between the classes that we
have been discussing so far: the continuous degrees, the 〈self 〉-PA degrees, the low
for PA degrees, and the degrees with a universal class. There is a good explanation
for (most of) this coincidence; we show that three of the classes from Kalimullin
and Puzarenko are direct analogues of our classes, except with the Π0

1〈∗〉 classes in
the definitions restricted to a special subcollection of Π0

1〈∗〉 classes, the separating
classes.

This realization automatically translates into a series of implications between
several of the classes that we have been discussing. To complete the picture, we
need to prove separations between specific pairs of classes. Section 5 is devoted
to the forcing arguments that give us these separations, ultimately resulting in a
complete analysis of the relative position of all of the classes under consideration
(see Figure 3). Finally, we end with a list of open problems that arose from our work.

§2. Main definition and baseline classes of enumeration degrees. Miller and
Soskova [24] defined the notion of a Π0

1 class relative to an enumeration oracle. They
followed the simple template from the introduction, i.e., replace “c.e. in” with ≤e :

Definition 2.1. For each � ∈ 2<� , let [�] = {X ∈ 2� : � ≺ X}. For each W ⊆
2<� , let [W ] =

⋃
�∈W [�].

(1) U ⊆ 2� is a Σ0
1〈A〉 class if U = [W ] for someW ⊆ 2<� such thatW ≤e A.

(2) V ⊆ 2� is a Π0
1〈A〉 class if V = 2� \U for some Σ0

1〈A〉 class U.

We think of the elements of a Π0
1〈A〉 class as total objects. Intuitively, there is no

way in which we can distinguish between 0s and 1s in the definition of a Π0
1〈A〉 class

and so it seems unnatural to assume that we can only enumerate positive information
about them. Furthermore, when thinking about bounding members of every Π0

1〈A〉
class, consider that we have a uniform procedure to pass between the Π0

1〈A〉 class
U and the Π0

1〈A〉 class UTot = {X ⊕ X : X ∈ U}. This leads us to the following
natural extension of the relation relatively-PA to enumeration oracles:

Definition 2.2. 〈B〉 is PA relative to 〈A〉 if every nonempty Π0
1〈A〉 class contains

a path X such that X ⊕ X ≤e B . We refer to this binary relation as 〈relatively〉-PA.
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Note that this relation is invariant under enumeration equivalence, and hence it
induces a relation on the enumeration degrees. Furthermore, we have that B is PA
relative to A (in the Turing sense) if and only if

〈
B ⊕ B

〉
is PA relative to

〈
A⊕ A

〉
, so

〈relatively〉-PA extends the relation relatively-PA under the natural embedding from
the Turing degrees to the enumeration degrees.

2.1. The continuous degrees. The continuous degrees were introduced by Miller
[22] while answering an open question from computable analysis. Computable
analysis gives a framework by which we can associate discrete descriptions—
names—with other, often more complex, mathematical objects and thereby lift
computability theoretic notions to new settings. This association of a name with an
object is not bijective, as we can usually describe the same object in different ways.
For example, a name for a real number r is a function �r : N → Q such that for
every natural number n we have |r – �r(n)| < 1

2n . A name of least Turing degree for
a specific object can be thought of as a measure for the algorithmic content of that
object. For example, any name for a real r can compute the Turing degree of the set
that codes the Dedekind cut {q ∈ Q : q < r} ⊕ {q ∈ Q : q > r} and vice versa, and
from the Dedekind cut of a real r, we can compute a name for r. Miller answered the
following question: can we assign a least Turing degree to every continuous function
on the real numbers? Miller proved that it is equivalent to ask the same question
about members of [0, 1]� , the Hilbert cube. To each such element we can naturally
assign an enumeration degree:

Definition 2.3. For α ∈ [0, 1]� , let

Cα =
⊕
n∈�

({q ∈ Q : q < α(n)} ⊕ {q ∈ Q : q > α(n)}).

An enumeration degree containing a set of the formCα is called a continuous degree;
we view it as the degree of α.

Miller proved that total degrees are continuous. Further, a point in [0, 1]� has
a least Turing degree name if and only if its continuous enumeration degree is
total. Thus the original question can be restated as: are there non-total continuous
degrees? Miller proved that the answer is positive and that, furthermore, non-total
continuous degrees have a very interesting relationship to the relation relatively-PA.
Recall that a Scott set is a Turing ideal such that for every member a, the ideal
contains a degree b that is PA relative to a.

Theorem 2.4 (Miller [22]). There are non-total continuous degrees. Furthermore:

• The total degrees below a non-total continuous degree form a Scott set.
• Every countable Scott set can be realized as the set of total degrees bounded by

the degree of some non-total continuous degree.
• X is PA relative to Y if and only if there is a non-total continuous degree a such

that dege(Y ⊕ Y ) <e a <e dege(X ⊕ X ).

Andrews et al. [2] gave several characterizations of the continuous degrees, one
of which showed that the continuous degrees are first order definable. Another of
their characterizations will prove very useful for our purposes.
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Definition 2.5. A set A is codable if there is a nonempty Π0
1〈A〉 class U such that

for every member X of U, A is uniformly c.e. in X.

Theorem 2.6 (Andrews et al. [2]). An enumeration degree is continuous if and only
if it contains a codable set.

Using this characterization, we can easily derive that the continuous degrees
behave well with respect to the extended relation 〈relatively〉-PA. For instance,
Kreisel [17] proved that there is a nonempty Π0

1 class with no computable member.
Relativizing, we get that the relation relatively-PA is anti-reflexive. If A is codable
and we assume that 〈A〉 is PA relative to 〈A〉, then A would enumerate a member
X ⊕ X of the Π0

1〈A〉 class U that witnesses its codability. But thenA ≡e X ⊕ X and
hence X as a Turing oracle would be PA relative to itself, contradicting Kreisel’s
theorem. This shows that for any set A of continuous degree, 〈A〉 is not PA relative
to 〈A〉.

2.2. 〈self 〉-PA enumeration degrees. Nevertheless, this very property of the
relation relatively-PA is not preserved for all enumeration oracles.

Definition 2.7. A set A is 〈self 〉-PA if 〈A〉 is PA relative to 〈A〉.
Degrees that contain 〈self 〉-PA sets inherit the name. Miller and Soskova [24]

proved that 〈self 〉-PA degrees exist, and have properties that are surprisingly similar
to non-total continuous degrees.

Theorem 2.8 (Miller and Soskova [24]). There are 〈self 〉-PA enumeration
degrees.

• The total degrees below a 〈self 〉-PA enumeration degree form a Scott set.
• Every countable Scott set can be realized as the set of total degrees bounded by

some 〈self 〉-PA degree.
• X is PA relative to Y if and only if there is a 〈self 〉-PA set A such that Y ⊕ Y <e
A <e X ⊕ X .

Note that, in particular, no 〈self 〉-PA enumeration degree is quasiminimal. The
existence of low PA degrees yields the existence of low and hence Δ0

2〈self 〉-PA sets.

2.3. Cototal enumeration degrees. We review one additional class that plays a
key role in our understanding of the enumeration degrees. The cototal enumeration
degrees were introduced by Andrews et al. [1] motivated by a question of Jeandel [12]
from symbolic dynamics.2 Recall that a one-dimensional subshift is a topologically
closed subset of Cantor space 2� closed under the shift operator—the operator that
maps x = x0x1x2 ... ∈ 2� to s(x) = x1x2 ... . A subshift V is minimal if no proper
nonempty subset of V is also a subshift. Jeandel proved that a Turing degree x
can compute a member of a fixed nonempty minimal subshift V if and only if x
can enumerate the language of the subshift, LV , which consists of all finite binary
sequences that appear as subwords of some member of V. Jeandel noticed that the
language of a minimal subshift LV has an additional property: LV ≤e LV .

2Other authors had studied cototal degrees without explicitly defining them as a class. Solon [28] used
the name cototal in a slightly different sense; this is explained in detail in [1].
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Definition 2.9. A set A is cototal if A ≤e A. A degree is cototal if it contains a
cototal set.

Cototal degrees have characterizations stemming from many different parts of
mathematics: they are the degrees of complements of maximal independent sets in
computable graphs (Andrews et al. [1]); the degrees of complements of maximal
antichains in �<� (McCarthy [20]); the degrees of effectively G� topological spaces
(Kihara, Ng, and Pauly [16]); the degrees of enumeration pointed binary trees
(McCarthy [20]); the degrees of sets with good approximations (Miller and Soskova
[23]); and the degrees of languages of minimal subshifts (Jeandel [12] and McCarthy
[20]). The characterization that we will use is a simple one. Recall that K 〈A〉 =⊕
e∈� Γe(A), where Γe is the e-th enumeration operator in a standard enumeration.

Theorem 2.10 (Andrews et al. [1]). A has cototal degree if and only ifA ≤e K 〈A〉.

Andrews et al. [1] proved that the cototal enumeration degrees properly contain the
continuous degrees and that they are incomparable to the quasiminimal enumeration
degrees. To complete the picture of the classes that we have defined so far, we need
to investigate how cototal degrees relate to 〈self 〉-PA degrees. Every Σ0

2 enumeration
degree is cototal [1] and hence, there are cototal 〈self 〉-PA degrees. We exhibit a
〈self 〉-PA degree that is not cototal:

Theorem 2.11. There exists a 〈self 〉-PA set A that does not have cototal degree.

