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Kernels in the Category of Formal Group
Laws

Oleg Demchenko and Alexander Gurevich

Abstract. Fontaine described the category of formal groups over the ring of Witt vectors over a finite
field of characteristic p with the aid of triples consisting of the module of logarithms, the Dieudonné
module, and the morphism from the former to the latter. We propose an explicit construction for the
kernels in this category in term of Fontaine’s triples. The construction is applied to the formal norm
homomorphism in the case of an unramified extension of Q, and of a totally ramified extension
of degree less or equal than p. A similar consideration applied to a global extension allows us to
establish the existence of a strict isomorphism between the formal norm torus and a formal group
law coming from L-series.

Introduction

The fundamental result of Cartier theory [Ca] provides a classification of the formal
group laws over a commutative ring A by means of Cartier modules over the Cartier
ring Cart(A). A detailed exposition of this theory can be found in [Zi]. In general,
Cart(A) has a quite complicated structure; however, in the case where A = k is a
finite field, it becomes rather simple. In this special case, another description was
suggested by Dieudonné who assigned to a formal group law over k a certain module
(Dieudonné module). It can be shown that both theories are closely related. In the
case where A = W is the ring of the Witt vectors over k, Fontaine [Fo] associated with
a formal group law F over A a triple (£, M, p) where M is the Dieudonné module
of the reduction of F. It provides an alternative description of the category of formal
group laws. Similar results formulated in terms of the logarithm types were obtained
by Honda [Ho]. It turns out that the category of Fontaine’s triples is easier to work
with than the category of Cartier modules.

The goal of this paper is to give an explicit construction of kernels in the category
of formal group laws over k and W in terms of Dieudonné modules and Fontaine’s
triples, respectively. This construction can be applied, in particular, to the subcate-
gory of formal group laws of finite height, which is in turn equivalent to the category
of connected p-divisible groups. The existence of kernels in the category of p-divisible
groups over W follows from the result about the extension of a p-divisible group over
the fraction field of W to a p-divisible group over W (the uniqueness of such exten-
sion is due to Tate [Ta] and the existence is due to Raynaud [Ra]). The desired kernel
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can be obtained by applying this result to the kernel of the generic fiber of the mor-
phism of p-divisible groups. However, this construction is not explicit; in particular,
it does not allow one to calculate Honda’s type and the Dieudonné module of (the spe-
cial fiber of) the kernel. Our approach corrects this deficiency. Moreover, we manage
to deduce some well-known results on kernels in two special cases: homomorphisms
between formal group laws of finite height and pure homomorphisms that are intro-
duced within the scope of this note. The dual problem related to explicit construction
of cokernels in the same categories is left for future investigation.

The technique developed is applied to the computation of Honda’s type of the ker-
nel of the formal norm homomorphism on the Weil restriction of the multiplicative
formal group law with respect to an extension of Q,. When the extension is tamely
ramified, this homomorphism is pure, which allows one to obtain the result in terms
of the Jacobian matrix of the homomorphism. We also treat the case of a general to-
tally ramified extension of degree p that vividly demonstrates the power of our explicit
construction. Besides, a similar computation is performed for the formal norm ho-
momorphism with respect to the extension of QQ generated by g-th root of unity. This
consideration implies the main result of Childress and Grant [CG], which establishes
a strict isomorphism between a formal norm torus and a formal group law coming
from L-series. Unlike [CG] where the global approach is exercised and heavy com-
putations with formal power series are required, we easily deduce the existence of the
isomorphism from rather simple local arguments. Finally, given an algebraic torus
split over a tamely ramified extension, we consider the corresponding Galois action
on the Weil restriction and prove that ¢ — id is pure for any Galois group element o.
This result is closely related to the smoothness of the subscheme of the Néron model
for the Weil restriction of a split torus fixed by ¢ and allows one to find Honda’s type
of its formal completion explicitly (see [DGX]).

The outline of the paper is as follows. In Section 1, the main definitions related to
formal group laws are introduced, and the classification results of Honda and Fontaine
are recalled. Sections 2 is devoted to an explicit construction of kernels. The formal
group laws of finite height are studied in Section 3. We show that in this case, the con-
struction of the kernels can be essentially simplified. In particular, kernel commutes
with the reduction modulo p. The pure homomorphisms are studied in Section 4.
We prove that for such homomorphisms, Honda’s type of kernel can be found as a
submatrix of an appropriate conjugate of the type of the domain. As a consequence,
any kernel of a pure homomorphism is strong, i.e., coincides with the kernel in the
category of formal group schemes. Finally, a necessary and sufficient condition for a
homomorphism between formal group laws to be a (strong) monomorphism is given.
In Section 5, several applications to formal group laws coming from algebraic tori are
presented. The section is divided into three subsections. The first one is devoted to
the formal norm homomorphism corresponding to extensions of local fields. For un-
ramified extensions of Q, and totally ramified extensions of Q, of degree less or equal
to p, Honda’s type of the formal norm torus is calculated explicitly. In the second sub-
section, the formal norm homomorphism is studied for the extension of (Q generated
by a root of unity, and the result of Childress and Grant [CG] is deduced. The Galois
action associated with an algebraic torus is considered in the third subsection.
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Throughout the paper, the following notation is used. If M is a moduleand S ¢ M,
the submodule of M generated by S is denoted by (S). If N is a submodule of M, then
redy: M — M/N is the reduction modulo N, i.e., redy(m) = m + N.

1 Formal Group Laws
Basic Definitions

Denote by X and Y the sets of variables x,...,x4 and yi,..., y4, respectively. A
d-dimensional formal group law over a ring A is a d-tuple of formal power series
F e A[[X, Y]] such that

(a) F(X,0)=X;

(b) F(X,F(Y,Z)) =F(F(X,Y),2);

(c) F(X,Y) = F(Y, X).

The one-dimensional additive formal group law and multiplicative formal group law
are defined as F,(x, y) = x + yand F,,(x, y) = x + y + xy, respectively.

Denote by A[[X]]o the subalgebra of A[[X]] of formal power series without con-
stant term. Let F and G be d- and e-dimensional formal group laws over A. An e-tuple
of formal power series f € A[[X]]§ is a homomorphism from F to G if f(F(X,Y)) =
G(f(X), f(Y)). The category of formal group laws over A is denoted by FG(A).

A matrix D € M, 4(A) such that f(X) = DX mod deg2 is called the Jacobian
matrix of the homomorphism f and denoted by J( f). Formal group laws are strictly
isomorphic if there exists an isomorphism between them with identity Jacobian ma-
trix.

Denote by Nil, the category of nilpotent commutative associative A-algebras. If
N € Nil, and F is a d-dimensional formal group law over A, the group of points
F(N) is an abelian group with underlying set equal to N and addition defined by
F,ie,a+pb = F(a,b) for a,b € N%. It is clear that any morphism ¢: N; - N, of
nilpotent A-algebras induces ahomomorphism F(¢): F(N;) — F(N;). Similarly, any
homomorphism f € Homy (F, G) of formal group laws induces a homomorphism
f(N):F(N) - G(N). It is clear that f(N;) o F(¢) = G(¢) o f(Ny).

Yoneda lemma  Let F and G be formal group laws over A. Suppose that for any
nilpotent A-algebra N, there is a homomorphism fy: F(N) — G(N) such that for any
morphism ¢: N1 — N, of nilpotent A-algebras, fy, o F(¢) = G(¢) o fn,. Then there
exists a unique f € Homy (F, G) such that f(N) = fy for any nilpotent A-algebra N.

A formal group law over a Q-algebra possesses a distinguished homomorphism
that plays an important role in the subsequent exposition.

Proposition 1.1 ([Ho, Theorem 1]) For any d-dimensional formal group law F over
a Q-algebra B, there exists a unique A € Homp (F, F%) such that J(1) = I,.

If F is a formal group law over A and B is an A-algebra, we denote by Fp the formal
group law over B obtained by the extension of scalars.

https://doi.org/10.4153/CJM-2015-024-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2015-024-7

Kernels in the Category of Formal Group Laws 337

Suppose that char A = 0. Then A ®7 Q is a Q-algebra. If F is a formal group law
over A, then application of Proposition 1.1 to Fag,q yields a unique A € A®z Q[[X]]¢
which is called the logarithm of F. Since F(X, Y) = A™}(A(X)+A(Y)), a formal group
law is uniquely defined by its logarithm.

Proposition 1.2 ([Ho, Proposition 1.6]) If F, G are formal group laws over A with
logarithms A, u, respectively, and f € Hom(F, G), then f =y~ o J(f)A.

Honda Theory

Honda theory [Ho] gives an explicit description up to strict isomorphism of formal
group laws over finite fields and their rings of Witt vectors.

Let K be a finite unramified extension of Q,, with residue field k, integer ring O,
and Frobenius automorphism A. Let A:K[[X]lo - K[[X]]o be a Q,-algebra map
defined by A(x;) = x?,1< i < dand A(a) = A(a), a € K. Denote by € = Og[[A]]
a non-commutative Q,-algebra of formal power series in A with multiplication rule
Ag = A(a)A for a € Ok. Then K[[X]]o has a left &-module structure that induces a
left M4 (€)-module structure on K[ X]J¢.

IfueMy(€), u=pl; mod A,and A € K[X]]¢, J(A) = I, are such that ul €
POK[[X]]4, we say that A is of type u. It is obvious that the logarithm of the additive
formal group law A,(x) = x is of type p. If u € My(€), u = pI; mod A, then
(u™p)(X) e K[X])¢ is of type u.

The following are the main results of Honda theory.

(1) IfA e K[[X])¢ is of type u, then A is the logarithm of a formal group law over O.

(2) If A e K[[X])¢ is of type u and vA € pOg[[X]]¢ for some v € M, 4(&), then there
exists w € M, 4(€) such that v = wu. In particular, if u, v are types of A, then
there is w € M4 (€) such that v = wu.

(3) For any formal group law F over Ok with logarithm A e K[[X])¢, there exists
u € My(&) such that A is of type u.

(4) Any formal group law over k is the reduction of a formal group law over O.

(5) Let F, G be d- and e-dimensional formal group laws over Ok with logarithms
A, u of types u, v, respectively, and D € M, 4(Ox). Then u~' o DA € Og[[X])? if
and only if there exists w € M, 4(&) such that vD = wu. In this case, ™' o DA €
Homg, (F, G) and any homomorphism between F and G can be obtained in this
way. In particular, formal group laws with logarithms of the same type are strictly
isomorphic.

(6) Let F, G be d- and e-dimensional formal group laws over O with logarithms A,
of types u, v, respectively, and w € M, 4(€). Then utowl € Ox[[X ] ifand only
if there exists t € M, 4(€) such that vw = tu. In this case the reduction modulo p
of u™ o wA belongs to Homy (Fg, Gy ), and any homomorphism between Fy and
Gy can be obtained in this way.
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Dieudonné Modules

Our exposition of the theory of Dieudonné modules follows an explicit approach of
Fontaine [Fo, Chap. V, § 2] based on results of Honda.
Let F be a d-dimensional formal group law over Og. Denote

M(F) = {1 € K[XTo : 91/9x; € Ox[X]), 1< i <d,
I(F(X,Y)) = (1(X) +1(Y)) epOK[[X]]O}.

One can show that M(F) is an E-submodule of K[[X]]o, and pOg[[X]]o is an -
submodule of M(F). Then M(F) = M(F)/pOx[[X]lo depends only on Fj and is
called its Dieudonné module. It possesses the following properties:

(a) M(F) is a finitely generated £-module;
(b) A:M(F) - M(F) is injective;

(c) pM(F) c AM(F).

Let

L(F)={1eK[X]o:0l/ox; € Ox[[X],1<i<d,I(F(X,Y)) =1(X)+1(Y)}.

Then £(F) is a free Ox-module of rank d. Denote by p(F): L(F) — M(F) the com-
position of the inclusion of £(F) in M(F) and the reduction modulo pOg[[X]]o. It
is an Og-morphism, and the induced morphism £ (F)/pL(F) - M(F)/ A M(F) is
an isomorphism.

If F, G are formal group laws over Ok and f € Hom(F, G), define M(f)(1) =
lof e M(F) for I € M(G). Then f induces morphisms M(f): M(G) - M(F),
L(f):£L(G) - L(F) such that p(F) o L(f) = M(f) o p(G).

Denote by C the category of finitely generated £-modules M such that A: M - M
is injective and pM c A M. Define by CT the category of triples (£, M, p) such that

(a) L isafree Og-module of finite rank;
(b) MeCG;
(c) p: L — M isan Og-morphism which induces an isomorphism £/pL — M/ A M.

The finite-generatedness of M implies that M is a complete topological £-module in
A -adic topology; i.e., for any sequence {m;} in M there exists 3. A'm; € M.

A morphism from (L', M’, p’) to (£, M, p) is a pair (y, V), where y: L' — L is
an Og-morphism, ¥: M’ — M is an &-morphism, and ¥ o p’ = p o y.

Theorem ([Fo, Chap. III, Prop. 6.1 and Chap. IV, Th. 1])

(i)  For any formal group law @ over k there exists a formal group law F over Og
such that ® = Fy. The correspondence ® — M(F) is an anti-equivalence between
FG(k) and C;

(ii) The correspondence F — (L(F), M(F),p(F)) is an anti-equivalence between
FG(0k) and CT;

(iii) The reduction functor from FG(Ox) to FG(k) corresponds to the forgetful functor
from CT to C, i.e., to the functor (L, M, p) -~ M.
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Let F be a d-dimensional formal group law over Ok with logarithm A of type u.
Define H(F) = (0%, €4/€%u, k), where x: 04 — £ /€94 is induced by the inclusion
of 0% into £9. One can easily show that 3((F) is an object in the category C€T. If
F,G € FG(0k) and f € Hom(F,G), J(f) = D, then the mapping | — ID,] € O%
induces a morphism H(G) - H(F) in €T, which defines a functor from FG(Ox) to
CT.

Let F be a d-dimensional formal group law F over Ok with logarithm A =
(A15...,44). The correspondence (ay,...,az) = (a1hy,...,a414) induces a mor-
phism H(F) — (L(F), M(F),p(F)) in CT. One can see that it gives a natural iso-
morphism between H and Fontaine functor (£, M, p).

Kernels in FG (k) have very easy construction. The proof of the following theorem
is straightforward.

Theorem 1.3 Let M, M' € C, ¥ ¢ Hom(M', M), and
Ma={meM: A"m eIm¥ for some h > 0}.

Then M[Ma € C along with redy,: M — M/Ma is a cokernel of the morphism V.

2 Kernels in FG(0Ok)

Let (v, ¥) be a morphism from (L', M’, p") to (£, M, p) in the category CT. Define
Lo={leLl:al=y(l')forsomeaeOg,a+0andl’ e L'}. Then L = L/Lyisa
torsion-free and therefore free O x-module.

Let My = {(p(Ly)) c M. Clearly, In¥ c M,. For the quotient module
M = M/M,, there is a uniquely defined Ox-homomorphism p: £ — M such that
poredy, = redy, op. Notice that A may or may not be injective on M.