Proof. We use a forcing notion with conditions of the form p =
(n,X0, ... , Xn–1, D), where n ∈ �, Xi ∈ 2� , and D is a finite set. We associate
with every p the set Ap = (

⊕
i∈� Xi) ∪D, where Xi = ∅ if i ≥ n. So Xi is the i-th

column of Ap modulo a finite set. We will say that q = (m,Y0, ... , Ym–1, E) extends
p if m ≥ n, for all i < n we have that Xi = Yi , D ⊆ E, and if x ∈ E \D then
x ∈ �[≥n], i.e., x = 〈k, z〉 for some k ≥ n and z ∈ �. We construct A as

⋃
s∈� Aps ,

where {ps}s∈� is a sequence of conditions such that ps+1 extends ps .
We denote by Pe〈A〉 the Π0

1〈A〉 class 2� \ [Γe(A)], where {Γe}e∈� lists all
enumeration operators. To ensure that A is 〈self 〉-PA, we satisfy the requirements:

Pe : Pe〈A〉 �= ∅ → (∃X ∈ Pe〈A〉)[X ⊕ X ≤e A].

To ensure that A is not cototal, we satisfy the requirements:

Ne : A �= Γe(K 〈A〉).

Start with p0 = (0, ∅). At stage s = 2e, we satisfy the requirement Pe . Fix ps =
(n,X0, X1, ... Xn–1, D). We ask if ps has an extension q = (n,X0, ... , Xn–1, E) such
that Pe〈Aq〉 = ∅ and if so then let ps+1 = q for some such q. Otherwise, it follows
by compactness that P = Pe

〈
Aps ∪ �[≥n]

〉
is a nonempty Π0

1〈X0 ⊕ ··· ⊕ Xn–1〉 class
that will be a subclass of Pe〈A〉 no matter how the construction of A continues. Let
Xn be some path in P and let ps+1 = (n + 2, X0, ... , Xn, Xn,D).

At stage s = 2e + 1, we deal with the requirement Ne . Let xe be the least element
in �[n], whose membership in A is not determined by ps = (n,X0, ... , Xn–1, D),
i.e., xe is least in �[n] \D. We first ask if ps has some extension q such that q
forces xe ∈ Γe(K 〈A〉): there is some axiom 〈xe, F 〉 ∈ Γe such that for every member
〈u, z〉 ∈ F and every r extending q we have that z /∈ Γu(Ar). If there is some such
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extension q, then there is one that also forces xe out of A, because the fewer elements
in A, the more elements inK 〈A〉. The extension q = (m,Y0, ... Ym–1, E) forces xe out
of A if m > n and xe /∈ Aq . We let ps+1 = q for some such q.

If there is no such extension, then for every extension q of ps and every axiom
〈xe, F 〉 ∈ Γe there is some member 〈u, z〉 ∈ F and some r extending q such that
z ∈ Γu(Ar). Note that if Ar ⊆ A, then this axiom for xe is not valid with respect
to the oracle K 〈A〉. In this case we say that Ne is persistent. We then extend to
ps+1 = (n,X0, ... , Xn–1, E) where E is a finite set defined so that xe ∈ E and so that
for every persistent Ni , with i ≤ e, we ensure that the first s many axioms for xi in
Γi are invalidated. (This will be the outcome at infinitely many odd stages, so if Ni
is persistent, then xi will be in A \ Γi(K 〈A〉) and Ni will be satisfied.) �

§3. Two properties of the relation relatively-PA that do not persist under the
extension. Ganchev et al. [11] studied the relation 〈relatively〉-PA and identified
two more classes of enumeration degrees. To define the first class, recall that for any
Turing oracle X, we have that {X} is a nonempty Π0

1(X ) class. Hence, if Y is PA
relative to X, then X ≤T Y .

Definition 3.1. We say that A ⊆ � is PA bounded if whenever 〈B〉 is PA relative
to 〈A〉 we have that A ≤e B .

For the second class, consider the Π0
1(X ) class DNCX2 consisting of all {0, 1}-

valued diagonally noncomputable functions relative to the Turing oracle X. If P is a
nonempty Π0

1(X ) class and � ∈ 2<� has an extension in P, then a DNCX2 function
allows us to compute, uniformly in an index for P and �, a bit i such that �i also
has an extension in P. Thus every member of DNCX2 is PA relative to X.

Definition 3.2. We say thatA ⊆ � has universal class P if P is a nonempty Π0
1〈A〉

class such that, for every nonempty Π0
1〈A〉 class Q, there is a fixed Turing functional

Φ such that ΦX ∈ Q for all X ∈ P.

We note that this definition is slightly more demanding than the one originally
given in [11]. There we merely required that

〈
X ⊕ X

〉
is PA relative to 〈A〉 for every

X ∈ P. Here we have decided to ask for some additional uniformity. The change is
motivated by the next section, in which we compare oracles with a universal class
to oracles with a universal function. Note that we could have asked for even more
uniformity: we could have asked that an index for Φ can be computed uniformly
from an index for Q. It remains unclear if these choices lead to different classes of
oracles (see the last section for open questions).

Both properties clearly hold for total oracles. Ganchev et al. [11] proved:

Theorem 3.3 (Ganchev et al. [11]).

(1) Every PA bounded degree is cototal.
(2) The continuous degrees are exactly the enumeration degrees that are both PA

bounded and have a universal class.
(3) The 〈self 〉-PA degrees do not have universal classes.

To avoid any uncertainty that could arise from our slight change in the definition
of a universal class, we reprove the fact that every continuous degree has a universal
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class. To add some value to this proof, we will observe one additional property: the
universal class that we associate with a continuous degree has a specific form, one
that will play an important role in the next section.

Definition 3.4. A Π0
1〈A〉 class P is called a separating class if there are

sets X,Y ≤e A such that P = {Z : X ⊆ Z & Y ⊆ Z}. Elements of P are called
separators. The collection of all Π0

1〈A〉 separating classes will be denoted by Sep 〈A〉.

Theorem 3.5. If A has continuous degree, then there is a universal Π0
1〈A〉 class that

is a separating class.

Proof. Recall that every continuous degree contains a codable set (Theorem
2.6). So let A be codable and fix a nonempty Π0

1〈A〉 class S and a uniform procedure
that enumerates A from every member of S. We define a Π0

1〈A〉 separating class as
follows. For i = 0, 1, define 〈e, �〉 to be in Ui if and only if (∀X ∈ S) ΦXe (�) ↓ = i .
Trivially, U0 and U1 are disjoint. Note that U0, U1 ≤e A by compactness. Let U be
the separating class for U0 and U1.

We must show that U is universal. Let P be a Π0
1〈A〉 class and letW ≤e A be a

set of strings such that P = 2� \ [W ]. We define a uniform procedure to compute a
path in P from a separator for U0 and U1. First, define ΦXe as follows. As long as
X ∈ S, we can uniformly enumerate A from X, and then from that we can uniformly
enumerate W. Using this enumeration of W, let ΦXe (�) ↓ = i if and only if at some
stage we see that �i has no extensions in P but �(1 – i) still appears to have an
extension. (We apply the same procedure to all X, whether or not they are in S,
accepting that the results for X /∈ S have no particular meaning.)

Now let Z be a separator of U0 and U1 and assume that � is extendible in P.
If 〈e, �〉 ∈ Z, then 〈e, �〉 /∈ U1. Hence there is some X ∈ S such that ΦXe (�) ↑ or
ΦXe (�) ↓ = 0. In either case, since � is extendible in P, it follows that �1 is extendible
in P. Similarly, if 〈e, �〉 /∈ Z, then �0 is extendible in P. Therefore, we have a uniform
procedure to compute an element of P from any Z ∈ U , so U is a universal Π0

1〈A〉
class. �

Note that in the proof, from an index for P we could uniformly find e, and
hence uniformly find the index for the functional that computes elements of P from
elements of U. In other words, U is not only universal in the sense of Definition 3.2,
but in the more uniform sense discussed after the definition.

3.1. Continuous is the same as PA bounded. Ganchev et al. [11] left the following
questions open: Are there cototal degrees that are not PA bounded? Can a 〈self 〉-PA
degree be PA bounded? Franklin, Lempp, Miller, Schweber, and Soskova answered
both questions by showing that the PA bounded degrees are exactly the continuous
degrees. As their result is not published anywhere else, with their permission, we
give it below.

Theorem 3.6. The PA bounded enumeration degrees are the continuous degrees.

Proof. One direction in this theorem was already shown to be true in [11]: every
continuous degree is PA bounded. Here we prove that if A is not of continuous
degree, then A is not PA bounded. So fix A that is not of continuous degree,
hence by Theorem 2.6, not codable. We will build a sequence of nonempty Π0

1〈A〉
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classes {Qs}s∈� so that Qs ⊇ Qs+1. A nested intersection of nonempty compact
sets is nonempty, so

⋂
s Qs will be nonempty. The construction will ensure that if

Z ∈
⋂
s Qs then 〈Z〉 is PA relative to 〈A〉 and A �e Z. It follows that A is not PA

bounded.
We start with Q0 = (2�)� . In other words, Q0 is the full Π0

1 class, but we think of
it as a sequence of countably many copies of the full class. Each Qs will be thought
of as a countable sequence of Π0

1〈A〉 classes such that all but finitely many of them
are 2� . We will denote by Q[i ]

s the i-th member of this sequence and call it the i-th
column of Qs . We will keep track of an index ks such that for all i ≥ ks , Q[i ]

s = 2� .
Under this arrangement k0 = 0.

Suppose we have constructed Qs and identified ks . Consider the Π0
1〈A〉 class Q

defined so that for all i < ks we have that Q[i ] = Q[i ]
s and for all i ≥ ks we have

Q[i ] = {�}. In other words, Q is the subclass of Qs such that if Y ∈ Q and i ≥ ks ,
then Y [i ] = �. Now since A is not codable, we can fix Y ∈ Q such that Γs(Y ) �= A,
where Γs is the s-th enumeration operator. Note that codability is defined in terms
of c.e. operators, but of course, an enumeration operator is a c.e. operator. Let y be
the least difference between Γs(Y ) and A. We have two possibilities:

Case 1. Ify ∈ Γs(Y ) \ A, letD ⊆ Y be a finite set such thaty ∈ Γs(D). We restrict
Qs to the largest possible Π0

1〈A〉 subclass R so that D is a subset of every member
of R. Note that R is nonempty because it contains Y. Since D is finite the class R
also has the desired form, i.e., there is some number k ≥ ks such that R[i ] = 2� for
all i ≥ k. Let k be the least such number. Furthermore, if Z is a member of R then
y ∈ Γs(Z).

Case 2. If y ∈ A \ Γs(Y ), then we trim the first ks many columns of Qs to
get a Π0

1〈A〉 class R so that if Z ∈ R, then y /∈ Γs(Z). In more detail, we let
R[0], ... , R[ks–1] be defined so that if Z is a member of the class with columns
R[0], ... , R[ks–1], {�}, {�}, ... , then y /∈ Γs(Z). We leave the remaining columns of
R full: R[i ] = 2� for all i ≥ ks . Once again, Y ∈ R guarantees that R is nonempty.
Furthermore, for all Z ∈ R we have that if i ≥ ks , then Z [i ] ⊆ � = Y [i ]; hence by
the monotonicity of enumeration operators, y /∈ Γs(Z). Let k = ks .

In each case, we have ensured that if Z ∈ R then Γs(Z) �= A. (Note in the next
paragraph that Qs+1 ⊆ R.)

Now let Ps〈A〉 be the s-th Π0
1〈A〉 class. If Ps〈A〉 is empty, let Qs+1 = R and

ks+1 = k. Otherwise, let Qs+1 be defined by setting Q[i ]
s+1 = R[i ] for all i �= k and

Q[k]
s+1 = {Z ⊕ Z : Z ∈ Ps〈A〉}. We will have that ks+1 = k + 1. In this case, we have

ensured that if Z ∈ Qs+1, then the k-th column of Z codes the positive and negative
information about a member of Ps〈A〉.

As required, ifZ ∈
⋂
s Qs , then 〈Z〉 is PA relative to 〈A〉but does not enumerate A.

It follows that A is not PA bounded. �

Using the above theorem, we observe that there are cototal degrees that are
not PA bounded. This follows from the fact that there are cototal degrees that
are not continuous: Take, for example, a Δ0

21-generic set, which is quasiminimal
(hence not continuous) and Σ0

2 (hence cototal [1]).
To show that no 〈self 〉-PA degree can be PA bounded, recall that no continuous

degree is 〈self 〉-PA (see the discussion after Theorem 2.6).
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3.2. Another way to have a universal class: the low for PA enumeration degrees.
Theorem 3.6 brings our focus to the class of enumeration oracles that have a universal
class. Could that also be a characterization of the continuous degrees? In this section,
we will see that this is not the case. In fact, in terms of category, most oracles have a
universal class.

Definition 3.7. An enumeration oracle 〈A〉 is low for PA if whenever X has PA
degree and P is a nonempty Π0

1〈A〉 class, then there is a Y ∈ P such that X ≥T Y .
(In other words, every set of PA degree is PA relative to 〈A〉.)

If an enumeration oracle is low for PA, it actually satisfies an apparently stronger
property. In the proof below we will use the universal Π0

1-class of all {0, 1}-valued
diagonally non-computable functions, denoted as DNC2. Recall that a function f is
diagonally non-computable if for every e we have f(e) �= ϕe(e).

Theorem 3.8. An enumeration oracle 〈A〉 is low for PA if and only if whenever P is
a nonempty Π0

1〈A〉 class, there is a nonempty Π0
1 class Q ⊆ P.

Proof. (⇐) This is obvious: if X has PA degree and a Π0
1〈A〉 class P has a

nonempty Π0
1 subclass Q, then X computes a member of Q and hence of P.

(⇒) Let P be a nonempty Π0
1〈A〉 class. We first claim that there is a nonempty Π0

1
class U and a Turing reduction Φe such that if X ∈ U , then ΦXe ∈ P. Assume not.
We build a sequence U0 ⊇ U1 ⊇ U2 ⊇ ··· of nonempty Π0

1 classes as follows. Let
U0 = DNC2. Say thatUe has been defined. By assumption, there is anX ∈ Ue such
that ΦXe is not an element of P. This means that either ΦXe is partial or that ΦXe = Y
and Y /∈ P. In the first case, suppose ΦXe (n) ↑. Let Ue+1 = {Z ∈ Ue : ΦZe (n) ↑}. In
the second case, fix � ≺ X such that no extension of Φ�e is in P and letUe+1 = {Z ∈
Ue : � ≺ Z}. In both cases, Ue+1 is a nonempty Π0

1 subclass of Ue and if Z ∈ Ue+1,
then ΦZe is not an element of P. Finally, take Z ∈

⋂
e∈� Ue . Then Z has PA degree

but does not compute any element of P, which contradicts our assumption that 〈A〉
is low for PA. This proves the claim.

So fix a nonempty Π0
1 class U and an e such that X ∈ U implies that ΦXe ∈ P.

Let Q = {Y : (∃X ∈ U ) ΦXe = Y}. Note that Q is a nonempty subclass of P. We
claim that Q, which is the computable image of a Π0

1 class, is also a Π0
1 class. This is

standard: Assume that U = [T ], where T is a Π0
1 tree in 2<� . Let

S = {� ∈ 2<� : (∃n)(∀	 ∈ 2n) 	 /∈ T or Φ	e is incompatible with �}.

Then 2<� \ S is a Π0
1 tree and, by compactness,Q = [2<� \ S]. Therefore, Q is a Π0

1
class. �

Given the characterization above, the following are easy observations.

Proposition 3.9. Assume that an enumeration oracle 〈A〉 is low for PA.
(1) A is c.e. or has quasiminimal enumeration degree.
(2) The class of {0, 1}-valued diagonally non-computable functions DNC2 is a

universal Π0
1〈A〉 class.

Proof. For (1), assume thatA ≥e Z ⊕ Z, where Z is not computable. Then {Z}
is a Π0

1〈A〉 class. Take any PA degree X that does not compute Z; this exists by
Jockusch and Soare [13, Theorem 2.5]. Then X does not compute any member of
{Z}, so 〈A〉 is not low for PA.
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To see (2), recall that there is a single Turing functional that lets a DNC2 Turing
oracle compute a path in any nonempty Π0

1 class uniformly from its index, so if P
is a nonempty Π0

1〈A〉 class and Q ⊆ P is a nonempty Π0
1 class then an index for Q

gives a fixed functional as required in the definition. �
Note that in Theorem 3.8, we do not uniformly get an index for Q from an index

of P as a Π0
1〈A〉 class. So we have only proved the mild uniformity required by the

definition of a universal class. (See the discussion after Definition 3.2.)
We will show that not every quasiminimal degree is low for PA; however, two

significant classes of quasiminimal degrees do have this property. We have already
mentioned that the enumeration degrees of 1-generic sets have quasiminimal degree.
There is a slightly different notion of genericity that plays better with enumeration
reducibility.

Definition 3.10. A set G is enumeration 1-generic if for every c.e. set W of finite
sets there is a finite set D such that either D ⊆ G and D ∈W , or D ⊆ G and
D ∩ E �= ∅ for every E ∈W .

Enumeration 1-genericity was introduced by Badillo and Harris [3] and further
studied by Badillo, Harris, and Soskova [4]. It is straightforward to check that every
1-generic set is enumeration 1-generic. Badillo and Harris [3] observed that the
enumeration degree of every non-c.e. enumeration 1-generic set has quasiminimal
degree.

Proposition 3.11. If A is enumeration 1-generic, then 〈A〉 is low for PA.

Proof. Assume that A is enumeration 1-generic and let P〈A〉 be a nonempty
Π0

1〈A〉 class. Recall that a Π0
1〈A〉 class is defined in terms of an enumeration operator

that is applied to the oracle 〈A〉. We can hence view P as an operator that maps
any oracle 〈X 〉 to a Π0

1〈X 〉 class. We claim that there is a prefix � ≺ A such that
P〈�1�〉 is nonempty. If so, thenQ = P〈�1�〉 is a nonempty Π0

1 class andQ ⊆ P〈A〉;
as observed in Theorem 3.8, this means that 〈A〉 is low for PA. So let us prove the
claim. Consider the c.e. set of finite sets W = {D : P〈D〉 = ∅}. Because P〈A〉 is
nonempty, there is no subset of A in W. By enumeration 1-genericity, we can fix
F ⊆ A such that F intersects every member of W. Let � be the initial segment of A
of length max(F ) + 1. Then Q = P〈�1�〉 is nonempty because no member of W is
a subset of the set with characteristic function �1� . �

The second class of degrees was introduced by Kalimullin [14].