Let T = £80,L and it: £ — T be the canonical inclusion, ir(l) = 1® I. De-
fine homomorphisms a: T — M by a(Y. A¥ ® I}) = ¥ A*p(I}) and j;: T — £ by
jr(X Ak @ 1}) = . Clearly, « is surjective.

redy,

A

redg, ir

Denote ] = {m € T : Ala(m) = 0 for some h > 0} and J° = jr(J). Then J
is a submodule of T containing Ker &, and J° is a submodule of £. Notice that A is
injective on T/].

Lemma 2.1 pLcJ°
Proof The properties of the triple (£, M, p) imply that pp(£) c AM. Hence

pp(L) c AM, ie, aoir(pl) € AM forany [ € £. Since « is surjective, ir(pl) €
Kero + AT. As Ker « c ], we have pl € J°. []
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Lemma 2.1 implies that T/J € €. However, the triple (£, T/J, red;oir) may or
may not belong to €T Thus, one needs to modify T/J.

Lemma 2.2 Let A be an Og-module and let B be its submodule. Let C be a maximal
submodule among the submodules C' of B satisfying the condition

acA paeC = acC.

Then for any b € B, there exists ¢ € C such that b — c € pA.

Proof Put C' =C + Ogb. If C’ = C, then b € C, and we are done. Otherwise, there
isa € A~ C' such that pa = ¢ + tb for some c € C, t € Ok. If t = pt’ for t’ € Ok then
c=pla-t'b). Itgivesa—t'beC,ie.,acC’,acontradiction. Therefore, t € O and
b+t c € pA, as required. ]

Let £* be a submodule of J° such that

(a) forany [ ¢ J° there exists [, € £* with [ - I € pL;

(b) ifleL,plelL* thenle L.

The latter condition implies that there exists a submodule £~ of £ such that L*® £~ =
L.

Lemma 2.2 proves the existence of £*. An equivalent and more explicit construc-
tion can be given as follows. Let r:{ — L/pL be the reduction modulo p. Let
V15> yn beanFy-basis of r(J°). Choose any Iy, ..., I, € J® such that r(I) = yi,1<
k<n. Then L* =(l,...,1,).

Define an endomorphism 7: £ — £ by

I, lelt,
To(l):{f lel

Lemma 2.3 10(J°) = pL.

Proof Forany ! € J°, thereis [; € £* such that [ - [ € p£, which gives 7o (1) € pL.
In order to prove the inclusion p£L c 7,(J°), we consider separately two cases: [ € £+
andl e L. Ifl € L¥,then!l € J°and pl = 79(1) € 79 (J°). If | € L™ then pl = 1o(pl) €
70(J°) by Lemma 2.1. [ |

Extend 7o to 7 € End T so that T o i = it o 7g. Denote M = T/7(J) and p'=
red,(j) oir. Since « is surjective and Kera c J, there is a unique homomorphism

M — M such that 7* o a = red,(;) ot.

T

N]

J

red,(])

i [p—

_

C T
M—

Proposition 2.4 (L, M ,p") € CT.
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Proof Only the following properties are not obvious:

(1) A is injective on M. Let Am = t(my) for m € T,my € J. Then m; = Am,
and m = 7(m,) for some m, € T. Since m; = Am, € ], it follows that m, € J. Thus,
m € 7(]), as required.

(2 pM' c AM'. If [ € £, then pl € 70(J°) by Lemma 23, i.e., pir(I) =
7(my) + my for my € J, m, € AT, which gives the desired conclusion.

(3) Theinduced homomorphism £/pL — M /AM isinjective. If ir(1)—7(m) €
ATforleL,me ], thenl=jroir(l)=jrot(m)=r1e0jr(m)eto(J°) = pLby
Lemma 2.3. u

The commutativity of the five inner diagrams implies that the outer diagram is
also commutative, i.e., (7o o redg,, 7" o redy,) is @ morphism from (£, M, p) to

(L, M',p").
red JR— * .
M 4 M
’X redV
P P T——T I
redg, Z 7o Z

Theorem 2.5 The triple (L, M',p") along with (tgored,, T* oredyy, ) is a cokernel
of the morphism (y, V).

Proof Let (¢, ®)beamorphism from (£, M, p) toatriple (£, M, p) € CT such that
$poy=0,00V¥ = 0. One needs to show that there exists a unique morphism (¢, E)

from (£, M, 5") to (£, M, 7) such that (¢, ®) = (§,E) o (tg o red,, T* o redy, ).

M ¥
PW
L/
v

Since ¢ o ¥ = 0, one has ¢(Lo) = 0, and there is a homomorphism ¢: £ — £ such
that ¢ = ¢ o red,. Similarly, ¢(Lo) = 0 implies ®(Mp) = 0, hence there is a homo-
morphism ®: M — M such that ® = ® o red;, and ® o p = p o ¢.

Letl e L* c J° Thenir(I)—m € AT forsome m € J. It gives po¢(1) = Dop(l) =

®oaoir(l) e AM. From the properties of (£, M, ), we conclude that (1) € pZ,
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which enables us to define a homomorphism & £ — £ by

| hfor g(1)=ph, lek*,
g(l)_{gz(l), lel™.

Clearly, ¢ = £ o 1.

We next construct a homomorphism &M - M. Form=Y AKip(I) e T, put

E(m+1(])) =% AFpo &(1l). If Y A*ir(Ii) € 7(J), then

> akig(h) = o ¥ akig(1)) = ¥ aFir o zo(1)
for Y A%ip(17) € J. Itimplies Iy = 79(I};), k > 0 and A" a (Y. A*ir(1})) = 0 for some
h>0.

One needs to prove that > A*5o&(I;) = 0. Since Dowoir = 21505 = ﬁoa = poéory,
onegets . AXpoé(l) = . Akpofory(I}) = Y. AFDoaoir(l}) = Doa(Y Akip(1})).
Therefore, A" (. A*5 o £(I;)) =0and ¥ A*p 0 £(1;) = 0, as required. It shows that
E is well defined. .

Clearly, E o red,(j)oir = po ¢, ie, (¢ B) is a morphism from (£, M ,p") to
(L, M,p).

Note that

Eored,() OT(Z AkiT(lk)) =B oredT(])(Z AFipo To(lk))
= Z Akﬁo fo To(lk) = Z Akd~> oo iT(lk)
=0

oa Y akir(k)).

Finally, ¢ = ¢gored, = £o1qored,,, and since « is surjective, the equality Do a =
Eored,(j)oT = Bor* o implies ® = Eo7*, which gives @ = Goredy;, = Eo7*oredy,.

What remains is to show the uniqueness of (&, £). Suppose that there are homo-
morphisms &: £ — ZandE: M — M such that &’ op'=pol ,p=Eor1yoreds,
and @ = B’ o 7* o redyy,. Clearly, & o 7y = ¢ = & o 7y, which gives & = &.

—
=)

Now, &’ o red,(jy oir = E o red () oir and E' o red(j) = E o red,(j), hence & =

—
=)
.

Corollary 2.6 Let F,G € FG(Ok) and f € Hom(F, G). If (Fq, fo) is a kernel of f,
then dim Fy = dim F — rkg J(f) and tkg J(fo) = dim Fj.