Definition 3.12. A pair of sets {A,B} is called a Kalimullin pair (K-pair) if there
is a c.e. setW ⊆ �2 such thatA× B ⊆W andA× B ⊆W.A pair of degrees {a, b}
is a K-pair if there are sets A ∈ a and B ∈ b, such that {A,B} is a K-pair.

K-pairs have many applications in first order definability results. Kalimullin [14]
proved that they have a natural structural definition as minimal pairs relative to
any other enumeration degree. He then used this to prove the definability of the
enumeration jump operator. Later, Cai et al. [6] showed that the nonzero total
enumeration degrees are the joins of maximal K-pairs, thereby defining totality.

If {A,B} is a nontrivial K-pair, i.e., A and B are both not c.e., then the degrees of
A and B are both quasiminimal. We show that such degrees are, in fact, low for PA
as well.

https://doi.org/10.1017/jsl.2022.55 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.55


PA RELATIVE TO AN ENUMERATION ORACLE 1509

Proposition 3.13. If A is half of a nontrivial K-pair, then 〈A〉 is low for PA.

Proof. Fix a set B and a c.e. set W such that A and B are a nontrivial K-pair as
witnessed by W. So we haveA× B ⊆W andA× B ⊆W . LetP〈A〉 be a nonempty
Π0

1〈A〉 class. Consider the c.e. set

V = {b : (∃F ⊆ �) F is finite, F × {b} ⊆W , and P〈F 〉 = ∅}.

Say that b ∈ V as witnessed by F. Since P〈F 〉 = ∅, we know that F � A. Fix
c ∈ F \ A. Since (c, b) ∈W , it must be the case that b ∈ B . So we have thatV ⊆ B .
But we assumed that A and B form a nontrivial K-pair; hence B is not c.e. Therefore,
we can fix a d ∈ B \ V .

Now consider the c.e. set U = {a : 〈a, d 〉 ∈W }. Since d ∈ B and A× B ⊆W ,
we have A ⊆ U . Therefore, Q = P〈U 〉 is a Π0

1 subclass of P〈A〉. All that remains is
to prove that Q is nonempty. But if Q were empty, there would be some finite F ⊆ U
such that P〈F 〉 = ∅. By the definition of U, we would also have F × {d} ⊆W . But
then it would be the case that d ∈ V , contradicting our choice of d. �

As we promised above, we will now show that not every quasiminimal enumeration
degree is low for PA. The fact that every (enumeration) 1-generic set has
quasiminimal enumeration degree tells us that the collection of quasiminimal oracles
is comeager, i.e., large in the sense of category. This collection is also large in the
sense of measure: Lagemann [19] showed that almost every enumeration oracle has
quasiminimal degree. We show below that almost every enumeration oracle is not
low for PA. Hence the collection of oracles 〈A〉 that are quasiminimal but not low
for PA has measure 1; such oracles are far from exceptional.

Recall that A is Martin-Löf random if it passes every Martin-Löf test. Here a
Martin-Löf test is a uniformly c.e. sequence of Σ0

1 classes {Ue}e such that, for all e,
the e-th class Ue has measure at most 2–e . A set A passes this test if A /∈

⋂
e Ue . It is

easy to see that almost every set is Martin-Löf random.

Proposition 3.14. If A is Martin-Löf random, then 〈A〉 is not low for PA.

Proof. Fix an effective bijection between � and 2<� . For example, associate
�n ∈ 2<� with n ∈ � if 1�n is the binary expansion of n + 1. Now define a Π0

1〈B〉
class P〈B〉 as follows: remove the neighborhood generated by �n from P〈B〉 if both
2n and 2n + 1 are in B.

Let Q be the Π0
1 class {B : P〈B〉 �= ∅}. We calculate the measure of Q by finding

the probability that P〈B〉 is nonempty, assuming that B is chosen at random. Let
pk be the probability that the tree generating P〈B〉 (i.e., the tree that avoids �n if
both 2n and 2n + 1 are in B) has a path of length at least k. Then p0 = 3/4 and
pk+1 = 3/4(1 – (1 – pk)2)—the probability that the root is not removed and that at
least one of its children has a path of length at least k. It is not hard to see that
{pk}k∈� is a decreasing sequence with limit 2/3, which is the only positive root of
p = 3/4(1 – (1 – p)2). Therefore, the measure of Q is 2/3.
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not self -PA

continuous

cototal universal
class

total

nonzero
low for PA

quasiminimal

Figure 1. Summary of results outlined in Sections 2 and 3. The dashed implication
is not proved to be strict until later.

Since A is Martin-Löf random and Q is a Π0
1 class of positive measure, a result of

Kučera tells us that some tail of A is in Q [18, Proof of Lemma 3]. Call such a tail
B, so P〈B〉 is a Π0

1〈A〉 class.3

Note that B is Martin-Löf random. By the randomness preservation basis theorem
[9, 26], there is an X of PA degree such that B is Martin-Löf random relative to X.
Assume, for a contradiction, that 〈A〉 is low for PA. So there must be a Y ∈ P〈B〉
such that Y ≤T X . Since B is Martin-Löf random relative to X, it must be Martin-
Löf random relative to Y. But this is clearly not the case; if �n ≺ Y , then we know
that either 2n /∈ B or 2n + 1 /∈ B . So in fact, B is not even Kurtz random relative
to Y : B is contained in a measure zero Π0

1(Y ) class. Therefore, 〈A〉 is not low for
PA. �

3.3. The story so far. In the next section, we will turn our attention to several
other classes of enumeration degrees. Before we do so, it is worth summarizing our
results up to this point; see Figure 1. Solid arrows represent strict implications, and
most implications that do not follow from the diagram have already been shown to
be false. We discuss the exceptions below.

We have not yet seen that there are non-cototal degrees with a universal class.
This is easily resolved. Andrews et al. [1] showed that there are both generic sets and
halves of non-trivial K-pairs that do not have cototal degree, so having a universal
class does not imply cototality.

3In the sense of Diamondstone and Kjos-Hanssen [8], P〈B〉 is the set of paths through a Martin-Löf
random Galton–Watson tree with survival parameter 3/4. In other words, it is a random closed set in the
sense of Barmpalias et al. [5], although for a different choice of parameter.
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reduction
property

universal
function

total

nonzero
computable
extension
property

quasiminimal

not separation
property

Figure 2. Summary of the results in [15].

We have also not yet proved that there are quasiminimal degrees without a
universal class. Although we proved that the enumeration degrees of random sets
are not low for PA, we do not know whether or not almost every enumeration oracle
admits a universal class. However, in Section 5, we give an explicit construction
of an oracle with quasiminimal degree (in fact, one with the computable extension
property) that does not have a universal class. This also shows the dashed arrow to
be a strict implication: it is not the case that only the 〈self 〉-PA degrees fail to have
a universal class because quasiminimal degrees cannot be 〈self 〉-PA.

§4. Combinatorial principles from descriptive set theory. Kalimullin and
Puzarenko [15] isolate a series of enumeration oracles based on properties that
are satisfied by the ideal of sets enumeration reducible to them. They study the
oracles that have the reduction property, oracles that have the separation property,
oracles that have a universal function, and oracles that have the computable extension
property. We will define each of these classes below in full detail. Here we draw the
reader’s attention to a curious fact. Kalimullin and Puzarenko completely identify
the relative position of these classes along with the total and the quasiminimal
degrees. This relationship, illustrated in Figure 2, matches exactly the relationship
that we have established between the oracles with continuous degrees, 〈self 〉-PA
oracles, oracles that have a universal class, and the low for PA oracles in Figure 1.
We will see that there is a good explanation for this: all but one of the properties
described above can be characterized in terms of the relation 〈relatively〉-PA
restricted to separation classes.
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4.1. The reduction property. We start with the reduction property, which takes
the same position as the continuous degrees in our diagram, although there is no
analogy between the classes.

Definition 4.1. X ⊆ � has the reduction property if for all pairs of sets
A,B ≤e X , there are sets A0, B0 ≤e X such that A0 ⊆ A, B0 ⊆ B , A0 ∩ B0 = ∅,
and A0 ∪ B0 = A ∪ B .

Kalimullin and Puzarenko [15] prove that dege(X ) has the reduction property if
and only if dege(X ) has the uniformization property: if R ≤e X is a binary relation
then there is a function f with graph Gf ≤e X such that Gf ⊆ R and dom(f) =
dom(R) (i.e., the first projection of R).

It is straightforward to see that every total degree has the reduction property.
Kalimullin and Puzarenko build a nontotal degree that also has this property. There
is an easy example of a degree that has the reduction property and is not even cototal:
the degree of Kleene’s O—the set of all indices of computable well orderings on �.
To see that dege(O) is not cototal, note that if A ≤e O then A is Π1

1, because
the definition of A as Γ(O) for some e-operator Γ is easily seen to be Π1

1. Since
K 〈O〉 ≤e O, it follows thatK 〈O〉 is Σ1

1. But ifO ≤e K 〈O〉 then O would be Σ1
1 as well,

contradicting the fact that O is Π1
1-complete. Note that the Π1

1 sets are exactly the
sets that are enumeration reducible to O. Since Π1

1 sets have the reduction property,
it follows that dege(O) does as well.

We can also observe that not every continuous degree has the reduction property.
Kalimullin and Puzarenko [15] prove that if A is nontotal and has the reduction
property, then the set of total degrees bounded by A is a jump ideal, i.e., an ideal
closed under the jump operator. The existence of low Δ0

2 continuous degrees implies
that the two classes are incomparable. Nevertheless, they relate to the property of
having a universal class in the same way.

Theorem 4.2. If X has the reduction property, then there is a universal Π0
1〈X 〉 class

that is a separating class.

Proof. Fix X with the reduction property. Let A consist of all 〈e, �〉 such that
�0 is not extendible in the e-th Π0

1〈X 〉 class Pe . Let B be defined similarly but for
�1, not �0. Note that A,B ≤e X by compactness. As defined,

Pe = 2� \ [{�0: 〈e, �〉 ∈ A} ∪ {�1: 〈e, �〉 ∈ B}] .

Note that if � is extendible in Pe , then 〈e, �〉 /∈ A ∩ B . So a “separator” for A and
B would let us choose either �0 or �1 still extendible in Pe . But of course, A and B
are not disjoint. Apply the reduction property: let A0 ⊆ A and B0 ⊆ B be such that
A0, B0 ≤e X , A0 ∩ B0 = ∅, and A0 ∪ B0 = A ∪ B . Let U be the separating class for
A0 and B0, which is a nonempty Π0

1〈X 〉 class.
We claim that there is a uniform procedure to compute a path in the e-th Π0

1〈X 〉
class Pe , assuming that it is nonempty, given a separator Z for A0 and B0. If � is
extendible in Pe , check if 〈e, �〉 lies in Z. If it does, we claim that �1 is extendible
in Pe . Otherwise, 〈e, �〉 ∈ B ⊆ A0 ∪ B0. Since 〈e, �〉 ∈ Z and Z ∩ B0 = ∅, it follows
that 〈e, �〉 ∈ A0 ⊆ A. So 〈e, �〉 ∈ A ∩ B , which means that both �0 and �1 are
not extendible in Pe . This contradicts our assumption that � is extendible in Pe .
Similarly, if 〈e, �〉 does not lie in Z, then �0 is extendible in Pe . �
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4.2. The separation property. The separation property takes the same position in
the diagram as 〈self 〉-PA (or rather their complements do).

Definition 4.3. X ⊆ � has the separation property if whenever A ≤e X and
B ≤e X are disjoint sets, there is a set C such that C ⊕ C ≤e X and A ⊆ C and
B ⊆ C .

As mentioned earlier, the set C above is called a separator for A and B. We can
restate the definition of the separation property in terms of enumerating paths in
separating classes:

Proposition 4.4. A set X has the separation property if and only if every Sep 〈X 〉
class contains a path Y such that Y ⊕ Y ≤e X . In particular, every 〈self 〉-PA oracle
has the separation property.

Proof. This is immediate from our definitions. For the second part, if X is 〈self 〉-
PA then every nonempty Π0

1〈X 〉 class, and hence every Sep 〈X 〉 class, contains a
path Y such that Y ⊕ Y ≤e X . �

We will see in the next section that the inclusion of the 〈self 〉-PA oracles into the
oracles with the separation property is strict.

The proposition above is trivial, but it holds the key to an analogy that will help
us characterize the remaining two properties.

4.3. The computable extension property. The computable extension property takes
the same place in the diagram as the low for PA oracles, and in fact is analogous.

Definition 4.5. X has the computable extension property if every partial function
ϕ with Gϕ ≤e X has a partial computable extension 
 ⊇ ϕ.

Following the same analogy as for the separation property, we would want: X has
the computable extension property if and only if 〈X 〉 is low for PA but with respect
to Sep 〈X 〉 classes, i.e., every PA Turing oracle computes a path in every Sep 〈X 〉
class. We prove this below. Furthermore, we exhibit a characterization of the oracles
with the computable extension property that is similar to the characterization from
Theorem 3.8.

Theorem 4.6. The following are equivalent:

(1) X has the computable extension property.
(2) Every {0, 1}-valued function with graph reducible to X has a partial computable

{0, 1}-valued extension.
(3) Every set Y with PA degree computes a member of every Sep 〈X 〉 class.
(4) Every Sep 〈X 〉 class has a subset that is a nonempty Π0

1 class.
(5) Every Sep 〈X 〉 class has a subset that is a Π0

1 separating class.
(6) IfA ≤e X andB ≤e X are disjoint then there are disjoint c.e. sets C and D such

that A ⊆ C and B ⊆ D.

Proof. To see that (1) ⇒ (2), we note that if 
 is a partial computable extension
of a {0, 1}-valued function ϕ then the partial computable function
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∗(x) =

{
0, if 
(x) ↓ = 0,
1, if 
(x) ↓ �= 0

is {0, 1}-valued and extends ϕ.
For (2) ⇒ (1), we use a proof from [15]. Suppose that Gϕ ≤e X is the graph

of a partial function. Consider the function ϕ∗(〈x, y〉) = 1 if ϕ(x) = y and
ϕ∗(〈x, y〉) = 0 if there is some z �= y such that ϕ(x) = z. This is a {0, 1}-valued
function whose graph is reducible to X, with the additional property that ifϕ(x) = y
then ϕ∗(〈x, z〉) ↓ for all z. If 
∗ is a partial computable extension of ϕ∗, then the
function
 defined by
(x) = �y [
∗(〈x, y〉) = 1] is a partial computable extension
of ϕ.

(2) ⇒ (3): Suppose that Y has PA degree. Consider a nonempty Sep 〈X 〉 class
Q(A,B) of all separators forA,B ≤e X . Since A and B are disjoint,A× {1} ∪ B ×
{0} ≤e X is the graph of a partial function. By (2), let 
 be a partial computable
{0, 1}-valued extension. The class of all total {0, 1}-valued extensions of 
 is a
nonempty Π0

1 class; hence a set Y of PA degree computes a member f of that set.
The set C with characteristic function f is a separator for A and B.

(3) ⇒ (4) follows from the proof of Theorem 3.8. Fix a separating class Q(A,B)
relative to 〈X 〉. Since every PA degree computes a member of Q(A,B), there is
a nonempty Π0

1 class U and a Turing reduction Φe such that if X ∈ U , then
ΦXe ∈ Q(A,B). Then Q = {Y : (∃X ∈ U ) ΦXe = Y} is a nonempty Π0

1 class that
is contained in Q(A,B).

For (4) ⇒ (2), suppose that Gϕ ≤e X for some {0, 1}-valued partial function ϕ.
LetA = {x : ϕ(x) = 1} andB = {x : ϕ(x) = 0}. LetQ(A,B) be the class of all sets
separating A and B. By (4), let P ⊆ Q(A,B) be a nonempty Π0

1 class. We define the
{0, 1}-valued function 
 by 
(x) = i if Y (x) = i for all Y ∈ P. By compactness,

 is a partial computable extension of ϕ.

(5) is clearly a rewording of (6). In one direction, given a Sep 〈X 〉 class Q(A,B),
the sets A and B must be disjoint and reducible to X. If C and D are disjoint c.e.
sets such that A ⊆ C and B ⊆ D, then the Π0

1 class of all separators of C and D
is a subset of Q(A,B). Conversely, given disjoint sets A,B ≤e X , the class of all
separators of A and B form a Sep 〈X 〉 class Q(A,B). If P(C,D) ⊆ Q(A,B) is a Π0

1
separating subclass, then C and D are disjoint c.e. sets such thatA ⊆ C and B ⊆ D.

(2) ⇒ (6): If A and B are reducible to X and disjoint, then A× {1} ∪ B × {0} is
the graph of a partial {0, 1}-valued functionϕ. If
 is a partial computable extension
of ϕ, then C = {x : 
(x) = 1} ⊇ A and D = {x : 
(x) = 0} ⊇ B are disjoint c.e.
sets.

Finally, (5) clearly implies (4). �
From this characterization, we can easily conclude that every low for PA oracle

has the computable extension property (part (3) is immediate from the definition
of low for PA). In the next section we will see that—in contrast to the low for PA
oracles—not every oracle with the computable extension property has a universal
class. This, of course, implies that the low for PA oracles form a strict subclass of
the oracles with the computable extension property.

4.4. Having a universal function. The final class of oracles that we consider takes
the same place in the diagram as having a universal class.
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Definition 4.7. X ⊆ � has a universal function if there is a partial function U
with GU ≤e X such that if ϕ is a partial function with Gϕ ≤e X then for some e we
have ϕ = �x.U (e, x).

How does having a universal function relate to having a universal class? First
note that it is not difficult to prove that continuous oracles have a universal function
using the class that witnesses codability and a compactness argument. An essential
component in this proof is uniformity: the existence of a single c.e. functional
relative to which we have an enumeration of the coded set from every member
of the coding class. For a similar reason, to show that every enumeration oracle
with a universal class has a universal function, we again require some uniformity—
exactly the uniformity that we built into our definition of a universal class. With this
uniformity, our analogy persists: having a universal function is the same as having
a Π0

1〈X 〉 class (or even a Sep 〈X 〉 class) which is universal for Sep 〈X 〉 classes.