Example  Let F be a 3-dimensional formal group law over Z, with logarithm

/1(3Q,X2,X3) = (xl,X2,X3 _xf/p _xgz/p)'

Then f = (00 p)A for f(x1,x2,%3) = pxs — x! —xfz, which implies f € Hom(F, F,).
Consider a 2-dimensional formal group law H over Z, with logarithm pu(y;, y,) =
(3 = ¥5/p, y2). Since A o h = Dy for

> p 0
h(y ) = (1= 72y (o3 = )P + 48 ) [p) and D= (0 1),
0 0

https://doi.org/10.4153/CJM-2015-024-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2015-024-7

Kernels in the Category of Formal Group Laws 343

we obtain that 4 € Hom(H, F) and f o h = 0.
In order to show that (H, h) is a kernel of the homomorphism f, we use the con-
struction from Theorem 2.5. The logarithms A and y are of types u and v, respectively,

where
p 0 0
u=]10 p 0] and v:(p ‘).
A A% ) 0 p

Let £, be a free Z,-module with generator d; £ be a free Z,-module with gener-
ators dy, d,, d3 and y(d) = pds. Moreover,

M = (p(dr), p(d2), p(ds)) [( pp(dr), pp(d2), pp(ds) + Ap(dy) + A%p(dy)).

It is clear that £, is generated by ds, thus £ = (dy, d,), where d; = redg, dj,1 <
j<2,and

M = (p(dr),p(d2)) [{ pp(dr), pp(d2), Ap(dr) + A%p(dy)).
Denoting D; = ir(d;),1< j < 2, we have T = (D;, D,). Moreover,
J={(D,+ AD,, pDy, pD,) = (D; + AD,, pD,),

since Aa(D; + AD,) = a(pD;) = a(pD,) = 0. Notice that (£, T/J,red; oir) is not
an object in €T, since £/pL is a Z/pZ-module of rank 2, while (T/])/ A (T/]) isa
7/ pZ-module of rank 1 generated by the image of D, + J. We have J° = (d}, pd,), and
we can choose £* = (d,), £~ = (d,). In this situation, 7o(d;) = pdy, 70(d>) = ds.
Therefore,

7(J) = (pD, + ADy, pD;) and M = T/7(J) = (D1, D;)/{pD, + ADs, pD,).

Thus, the logarithm of a kernel is of type v and the Jacobian matrix of the corre-
sponding homomorphism is equal to D.

In some cases, the construction of kernel in the category FG(Og) can be signifi-
cantly simplified as the following proposition shows.

Proposition 2.7  The following conditions are equivalent:

(i)  pp(Lo)c AMo;f
(ii) A isinjective on M;
(iii) J =Kera;

(iv) J°=pL;

(v) 7isidentical.

Proof Implications (ii) = (iii) and (iv) < (v) are clear.

(i) = (ii) Let Am € M, for some m € M. Then Am = p(ly) + my, where |y € Lo,
my; € AM,. Evidently, [y = pl and | € L. It gives Am € A M; thus, m € M, as
required.

(ii) = (i) If pp(l) = Amforl € Lo,m € M, then Am = 0 for m = redy, m. It
gives i = 0, i.e., m € M.

(iii) = (ii) If A7 = 0 for m € M, then for m € T, m = a(m) one gets m € J,
whence m = 0.
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(iii) = (iv) If [ € J°, then iy () = m; + my, where m; € Kera, m, € AT. It gives
p(1) = a(m,) € AM, which in turn implies € pL.

(iv) = (iii) It suffices to show that any m € J can be represented as m = m; + m,,
where m; € AT and m, € Ker a. Since J° = pL, onehas m—ir(pl) € AT forsome [ €
L. Furthermore, p(pl) € AM, whence ir(pl) — m, € AT for some m, € Kera. M

If one of the equivalent conditions of Proposition 2.7 is satisfied, then M’ =Mand
r
p =p-

Corollary 2.8 Let (L', M',p"), (L, M, p) € CT and (v, ¥) is a morphism between
them. If Ma = My, then A is injective on M and M/Ma = M .

Proof Ifm e Mand Am e My = Ma,then A" (Am) e Im ¥ for some h > 0. Thus,
m € Ma = M), as required. The last statement is clear. ]

Notice that for the multiplication by p in F,, onehas My = M, M4 = 0,and A isin-
jective on M, which shows that the conditions of Proposition 2.7 can be satisfied even
if Ma # M. In addition, it provides an example where the reduction of the kernel is
not isomorphic to the kernel of the reduction (¢f. Corollary 3.7 and Corollary 4.4).

3 Formal Group Laws of Finite Height

A module M € € or a triple (£, M, p) € CT are of finite height if M is torsion-free
as Og-module. Correspondingly, a formal group law F over k or Ok has finite height
if M(F) is torsion-free as Og-module. A matrix u € My (&) is of finite height if it
satisfies one of the following equivalent conditions ([De, Proposition 10]).

(a) There exist w € M4(€) and an integer h such that wu = A"I; mod p.
(b) There exist w € My (&) and an integer h such that uw = A"I; mod p.
(c) Ifsu=0 mod pforseM,4(E), thens=0 mod p.
(d) fus=0 mod pforseMy,(E),thens=0 mod p.

Lemma 3.1 A formal group law over O is of finite height if and only if its type is of
finite height.

Proof Let u be a type of a formal group law corresponding to the triple (£, M, p) €
@J. For a basis I;,...,l; of £ one has u(p(h),...,p(14))T = 0. Let m € M and
pm=0.1fm= Z‘le tip(l;), t1, ..., tq € € Honda theory implies that p(t;,...,t;) =
(s1,...,sq)u for some sy, ...,s; € £. Since u is of finite height, one gets s; = ps;,1 <
i<d. Thus (t1,...,t3) = (51,...,34)u, which gives m = 0.

Suppose M is torsion-free and su = 0 mod p for s € M, 4(€). One can assume
that e = 1,s = (s1,...,54) and (s,...,s4)u = p(ti,...,tq). Then X% t:p(l;) =
0 which gives (1,...,t3) = (51,...,55)u for5y,...,5; € & Thus (s,...,85)u =
p(st,...,S4)u, whence (sy,...,84) = p(51,...,54) asu € GLz (€ ® k).

Lemma 3.2 For (L, M, p) € CT of finite height

(i) M/pM is a finite dimensional vector space over k;
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(i) there exists h > 0 such that A" M c pM.

Proof Let u be a type of a formal group law corresponding to (£, M, p). If I, ..., I,
is a basis of £, then u(p(h),...,p(I4))T = 0. The type u is of finite height by
Lemma 3.1; thus, there exist w € M, (&) and an integer h such that wu = A",

mod p. It yields A" (p(L),...,p(I4))T € pM?, whence the set {a/p(l;)} Jsisd

1
0<j<h—

spans M /pM. I

Lemma 3.3  For square matrices a and d, if a matrix ( : de ) is of finite height, then
a and d are also of finite height.

Proof 1If a is not of finite height then there exists a matrix s # 0 mod p such that
sa=0 mod p. Then

a pb _
(s 0)(C d)_O mod p,
a contradiction. A similar argument shows that d is also of finite height. |

Proposition 3.4 Let F,G be d and e-dimensional formal group laws over Ok, F be
of finite height and f € Hom(F, G). Then there are integers 0 < s < -+ < g, matrices
Cy € GL(0Ok), C; € GL4(Ok) and a type u = {u;j}1<i,j<k+1 of the logarithm of F for
Uij € My, n,(Ox) such that

p511ﬂ1

CJ(f)Ca = P

and

(i) ujra=0forl<i<k,

(i) u;;=0 mod p*~% for1<i< j<Kk,
(iil) u;,; is of finite height for1< i <k + 1.