Theorem 4.8. The following are equivalent:

(1) X has a universal function.
(2) There is a {0, 1}-valued partial function U with GU ≤e X such that if ϕ is

a {0, 1}-valued partial function with Gϕ ≤e X , then for some e we have that
ϕ = �x.U (e, x).

(3) There is a separating Π0
1〈X 〉 class P such that for every separating Π0

1〈X 〉 class
Q there is a Turing functional Φ such that for all Y ∈ P we have that ΦY is a
path in Q.

(4) There is a Π0
1〈X 〉 class P such that for every separating Π0

1〈X 〉 class Q there is
a Turing functional Φ such that for all Y ∈ P we have that ΦY is a path in Q.

Proof. The implication (1) ⇒ (2) is easy: if Γ is an enumeration operator such
that Γ(X ) is the graph of a universal function for X, then define

Λ = {〈〈x, 0〉, D〉 : 〈〈x, 0〉, D〉 ∈ Γ} ∪ {〈〈x, 1〉, D〉 : (∃n > 0)[〈〈x, n〉, D〉 ∈ Γ]}.

One can check that Λ(X ) is the graph of a universal function for the {0, 1}-valued
partial functions whose graphs are enumeration reducible to X.

For (2) ⇒ (1), we use a familiar trick: Every function ϕ : � → � can be
represented by a {0, 1}-valued function 
 : �2 → {0, 1} defined by 
(x, y) = 1
if ϕ(x) = y and 
(x, y) = 0 if ϕ(x) ↓ �= y. If U is universal for the {0, 1}-valued
functions, define the function Û by Û (e, x) = y if and only if U (e, 〈x, y〉) = 1 and
for all z < y, U (e, 〈x, z〉) = 0. Then Û is universal and GÛ ≤e GU .

For (2) ⇒ (3), suppose that U is a universal {0, 1}-valued function for X and
GU ≤e X . For every {0, 1}-valued ϕ withGϕ ≤e X , the set of all total {0, 1}-valued
extensions of ϕ is a nonempty Π0

1〈X 〉 class. Using U we can interweave all such
classes into one class P. Formally, define P to be the Π0

1〈X 〉 separating class for
the disjoint sets {〈e, x〉 : U (e, x) = 1} and {〈e, x〉 : U (e, x) = 0}. Now if Q(B,C )
is a Π0

1〈X 〉 separating class, then B × {1} ∪ C × {0} is the graph of a {0, 1}-valued
function whose graph is e-reducible to X. Fix some e such that this function is
�x.U (e, x). Then for anyY ∈ P, the columnY [e] is an extension of �x.U (e, x), and
hence a separator for B and C. Note that once we have e, the reduction is uniform.

The implication (3) ⇒ (4) is immediate.
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Finally, to see that (4) ⇒ (2) is true, let Γ be an enumeration operator such
that P = 2� \ [Γ(X )] is a Π0

1〈X 〉 class that is universal for Sep 〈X 〉 classes. We
define a universal {0, 1}-valued function U as follows: for every pair 〈e, i〉, we set
U (〈e, i〉, x) = y if

(1) y ≤ 1,
(2) 〈x, y〉 ∈ Γe(X ), and
(3) there is a finite set D ⊆ Γ(X ) and an n such that if � ∈ 2n \ [D], then

Φ�i (x) ↓ = y.
Here, Γe is the e-th enumeration operator, and Φi is the i-th Turing functional.
Clearly, U is a {0, 1}-valued function with graph that is e-reducible to X. It is also uni-
versal, because if ϕ is a {0, 1}-valued function such that Gϕ = Γe(X ), we may con-
sider the Sep 〈X 〉 class of all sets which separate the disjoint setsB = {n : ϕ(n) = 1}
and C = {n : ϕ(n) = 0}. Let i be the index of the Turing functional via which every
member of P computes a separator for B and C. Then �x.U (〈e, i〉, x) = ϕ. Indeed,
the second condition ensures that if U (〈e, i〉, x) = y, then ϕ(x) = y. Conversely,
if ϕ(x) = y, then compactness and our choice of i implies that the third condition
holds, so U (〈e, i〉, x) = y. �

Corollary 4.9. Every enumeration degree that has a universal class also has a
universal function.

§5. Forcing separations. In this section, we consider a forcing notion that
produces an enumeration oracle that has the computable extension property, but
does not have a universal class (and hence, is not low for PA). By modifying this
forcing notion using ideas from Theorem 2.11, we will also produce an oracle that
has the separation property but is not 〈self 〉-PA.

Our forcing notion P is as follows: Let f(n) = 2n and define f<� to be the set of
sequences � ∈ �<� such that �(n) < 2n for all n < |�|. Our forcing conditions are
of the form 〈T, ε〉, where T is a finite subtree of f<� and ε ∈ (0, 1) is rational. We
denote the height of T by |T |. Let f≤|T | be the set of sequences � ∈ f<� of length
less than |T |. We define the forcing partial order by 〈S, �〉 ≤ 〈T, ε〉 if and only if:

• T = S � |T |,
• � ≤ ε, and
• for every � ∈ S with |T | ≤ |�| < |S|, at least

⌈
(1 – ε) · 2|�|

⌉
of its immediate

successors lie in S.
We call S an ε-extension of T if it satisfies the first and third conditions.

Let F be a filter in P. Then the corresponding tree is G =
⋃

〈T,ε〉∈F T . Very
little genericity is required to ensure that G is infinite. The enumeration oracle that
we are building is AG = f<� \G , which of course we can view as a subset of
� by fixing a computable bijection between � and f<� . Observe that the set of
infinite paths through G is a Π0

1〈AG〉 subclass of f� , where as expected, f� is the
set of all g ∈ �� such that g(n) < 2n for all n ∈ �. Given a condition 〈T, ε〉, we let
AT = f≤|T | \ T , the natural approximation toAG given by the condition. It follows
that if 〈S, �〉 ≤ 〈T, ε〉 then AT ⊆ AS ⊆ AG .

Remark 5.1. Prior to this section, we restricted our attention to Π0
1 subclasses

of 2� , but now it will be convenient to consider subclasses of f� . Everything we
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have done generalizes easily to this case, and more generally to computably bounded
classes. For example, it is not hard to see that Theorem 3.8 holds for subclasses of
f� , a fact that we will use in Lemma 5.3.

For our proof of Theorem 5.7, we need to say a little more about what 〈self 〉-PA
means for subclasses of f� . As usual, A is 〈self 〉-PA if every nonempty Π0

1〈A〉 class
Q contains a path that is enumeration below A, where the path is treated as a total
object. If Q ⊆ f� , we treat a path as a subset of f<� instead of an element of f�

(i.e., as a set of prefixes). This makes it a total object. This does not change the
definition of 〈self 〉-PA: A is 〈self 〉-PA as defined in Section 2 if and only if it is
〈self 〉-PA in this modified sense.

5.1. An oracle that has the computable extension property but no universal class.
We will show that if G is sufficiently generic, or more precisely, that if G is the tree
corresponding to a sufficiently generic filter F , then AG satisfies the computable
extension property and does not have a universal class.

Lemma 5.2. If G is sufficiently generic with respect toP, thenAG has the computable
extension property.

Proof. We shall verify that AG satisfies (6) in Theorem 4.6. Let 〈T, ε〉 be an
arbitrary condition. Consider a pair of enumeration operators Γ0 and Γ1. If there is
a condition 〈S, �〉 extending 〈T, ε〉 such that Γ0(AS) and Γ1(AS) intersect, then we
make that extension. This ensures that Γ0(AG) and Γ1(AG) are not disjoint.

Now assume that we cannot force Γ0(AG) and Γ1(AG) to intersect. We want to
extend 〈T, ε〉 to ensure that Γ0(AG) and Γ1(AG) are separated by disjoint c.e. sets.
We claim that 〈T, ε/2〉 is such an extension. For i = 0, 1, defineCi to be the set of all
n for which there is some condition 〈S, �〉 extending 〈T, ε/2〉 such that n ∈ Γi(AS).
It is straightforward to see that Ci is c.e. and contains Γi(AG).

Furthermore, we claim that C0 and C1 are disjoint. If not, fix n ∈ � and
conditions 〈S0, �0〉 and 〈S1, �1〉 extending 〈T, ε/2〉 that witness that n ∈ C0 and
n ∈ C1, respectively. Without loss of generality, we may assume that |S0| = |S1|.
Consider the condition 〈S0 ∩ S1, ε〉.

It is straightforward to see that 〈S0 ∩ S1, ε〉 extends 〈T, ε〉. In fact, for every
� ∈ S0 ∩ S1 with |T | ≤ |�| < |S0| (= |S1|), at least

⌈
(1 – ε/2) · 2|�|

⌉
of its immediate

successors lie in S0 and at least
⌈

(1 – ε/2) · 2|�|
⌉

of its immediate successors lie in
S1. Therefore at least

⌈
(1 – ε) · 2|�|

⌉
of its immediate successors lie in S0 ∩ S1.