Proof Consider the corresponding situation in the category CJT. Let (v, ¥) be a
morphism from (£, M’, p") to (£, M, p) and (£, M, p) be of finite height. In some
bases of £’ and £ the matrix of y has Smith normal form

pSIIYll

Py,
0

Let the lower-right zero submatrix belong to My, ,,n: _ (Ok). For notation simplicity,
put n; = njforl< J< k. Denote by v, the Og-morphism from £ to £" induced
by v. Letl' LM< < k+1landlj e £™,1< j < k+1be tuples of vectors
whose components form the correspondmg Smith normal bases in £" and £ such
that v, (I7) = pl;, 1< j< k,and oy (I;,) = 0.
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There are a;; € M,,;,,,;(OK),I <i<k,1<j<k+1suchthat Z?:llaijpl(ljl') =0,
1<i<k,and

0 mod A ifi# j,
a;i =
77 \pl,, mod A ifi=j,

Then Z;‘zl pYiaijp(lj) = 0,1 < i < k. Since M is torsion-free, in particular we get
S P anp(l) = 0.

There are b;j € My, ,(0k),2 < i <k+1,1< j<k+1such that Z;‘:ll biip(l) =0,
2<i<k+1,and

b = 0 mod A ifi# j,
Y7 |pl,, mod A ifi=j,

Then
ai,r PP Mary o P Magg 0
b bs,» e bak ba k1
birn breiz o brenk brenkn

is a type of F and thus is of finite height by Lemma 3.1.
We show by induction on m that there exists a type u(") = {uijhi<i i<k+1 of F such
that 4, =0for1<i<mandu;; =0 mod p i forl1<i<m,i+1<j<k.

The existence of u(!) is already proved. Suppose that (") exists. By Honda theory
the equality Z;‘:l P ams,jp(lj) = 0 yields

(pslaerl,l PPamnz 0 PFamiik 0):(W1 wy oo Wk+1)u(m)

for some wj € M, (Ok), 1< j<k+1L

Prove by induction on f that wy, ..., wx4; =0 mod p* for1< t < m + 1. Suppose
the assumption holds for all integers not exceeding the given t < m. In particular, it
implies that w; =0 mod p* forany1< i < t. Then

k+1 t
Z Wiuij = psfamﬂ)j - Zwiuij =0 mod pst+1
i=t+1 i=1
for t +1 < j < k+1 Since {u;;} 1zt = 0 mod p, Lemma 3.3 implies that
+1<j<k+

{u4ij} 14121, j<k+1 is of finite height, therefore the congruence

{wi}encicker{tij}re1<i,j<ke1 =0 mod p*

yields w; =0 mod p*+, t+1<i<k+1L
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Now, ifw; = p¥iw; for1 <i < m,w; = p+'w; form+1< i < k+landu;; = p~5u;;
for1<i<m,i+1<j<k,onegets

0= ij“mﬂjp(l) ijaerljp l)"" Z PJ“erl]P(l)

j=1 j=1 j=m+1
m k+1 k
=2 2witiip(l) + 30 pYamaip(ly)
j=1i=1 j=m+1
m m k+1
:Z Zuljp(l)+ Z W,Zuup(l)-i- Z P ami,jp(l;)
i=1 i=1 i=m+1 j=m+1
m k k+1
==Y wi Yy up(l)+ Y W,Zuup(l )+ Z P ame,jp(1)).
i=1 j=m+1 i=m+1 j=m+1
Dividing by p*"+!, we obtain
k+1
—Z Z P Wi ip (L) + Y W,Zu,]p(l
i=1 j=m+1 i=m+1

+ Z psj_s'"ﬂderl,jp(lj) =0.
j=m+1
Since#;; =0 mod A, all the coefficients here other than a,,1,+1 are congruent to 0
modulo A. Thus, one can replace the (7 +1)-th line of u(™) with these coefficients. It
remains to observe that the coefficient at p(li1) equals 0 and the coefficients at p(I;)
are congruent to 0 modulo p*i=*m+ form +2 < j< k. ]

Denote M, = {m e M :am =¥(m") for some a € Og,a # 0 and m' e M'}.

Proposition 3.5  Let (v,¥) be a morphism from (L', M',p") to (£, M, p) in the
category CT.

(i) If(L, M, p) has finite height, then pp(Lo) c AMoy;

(ii) Ifboth (L, M,p)and (L', M', p") have finite height then Ma = Mo = M.

Proof (i) Apply Proposition 3.4. It suffices to notice that £y equals to the span of
the components of Iy, ..., Ij.

(ii) Since £ is of finite rank, there is an element a € Ok, a # O such that al, c Imy.
Then aM, c Im ¥, which implies M, c M,,.

Now let m € My, i.e., am = ¥(m') forsome a € Og, a + 0and m’ € M'. According
to Lemma 3.2 there is & > 0 and m’" € M’ such that A"m’ = am”. It implies A"m =
(afa®")¥(m") € Im ¥, and thus M, c Ma.

Finally, A is injective on M by Proposition 2.7. So if m € Ma, i.e., A'meImV c
M, for some h > 0, then m € M. Thus, Ma c M, and we are done. [ |

Corollary 3.6  If (v,¥) is a morphism in CT from (L', M’,p") to (L, M, p) and
(L, M, p) is of finite height, then (£, M, p) along with (red,,redyy, ) is a cokernel of
(v, ¥).
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Proof The proof follows from Theorem 2.5 and Proposition 2.7. ]

Corollary 3.7  In the category of formal group laws of finite height, kernel commutes
with the reduction modulo p.

Proof This follows from Corollary 2.8. ]
Corollary 3.8 A kernel of a homomorphism between formal group laws of finite height
is also of finite height.

Proof Remark that M = M/M, = M /M, is torsion-free. |

4 Pure Homomorphisms

Lemma 4.1 For D € M, 4(Ok) the following conditions are equivalent:
(i) rkxD=r1ki(D®k);
(i) Ifx e 0%,y e O¢ satisfy the equality Dx = py, then there exists x" € O% such that

Dx' = y;
(i) Ifx € 0%, y € O% satisfy the equality xD = py, then there exists x' € O% such that
x'D=y;

(iv) There exist 0 < r < min(e,d) and Q € GL4(Ox) such that DQ = (D' 0),
where D' € M, ,(Ok) and CD’ = I, for some C € M, ,(Ok);

(v) There exist 0 < r < min(e,d) and Q € GL.(Ok) such that QD = (%’), where
D' eM, 4(Ok) and D'C = I, for some C € My ,(Ok).

Proof The matrix D has the Smith normal form, i.e., there are invertible matrices
C; and C, such that

0 - 0
- Pr
abG =t 0 2
where py, ..., p, are non-decreasing p-powers. It is easy to see that all the conditions
of the lemma are equivalent to the fact that py =---=p, = L. ]

Let y: £; - £, be a homomorphism of free Ox-modules of finite rank. Then the
p-divisible closure of Imy in £, coincides with Imy (i.e., if al, € Imy for some
a € Ok,a # 0,and I, € £;, then I, € Imy) if and only if the matrix of y in some
(and therefore in any) free Og-bases of £; and £, satisfies the equivalent conditions
of Lemma 4.1. In this case, we say that y is pure.

A homomorphism of formal groups laws over Ok is called pure, if its Jacobian
matrix satisfies the equivalent conditions of Lemma 4.1. A morphism (y, ¥) in the
category CT is called pure, if v is pure. Clearly, the notions of purity in FG(k) and €T
agree in the sense of Fontaine’s correspondence.
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Proposition 4.2 If (v, V) is a pure morphism in the category CT from (L', M', p")
to (£, M, p), then pp(Loy) c AMgy and Ma = M,.

Proof Since £y = Imy we have My = Im V¥, and hence My ¢ Ma. In order to
show that pp(Lo) c AMgletl € Ly, ie., | =y(l") for some I’ € L'. Then pp’(1') =
o1 AP (1), 1 € L. Tt yields

pp(1) =ppoy(l') =¥ (pp'(I) = 3, A*¥op' (i) = 3 a*p(y(Li)) € AMy.

k>1 k>1

Now Proposition 2.7 implies that A is injective on M. Finally, if m € M4, i.c., A"m €
Im ¥ = M, for some h > 0, then m € My. Thus, Ma c M,. |

sloppy Notice that for a pure morphism (y, ¥), M, may or may not coincide with
Ma = M,. Indeed, for the zero endomorphism of the additive formal group law,
Ma = M, = 0 holds, whereas M, = M (cf. Proposition 3.5).

Corollary 4.3 If (y,¥) is a pure morphism in CT from (L', M', p’) to (£, M, p),
then (L, M,p) along with (red,,redy, ) is a cokernel of (v, ¥).

Proof This follows from Theorem 2.5 and Proposition 2.7. ]

Corollary 4.4  For a pure homomorphism in FG(Oy), kernel commutes with the
reduction modulo p.

Proof This follows from Corollary 2.8. ]

Proposition 4.5 Let F,G be d- and e-dimensional formal group laws over Ok, the
logarithm of F be of type u and f € Hom(F, G). Suppose that f is pure. In particular,
there exists Q € GL;(Og) such that J(f)Q = (D’ 0), where D' € M, ,(Ok) and
CD' =1, forsome C € M, .(Ok). Then there is a kernel of f represented by a (d—r)-di-
mensional formal group law H and h € Hom(H, F) such that the logarithm of H is
of type equal to the lower-right (d — r) x (d — r)-submatrix of Q'uQ and J(h) =
Q0 Ip)"

Proof Consider the formal group law F'(X,Y) = Q'F(QX, QY) with the loga-
rithm of type u’ = Q'uQ and the homomorphism f'(X) = f(QX) € Hom(F’, G)
with J(f") = J(f)Q. Then H(F’) = (0%, &9/E%U’, k). The first component of F( f')
is the mapping y: 0% — 0%, y(m) = mJ(f") for which, in the case under considera-
tion, Im y is the subset of the elements of O% with the last d - r coordinates equal to 0.
Indeed, for any m € O%, we have y(m) = mJ(f)Q = (mD’ 0), and for any y € Of,
we get y(yC) = (yCD' 0) = (y 0). Since y is pure, Lo = Imy and hence M, =
(k(Imy)). Thus, by Corollary 4.3, the triple (O%/Imy, (€%/€9u")/(x(Imy)), %)
gives a kernel of f’, where ¥ is induced from x by factoring modulo Im y. It corre-
sponds to a formal group law H with the logarithm of the required type and a homo-
morphism h’ € Hom(H, F') with J(h’) = (0 I,_,)T. A kernel of f can be given by
H and h = QHK’, and we are done. [ |
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Let a group G act on a formal group law F, i.e., there is a fixed homomorphism
G — Auto, (F). We say that (H, h) is a universal fixed pair for (F, §) if H is a formal
group law over Ok, h € Hom(H, F) is such that g o f = f for any ¢ € G, and for any
pair (H', h') satisfying the above properties, there exists a unique g € Hom(H', H)
suchthath’ = hog.

Corollary  Let F be a d-dimensional formal group law over O provided with an ac-
tion of a finite group G. Suppose that there exists 0 < r < d and Q € GL4(Ox) such that
forany o € Gonehas J(0)Q = (D, 0), where D, € My,,(Ox) and Y. ,.q Co Dy = I,
forsome Cy € M, 1(Ox). Then there exists a universal fixed pair (H, h) for (F, G) such
that a type of the logarithm of H equals the lower-right (d — r) x (d — r)-submatrix of
Q'uQandJ(h) =Q(0 1I4_,)T, where u is a type of the logarithm of F.

Proof LetS = {c(™,...,6™} and let G be the direct sum of m copies of F. For
f=(0W,...,6() e Hom(F, G) one has

](0(1))
J(f) = ( : )
](o(m))

Then J(f)Q = (D’ 0)and CD' = I, for

, Dlg(l)
D= :
DI

g'(m)

and C = (C,q) -+ Cyom ). According to Proposition 4.5 there exists a kernel (H, h)
of f that satisfies the required conditions. Clearly, (H, h) is a universal fixed pair for
(F,9). [}

The above corollary is essentially [DGX, Theorem 3.5].

Let F, G be formal group laws over Og. A homomorphism f € Hom(F,G) is a
strong monomorphism if for any N € Nilo,, the morphism f(N): F(N) - G(N) is
a monomorphism.

A pair (H, k), where H € FG(0k), h € Hom(H, F), is called a strong kernel
of f if for any N € Nilo, the homomorphism h(N) is injective and the subgroup
h(N)(H(N)) of F(N) coincides with the kernel of f(N). The Yoneda lemma im-
plies that any strong kernel is a kernel and, therefore, any strong monomorphism is a
monomorphism.

Proposition 4.6  Let F,G € FG(O) and let f € Hom(F, G). If f is pure, then any
kernel of f is strong.

Proof Let Q € GL;(Ok) be such that J(f)Q = (D’ 0) where D’ € M, ,(Ok)
and CD' = I, for some C € M, ,(Ok). Consider F'(X,Y) = Q'F(QX,QY) and
f(X) = f(QX). Then f' € Hom(F',G), J(f') = (D’ 0) and Proposition 4.5
implies that there is a kernel of f’ represented by a (d — r)-dimensional formal group
law H' and b’ € Hom(H', F') such that J(h') = (0 I;_,)T.
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Now it suffices to prove that this kernel is strong. Obviously, h'(N) is injective for
N € Nilo,. Pickany a € N”, 8 € N7 satisfying f'(«, 8) = 0. Let b’ = (hy, hy) for
hy € Ok[[x1, ... s Xa—, ] hy € O[[x15. .., x4-]]4". Then J(hy) = I_,, and there-
fore one can find y € N9~" such that h,(y) = f.

Denote y(Z) = Cf'(Z,B) for Z = (z1,...,2,). Then J(y) = I, and y is invertible.
The equality (@) = Cf'(a, ) = 0 = C'(n(y), ha(y)) = w(hi(y)) gives & = 0 -
hi(y), as required. [ |

We complete this section with necessary and sufficient conditions on a homomor-
phism in FG(Ok), which guarantees that it is a (strong) monomorphism.

Let D be an m x n-matrix with entries in a ring A. By abuse of notation, Ker D
stands for the sub-A-module of A” given by all a = (ay,...,a,) € A" such that
Da” =0.

Proposition 4.7 Let F,G € FG(0Ok), f € Hom(F,G), and D = J(f) € M,,4(Ok).
Then

(i)  fis a monomorphism if and only if Ker D = {0};

(i)  f is a strong monomorphism if and only if Ker(D ® k) = {0}.

Proof (i) This follows from Corollary 2.6.

(ii) First, suppose that f is a strong monomorphism. Consider k as an Og-algebra
with zero multiplication and scalar multiplication induced by the reduction map.
Then F(k) = k%, G(k) = k® and f(k) is a multiplication by D ® k. Since f(k) is
a monomorphism, Ker(D ® k) = {0}.