The argument above also implies that |S0 ∩ S1| = |S0| = |S1|. SoAS0∩S1 contains
AS0 , meaning that n ∈ Γ0(AS0∩S1). Similarly, n ∈ Γ1(AS0∩S1). This contradicts our
assumption that there is no condition 〈S, �〉 extending 〈T, ε〉 such that Γ0(AS) and
Γ1(AS) intersect. Therefore, C0 and C1 are disjoint c.e. sets covering Γ0(AG) and
Γ1(AG), respectively. �

Our second goal is to prove that if G is sufficiently generic, then there is no
universal Π0

1〈AG〉 class. This proof is somewhat involved, so it is worth pointing out
that it is easy to show a weaker result: that 〈AG〉 is not low for PA.

Lemma 5.3. If G is sufficiently generic with respect to P, then 〈AG〉 is not low for
PA.
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Proof. To show that 〈AG〉 is not low for PA, note that [G ] is a nonempty Π0
1〈AG〉

class, where [G ] ⊆ f� is the set of infinite paths through G. We show that it has
no nonempty Π0

1 subclass. Indeed, let P ⊆ f� be a nonempty Π0
1 class and let

〈T, ε〉 ∈ P be an arbitrary condition. Since P is nonempty, there must be some
� ∈ f<� of length n > max{|T |, – log2(ε) + 1} such that � has an extension in P.
For such a �, we can extend 〈T, ε〉 to 〈S, ε〉, where S has height n and does not
contain �. Then 〈S, ε〉 ensures that P is not a subclass of [G ], and we have shown
that such conditions are dense. �

Corollary 5.4. Low for PA strictly implies the computable extension property.

Proof. We pointed out after Theorem 4.6 that every low for PA oracle has the
computable extension property. Strictness follows from Lemmas 5.2 and 5.3. �

We now turn to the result promised above.

Lemma 5.5. If G is sufficiently generic with respect to P, then AG does not have a
universal class.

Proof. Consider an oracle Π0
1〈AG〉 class P〈AG〉. We want to show that P〈AG〉

is not a universal Π0
1〈AG〉 class. Let 〈T, ε〉 be an arbitrary condition. The easy win,

of course, is if there is an extension 〈S, �〉 of 〈T, ε〉 such that P〈AS〉 is empty. Since
P〈AG〉 ⊆ P〈AS〉, this would force P〈AG〉 to be empty. So let us assume that this is
not true. In other words, we are assuming that

〈T, ε〉 � P〈AG〉 is nonempty.

In this case, we will have to meet infinitely many dense sets to ensure that P〈AG〉 is
not universal.

First, let 〈S, �〉 be an extension of 〈T, ε〉 such that |S| >– log2(ε) + 1, and there is
a 	 ∈ S of length |S| – 1 such that every immediate successor of 	 is in S. Obviously,
such extensions are dense. Let � be an immediate successor of 	. Note that we
have set things up so that S \ {�} is an ε-extension of T. Furthermore, if R is any
�-extension of S, then R \ [�]≺ is an ε-extension of T. Here, [�]≺ ⊆ f<� is the set
of all finite strings extending �. (Not to be confused with [�] ⊆ f� .)

This implies that

〈S, �〉 � P
〈
AG\[�]≺

〉
is nonempty.

Also note that 〈S, �〉 forces that [G ] ∩ [�] is a nonempty Π0
1〈AG〉 class because every

leaf of S must have a full-height extension in every �-extension of S. Our goal is to
prove that

〈S, �〉 � (∃X ∈ P〈AG〉) X computes no member of [G ] ∩ [�].

The witness X will actually be in P
〈
AG\[�]≺

〉
, which is a subset of P〈AG〉. This is the

key to the argument: any choice that we make when building G above �—i.e., any
choice that affects [G ] ∩ [�]—has no effect on P

〈
AG\[�]≺

〉
.

Now let 〈R, 
〉 be an extension of 〈S, �〉 and let Q ⊆ f� be a Π0
1 class such that

〈R, 
〉 � Q ∩ P
〈
AG\[�]≺

〉
is nonempty.
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Furthermore, let Φ be a Turing functional. We will find an extension 〈R′, 
 ′〉 of
〈R, 
〉 and a Π0

1 subclass Q′ ⊆ Q such that

〈R′, 
 ′〉 � Q′ ∩ P
〈
AG\[�]≺

〉
is nonempty and(

∀X ∈ Q′ ∩ P
〈
AG\[�]≺

〉)
ΦX /∈ [G ] ∩ [�].

(5.1)

Fix n > max{|R|, – log2(
) + 1}. Let

Q∗ = {X ∈ Q : ΦX � n is partial or does not extend �}.
If

〈R, 
〉 � Q∗ ∩ P
〈
AG\[�]≺

〉
is nonempty,

then let 〈R′, 
 ′〉 = 〈R, 
〉 and Q′ = Q∗; this satisfies (5.1).
Otherwise, let R∗ be a 
-extension of R such that Q∗ ∩ P

〈
AR∗\[�]≺

〉
is empty.

In other words, for every X ∈ Q ∩ P
〈
AR∗\[�]≺

〉
, we know that ΦX � n is total and

extends �. Note that we may assume that R∗ contains all extensions of � up to
length |R∗|. It will also be convenient to assume that |R∗| ≥ n.

For each 	 ∈ fn extending �, letQ	 = {X ∈ Q ∩ P
〈
AR∗\[�]≺

〉
: ΦX � n = 	}. Note

that Q	 is a Π0
1 class by our choice of R∗. Let 
 ′ = 
/2n. We claim that for some

	 ∈ fn that extends � we have

〈R∗, 
 ′〉 � Q	 ∩ P
〈
AG\[�]≺

〉
is nonempty. (5.2)

If this were not the case, then following the proof of Lemma 5.2, we intersect the
2n–|�| same height 
 ′-extensions of R∗ that are chosen to force the emptiness of
Q	 ∩ P

〈
AG\[�]≺

〉
for each 	 ∈ fn extending �. This gives us a 
-extension ofR∗ that

witnesses the emptiness of Q ∩ P
〈
AG\[�]≺

〉
, which is a contradiction.

So fix a 	 ∈ fn that extends � such that (5.2) holds. Let R′ = R∗ \ [	]≺ and note
that 〈R′, 
 ′〉 extends 〈R, 
〉, because of the choice of n, and that

〈R′, 
 ′〉 � Q	 ∩ P
〈
AG\[�]≺

〉
is nonempty.

This latter fact holds because, as we mentioned above, nothing we do to G above �
has any effect on P

〈
AG\[�]≺

〉
. Finally, having removed 	 from R′, we have

〈R′, 
 ′〉 �
(
∀X ∈ Q	 ∩ P

〈
AG\[�]≺

〉)
ΦX /∈ [G ] ∩ [�].

Therefore, letting Q′ = Q	 , we have satisfied (5.1).
We are now ready to wrap up the proof that

〈S, �〉 � (∃X ∈ P〈AG〉) X computes no member of [G ] ∩ [�].

Let F ⊆ P be a sufficiently generic filter containing 〈S, �〉. Then by the argument
above, there is a sequence of conditions 〈S, �〉 = 〈R0, 
0〉 ≥ 〈R1, 
1〉 ≥ 〈R2, 
2〉 ≥ ··· ,
all of which are in F , and a sequence of Π0

1 classes f� = Q0 ⊇ Q1 ⊇ Q2 ⊇ ··· such
that, for each i,

〈Ri, 
i〉 � Qi ∩ P
〈
AG\[�]≺

〉
is nonempty,

and for each i > 0,

〈Ri, 
i〉 �
(
∀X ∈ Qi ∩ P

〈
AG\[�]≺

〉)
ΦXi–1 /∈ [G ] ∩ [�].
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Here, as you would expect, {Φi}i∈� is an enumeration of the Turing functionals.
So take any X in

⋂
i∈� Qi ∩ P

〈
AG\[�]≺

〉
, which must be nonempty by compactness.

Then X computes no member of [G ] ∩ [�], as desired.
We have shown that for every oracle Π0

1〈A〉 classP〈A〉, and every condition 〈T, ε〉,
there is an extension of 〈T, ε〉 that forces P〈AG〉 not to be a universal Π0

1〈AG〉 class
(possibly by making it empty). Therefore, as long as G is sufficiently generic, there
is no universal Π0

1〈AG〉 class. �

We have proved:

Corollary 5.6. There is an enumeration oracle with the computable extension
property that does not have a universal class.

In particular, since by [15] every oracle that has the computable extension property
has a universal function, it follows that having a universal class strictly implies having
a universal function.

5.2. An oracle with the separation property that is not 〈self 〉-PA. Finally, we prove
that 〈self 〉-PA strictly implies having the separation property.

Theorem 5.7. There are degrees with the separation property that are not 〈self 〉-
PA.

Proof. We use a forcing notion that combines P and (a minor variant of) the
forcing notion used in the proof of Theorem 2.11. Our conditions have the form

p = (〈T, ε〉, n, X1, ... Xn–1, D),

where

1. 〈T, ε〉 ∈ P, i.e., T is a finite tree in f<� and ε ∈ (0, 1) is rational.
2. (n,X1, ... Xn–1, D) are almost as in Theorem 2.11: n ∈ �,X1, ... , Xn–1 ∈ 2� and

D is a finite subset of �[>0].