Conversely, suppose that Ker(D ® k) = {0}. Then KerD = {0} and the zero
homomorphism gives a kernel of f. Since rky, Ker D = dimy Ker(D ® k) = 0, this
kernel is strong by Proposition 4.6. It shows that f is a strong monomorphism. H

5 Formal Group Laws Coming From Tori

We present some applications of the above results to formal group law homomor-
phisms associated with homomorphisms of algebraic tori.

Let Bbe an algebraover aring Aand ey, . . ., e, be a free basis of B as an A-module.
For a one-dimensional formal group law F over B, the Weil restriction with respect to
B/Aandey,..., e, is defined as an n-dimensional formal group law R = (R;, ..., R,)
over Asuchthat 37, Rie; = F(X1, x;e;, X1, yie;). Similarly, the Weil restriction of
a d-dimensional formal group law can be defined (see [DGX, Section 4] for details).

Local Norm Homomorphism

Let L/K be a finite extension and let ej,...,e, be a free Og-basis of Oy. Let
R denote the Weil restriction of F,, with respect to Or/Ok and ey,...,e,. Put
P(X) = Npx(1+ X7, xie;) — 1, where Ny /x stands for the norm map. Then P €
Homg, (R, F,).

Proposition 5.1 If L/K is tamely ramified, then P is pure.
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Proof We have P(X) = .7, (tr;/k e;)x; mod deg2. If all the entries of J(P) are
divisible by p, thentr; ;x O1 c pOx, which is impossible, since L/K is tamely ramified.
|

Let (H, h) denote a kernel of P.

Corollary  If L/K is tamely ramified, then Im h(N) = Ker P(N) for any nilpotent
Ok-algebra N.

Proof This follows from Proposition 4.6. [ ]

This corollary can be interpreted as a consequence of a result on an integer model
for the Weil restriction of the multiplicative group scheme with respect to a tamely
ramified extension. Indeed, R can be identified with the formal completion of

n
W =Spg, Ok[x0,x15 - - - ,xn]/onL/K(lJr ine,-) -1
i=1

Further, if L/K is tamely ramified, T = Sp, Og[X]/P(X) is smooth. Denote by H'
its formal completion, and by h’ the completion of the morphism T — W, which is
the kernel of the norm map from W to the multiplicative group scheme over Og. Since
T is affine, for any nilpotent Og-algebra N, one has Im h'(N) = Im((N) = Ker P(N),
and hence (H', h') is also a kernel of P. This implies the required statement.

We proceed with the computation of Honda’s type of H in three special cases. The
base field K = Q,.

L. Unramified case.
Let L be an unramified extension of Q, of degree n. According to the normal basis

theorem, there is { € IFy» such that

—_pn1

Z)Zp"">(

are linearly independent over IF,. If € O is the Teichmiiller representative of {, then
§=tryq, (=(+P +. 4 (PH €Z,. Pute; = (PH.

The logarithm of R is of type pI,, — V A, where V = {v; j }1<i,jen, Vi,j = Lif j=i -1
or j=i+n-1andv;; = 0 otherwise ([DGX, Proposition 7.2]), and the Jacobian
matrix ](P) = (6, . ,6) Take Q = {qi,j}lsi,jgn with qi,j = llf] =i, qi,j = —1if
i=1,j>1,and g ; = 0 otherwise. Then Q" = {q} ; }1i,j<n> Where q; ; = 1if j = i or
i=1,and g; ; = 0 otherwise:

1 -1 -1 - -1 1 1 1 1
01 0 - 0 0 1 0
Q=10 1 o], Q'=]o o 1 0
0 0 0 - 1 0 0 0 - 1

Proposition 4.5 implies that there is a kernel (H, h) of P such that the logarithm of H
is oftype pIn—l - SA, where S = {si,j}lgi,jsrl—la Si,j =1 lf] =i-1, Si,j =-1lifi = 1,
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and s; j = 0 otherwise, and J(h) = Q = {Gi,j 1<i<n,1<j<n-1, Where §; j = Lif j= i - 1,
qi,j = -lifi =1,q;,; = 0 otherwise:

-1 -1 -1 -1 -1 -1 - -1
1 0 0 _ 1 0 - 0
S= 1 0 0], Q=]0 1 0
0O 0 0 0 0 0 1

I1. Totally ramified case of degree less than p.

Let L be a totally ramified extension of Q, of degree n < p — 1. One can choose a
uniformizer ¢t € Oy such that t" + a = 0, where a € Z,, v,(a) = 1. Pute; = H11<
i < n. The logarithm of R is of type pI, — VA, where V = {v; j}1<i j<n, vi,j = 1if
j=1i=1andv;; = 0 otherwise ([DGX, Proposition 7.2]), and the Jacobian matrix
J(P) = (n,0,...,0). Proposition 4.5 implies (Q = I,) that there is a kernel (H, h) of
P such that the logarithm of H is of type pI,_; and J(h) = (0 I,_;)T. This means
that H is isomorphic to the direct sum of n — 1 copies of F,.

II1. Totally ramified case of degree equal to p.

Let L be a totally ramified extension of Q, of degree p. One can choose a uni-
formizer t € Oy such that t? + a;t?' +--- + a, = 0, where a; € Z,, v,(a;) > 1for any
1<i<pandv,(a,)=1Pute; =t"11<i<p.

Denote by A = (Ao, ..., A1) the logarithm of R. Then log(1 + Zf;ol xit') =
Zfz_ol A;t' ([DGX, Proposition 4.3]). Our first purpose is to calculate Hondas type of
A.

For any « € Oy there are {a}o,...,{a},-1 € Z, such that a = Zf;&{cx}jtj.
Similarly, for any A € Op[[x]] there are {A}o,...,{A}p-1 € Z,[[x]] such that A =
S (At

Lemma 5.2 v,({t"};) > [MPT_I_j]foranyO <j<p-1,n>0.

Proof The proof is by induction on n. If n < p -1, then {t"}; = 0 for n # jand
{t"}; =1for n = j. In both cases the inequality in question is evident. If n > p, then

SI "t = (- 20 apit’) TR {2}tk yields

p-1

("} == 2 api{t"Phf{t™
i,k=0
== > api{t" P = Y ap (LY
i+k=j i+k2p
The induction assumption implies that v, ({t" 7 };) > [”%_k] > [”_;_j] fori+k=j
andvp({t"’l’}k{t”k}j)2[”’7}”‘]+12[%_j]fori-rkzp. [
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Proposition 5.3 If p 2, then A is of type

p-A —zA 0 -+ 0
0 p 0 - 0
u=| 0 0o p - 0],
0 0 0 »

= (1= %ot 41
where z = p(l 5 A

Proof According to the formula for A mentioned above, we have

1 k

_ p
A= X pT(n .
no+wtnp_1=p* 0 p-1

k>0

){tn1+2n2+---+(p—1)n‘,,1 }j xgo . x”pil
po1 -

We make use of an estimate for p-valuation of multinomial coefficients (Lemma 1.4
of [De])

v ( " ) >k- min v,(n;).
P\ng -y oizp-1 7

Consider the summand

1 pk tn1+2n2+---(p71)np,1 no Np_1
F Mo - Myt { Fixe' Xy
-

for any p-tuple (1, ..., n,_1) other than (p*,0,...,0). The inequality

1 ( pk ) ny+2ny+--(p=1)n,_ )
Vol — et Ll ) I
e ) )

n1+2n2+-~+(p—l)np_1+p—1—j]

- min v,(n;)+ [

0<i<p-1 P
shows that its coefficient is p-integer, since v, (n) < [%] for any n > 1. In particular, it
gives pA; =0 mod p,1<j< p—1 ie, pAje pZp[[xo,...,Xp-1]]o-
If j = 0, then