We associate with a condition p the set

Ap =
( ⊕
i∈�
Yi

)
∪D,

where Y0 = f≤|T | \ T , Yi = Xi for 0 < i < n and Yi = ∅ for i > n. A condition
q = (〈S, �〉, m,Y1, ... , Ym–1, E) extends p if:

• 〈S, �〉 extends 〈T, ε〉 (in the sense of P);
• m ≥ n and X1 = Y1, ..., Xn–1 = Yn–1;
• D ⊆ E and E \D ⊆ �[≥n].

We shall build a monotone sequence {ps}s∈� and let A =
⋃
s Aps . To ensure that

A has the separation property we satisfy requirements:

Si,j : Γi(A) ∩ Γj(A) = ∅ → (∃C )[Γi(A) ⊆ C & Γj(A) ⊆ C & C ⊕ C ≤e A].

To ensure that A is not 〈self 〉-PA we satisfy requirements:

Ne :
⋃

Γe(A) is not a path through [f<� \ A[0]].
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(See Remark 5.1 for a discussion of paths through subclasses of f� .) Note that
[f<� \ A[0]] is a nonempty Π0

1〈A〉 class just as in the forcing notion P that we
introduced earlier in this section.

We start with p0 = (
〈
∅, 1

2

〉
, 0, ∅). Suppose we have constructed

ps = (〈T, ε〉, n, X1, ... , Xn–1, D)

and s = 2〈i, j〉. To satisfy Si,j , we ask if ps has an extension of the form

q = (〈S, ε〉, n, X1, ... , Xn–1, E)

such that Γi(Aq) ∩ Γj(Aq) �= ∅. If so, then let ps+1 be such an extension. In this
case, we can argue that Si,j is vacuously satisfied.

If there is no such extension, we define ps+1 as follows. For k = i, j, letWk be the
set of all numbers x such that there is some

q = (〈S, ε/2〉, n, X1, ... , Xn–1, E)

extending (〈T, ε/2〉, n, X1, ... , Xn–1, D) such that x ∈ Γk(Aq). We claim thatWi and
Wj are disjoint. If not, fix x ∈Wi ∩Wj and conditions

(〈Si , ε/2〉, n, X1, ... , Xn–1, Ei)

and (〈Sj, ε/2〉, n, X1, ... , Xn–1, Ej)

witnessing that x lies inWi andWj , respectively. Without loss of generality, we may
assume that |Si | = |Sj |. Following the proof of Lemma 5.2, the condition

q = (〈Si ∩ Sj, ε〉, n, X1, ... , Xn–1, Ei ∪ Ej)

extends ps and satisfies x ∈ Γi(Aq) ∩ Γj(Aq), which is a contradiction. This proves
thatWi andWj are disjoint.

Let C be an arbitrary separator forWi andWj and let

ps+1 = (〈T, ε/2〉, n + 2, X1 ... , Xn–1, C, C ,D).

We claim that for k = i, j, we have Γk(A) ⊆Wk . If x ∈ Γk(A), there is some
condition q = (〈S, �〉, m,X1, ... , Xm–1, E) extending ps+1 such that x ∈ Γk(Aq). Fix
a finite set F ⊆ Aq such that x ∈ Γk(F ). Define E ′ = D ∪ (F ∩ �[≥n]). Then q′ =
(〈S, ε/2〉, n, X1, ... , Xn–1, E

′) extends (〈T, ε/2〉, n, X1, ... , Xn–1, D) and x ∈ Γk(Aq′).
This shows that x ∈Wk , proving the claim.

It follows that A can enumerate a separator (and its complement) for Γi(A) and
Γj(A), by enumerating A[n] ⊕ A[n+1] (modulo some possible finite error).

If s = 2e + 1, we ensure that Ne is satisfied. We ask if there is a condition

q = (〈S, ε/2〉, n, X1, ... , Xn–1, E)

that extends (〈T, ε/2〉, n, X1, ... , Xn–1, D) (i.e., ps but with ε replaced by ε/2) and
puts some � into Γe(Aq), where |�| > max{|T |, log2( 2

ε ) + 1}.
If there is such a condition q and such a string �, we may assume that |S| ≥ |�|.

Then let

ps+1 = (〈S \ {	 : 	 � �}, ε/2〉, n, X1, ... , Xn–1, E).
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Since 〈S, ε/2〉 extends 〈T, ε/2〉 and |S| ≥ |�| ≥ max{|T |, log2( 2
ε ) + 1}, this is a valid

extension of ps . Furthermore, it satisfies Ne : we have � ∈ Γe(Aps+1 ) as Aps+1 ⊇ Aq ,
yet no path in [f<� \ A[0]] extends � because � ∈ A[0].

If there is no such q and �, then we let

ps+1 = (〈T, ε/2〉, n, X1, ... , Xn–1, D).

In this case we can argue that Ne is vacuously satisfied, as Γe(A) does not contain
any string of length larger than max{|T |, log2( 2

ε ) + 1}. �

§6. Open questions. The relationships between the classes we have studied are
summarized in Figure 3. All implications are strict and any implication not implied
by the diagram has been shown to fail. We list the questions that are left open in this
final section.

The relation 〈relatively〉-PA can be seen as an extension of the relation relatively-
PA from the total enumeration degrees to all enumeration degrees. We know that
〈relatively〉-PA restricted to total enumeration degrees is first order definable in the
enumeration degrees: by Miller [22], X is PA relative to Y if and only if there is a
set A of nontotal continuous degree such that Y ⊕ Y <e A <e X ⊕ X ; by Andrews
et al. [2], we know that the continuous degrees are first order definable; and by Cai
et al. [6], we know that totality and hence quasi-minimality are definable. A natural
question is therefore:

Question 1. Is the relation on enumeration degrees 〈relatively〉-PA first order
definable in De? Are any of the remaining classes in the diagram definable in De?

Recall that when we reintroduced the definition of a universal class, we added a
little uniformity. Ganchev et al. [11] gave a definition with no uniformity:

(1) There is a Π0
1〈X 〉 class P such that every member of P computes a path in

any nonempty Π0
1〈X 〉 class.

And as we discussed, we could have asked for even more uniformity:
(2) There is a Π0

1〈X 〉 class P such that if Q is a nonempty Π0
1〈X 〉 class, then

uniformly in an index for Q we can find an index of a Turing functional Φ so
that if X ∈ P then ΦX ∈ Q.

Clearly (2) implies having a universal class and having a universal class implies (1).

Question 2. Are either of these two implications strict?

In Proposition 3.14, we proved that Martin-Löf random oracles are not low for
PA. It remains unclear how random oracles relate to universal classes.

Question 3. Does almost every enumeration oracle have a universal class?

The analogy that guided our work in Section 4 was to replace “all Π0
1〈X 〉 classes”

by “all Sep 〈X 〉 classes”; this allowed us to characterize all but one class from [15].
In the definition of a universal class, there are two possible places where we can
make this substitution, and so we get three possible notions:

(1) There is a separating Π0
1〈X 〉 class P such that for every Π0

1〈X 〉 class Q there
is a Turing functional Φ such that for all Y ∈ P we have that ΦY is a path in
Q.
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not self -PA

reduction
property

universal
class

continuous

cototal

total

nonzero
computable
extension
property

universal
functionquasiminimal

nonzero
low for PA

not separation
property

Figure 3. Final summary of results. Analogous classes are paired.

(2) There is a Π0
1〈X 〉 class P such that for every separating Π0

1〈X 〉 class Q there
is a Turing functional Φ such that for all Y ∈ P we have that ΦY is a path in
Q.

(3) There is a separating Π0
1〈X 〉 class P such that for every separating Π0

1〈X 〉
class Q there is a Turing functional Φ such that for all Y ∈ P we have that
ΦY is a path in Q.

In Theorem 4.8, we showed that (2) and (3) are both equivalent to having a universal
function. So (1), which obviously implies having a universal class, properly implies
(2) and (3). We were careful in our analysis to point out situations in which we can
prove that (1) holds of an oracle: every continuous degree satisfies (1) by Theorem
3.5, every low for PA degree clearly satisfies (1), and every oracle with the reduction
property satisfies (1) by Theorem 4.2. This leads us to the following natural question:

Question 4. Is having a universal class the same as (1)? In other words, can we
always take a universal Π0

1〈X 〉 class to be a separating class?
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Finally, we describe a question that we were led to after a discussion with Julia
Knight. Recall that a pair of sets A and B is effectively inseparable if there is a partial
computable function 
 such that whenever x and y are such that A ⊆Wx and
B ⊆Wy are disjoint then 
(x, y) ↓ /∈Wx ∪Wy . In other words, 
(x, y) witnesses
thatWx �=Wy . We can introduce a corresponding enumeration oracle property:

Definition 6.1. X ⊆ � has the effective inseparability property if there are
disjoint sets A,B ≤e X that are not separated by any set C such that C ⊕ C ≤e X
and there is a function
 with graph reducible to X that witnesses this fact: whenever
A ⊆ Γx(X ) and B ⊆ Γy(X ) are disjoint, then 
(x, y) ↓ /∈ Γx(X ) ∪ Γy(X ).

Clearly if X has the effective inseparability property, then X does not have the
separation property. It is not clear, however, how this new property fits in with the
others.

Question 5. Does having a universal function imply being effectively inseparable?
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