[n1+2n2+-~~+(p—1)np_1—1
p

] > minv,(n;)

unless (1o, ...,np-1) = (pF = p, p,0...,0).
If j =1, then

[711+21’lz+"'+(p—1)1’lp_1—2
p

] > minv,(n;)

unless (1o, ..., np-1) = (p¥ = p, p,0,...,0) or (p*¥ - 1,1,0,...,0).
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Therefore, one has

R (O

k

k>1p

EZ g pr “PxP mod p
k>0

L
P P k>1
and

k_
AlszO x1+z ( )tp}lxp PyP

k>0 k>1

_ ko 9p-1 -
=Y xb xl——pr PxP mod p.

k>0 k>1

In both congruences, the fact that (l;k) = pF! mod p* is used. Denote

I = Z x€k71x1

k>0
Then A; = 1- % A mod pwhencel = (1- %)_IAI mod p. On the other hand,

1 o« a
AOEZ—kxg——pAl mod p,
k>0 p

which results in

-1
(p—A)AOE—%(p—A)AlE%Azlz%(l—%) A% A; mod p,

as required. n

The Jacobian matrix J(P) = (p, =pby,...,—pby1) for by = —p~ try g, thi1<ic<
p —1. According to Newton’s identities, the numbers by, ..., b,_; satisfy the following
recurrent relations: b1 play, by =ipta; - Yilaibi_;, 2 < i< p-1. Inparticular,
bi€Zyand b; = ip~la; modp,ls i<p-1L

Proposition 5.4
(i) Ifvy(ai) > 2 forany 2 < i < p -1, then there is a kernel (H, h) of P such that
the logarithm of H is of type pl,_; and

Pbl b2 bp—l
=0 1 - o
0 o 1
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(ii) Ifthereis2 < j < p —1such that vy(a;j) = 1, then there is a kernel (H, h) of P
such that the logarithm of H is of type

p zA O 0
0 p O 0
0 0 p ol,
0 0 0 - p
where z is as in Proposition 5.3, and
p 0 0 0 0
0 1 0 0 0
0 0 1 0 0
T =\ p. b /b “boy[b; b /b - .
plbj —bi/bj -+ =bj.[bj —bju[bj -+ —by./b;
0 0 0 1 0
0 0 0 0 1

Proof Denote Fontaine’s triples corresponding to the formal group laws F, and
R by (L',M',p") and (£, M, p), respectively. Let (v, V) be the morphism from
(L', M',p") to (£, M, p) corresponding to P. One can choose a generator d of £’

and generators di, ..., d, of £ so that y(d) = pd, — pb1d; —--- — pb,_1d,. Then
M= {pd).....p(dp)) /{ pp(di) — Ap(dh) —z A% p(d). pp(da)s. .. pp(dy))
and £ is generated by d; — b1d, — -+~ - by_1d,. Denote d; = redg, d; € L,D; =

ir(d;)eT,1<i<p.
(i) Ifvp(a;) >2forany2 <i < p—1,thenv,(b;) >1forany2 < i< p—1. Inthis
case £ = (dy,...,d,), T =(D,...,D,),and

M2 (5(da)s- . 5(dp)) [(~(br & +282)5(ds), pp(da), .. pP(dy))
Now if v, (b1) > 1,

Mz (p(d2),...p(d))) /(-2 &> 5(d2). pP(d2).... pP(d))
and J = (D, pDs, ..., pD,), since z is invertible. If v,(b;) = 0, then by + zA is
invertible in € and again J = (D5, pDs, ..., pD,).
Further, J° = (d,, pds, ..., pd,), 70(d2) = pda, 10(d;) = di, 3 < i < p. Finally,
M =(D,,..., D,)/(pD,, ..., pD,) which implies that there is a kernel (H, h) of P
such that the logarithm of H is of type pI,_;. Since

pblaz + bzg_o, R o bp—lgp ifi = 1,
Tooreds,(d;) = pEz ifi =2,
pd; if3<i<p,

the Jacobian matrix of / has the required form.
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(ii) If there is 2 < j < p — 1 such that v,(a;) = 1, then v,(b;) = 0. In this case,
L = <d1,...,dj,dj+2,...,dp>, T= (Dl,...,Dj,Dj+2,...,Dp),and

W2 (5@ F @5 @5)s . 5 @) IN
where
N=(-ap(d)-zA>p(d2), pp(dr),..., pp(d;), pp(djsa)s -, pp(dy)).
Thus
] = (Dl +Z A Dz,le,pDz,. .. ,pD]’,pD]’+2, e ’pDP>
= (Dl +Z A Dz,pDz, . ,ij,ij+2, v ’pDP>
and ]0 = (E],pgz, .. :pgj>pgj+2a .. ,pgp>, TO(EI) = pal, To(gi) = E,’, for2<i< b
i # j+ 1. Finally,
M' = (Dy,...,D;,Djizs...,Dp)/(pDy + z A Do, pDs, ..., pDj, pDjsas .., pD,),

and we are done. [ |

Global Norm Homomorphism

Let g be a prime, s € Z be a multiplicative generator modulo q and { be a primitive
g-th root of unity. Let R be the Weil restriction of F,, with respect to the extension

Z[{]/Z and the basis {, (‘,(SZ, . CSH. Then

-1 i1
P(X) = :NQ(()/@(I-F Z;xi{s ) —1le¢ HomZ(R,Fm)

and P(X) = —Z?z_llxi mod deg2. Put X = (xi,...,%52) and Y = (y1,..., y4-2).
By the implicit function theorem there exists a unique ¢ € Z[[xy,...,x4-2]] such
that P(¢(X),X) = 0. Let a(X) denote the (g — 1)-tuple (¢(X), X). Define the

(g-2)-tuple (X, Y) = (U(X,Y),..., Q2(X,Y)) by
Qi(X,Y) =R (a(X),a(Y)) forl<i<qg-2.
One obtains
P(Ri(a(X),a(Y)), ... Rga(a(X), a(Y))) =0,
since P(R(X,Y)) = F,,(P(X), P(Y)), thus

¢(R2(a(X),a(?)),...,Rq_l(a(i),a(Y))) - Ry(a(X), a(Y)).
The latter equality implies R(a(X),a(Y)) = a(Q(X,Y)), i.e., Q is a formal group

law over Z, a € Hom(€Q, R), and J(a) = Q = {G,j hicicqg-1,1<j<q-2> Where §; ; = 1if
j=i-14q;;=-1ifi=1,4;; = 0 otherwise. To find Honda’ type of the logarithm of
Q as a formal power series over Q, (Honda’s p-type), denote by r(p) an integer such
that p = s"(®) mod g and notice that the logarithm of R is of p-type plg— vr(P) A,
where V' = {v; j }1<i,j<q-1> vi,j = 1if j=i—1lor j= i+ g—2,and v; ; = 0 otherwise for
p # q,and of p-type pIy_ 1 —(ply—1—Z) A, where Z = {z; j }1<i,j<q-1, 2i,j = 1 forany i, j
for p = q ([DGX, Proposition 9.1]). Take Q = {qi,j }1<i,j<q-1 such that g; ; = 1if j = 4,
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gi,j =-1if j#1,i =1and g; j = 0 otherwise. For p # g,let S(p) = {s(p)i,j }1<i,j<q2>
s(pij =1ifj=i-r(p)orj=1i-r(p)+q-1s(p);=-1ifi = r(p) and
s(p)i,j = 0 otherwise. By Proposition 4.5 there is a kernel (H,, h,) of P such that
J(hy) = Q0 I,-,)T = Q and the logarithm of H,, has p-type pI,_, — S(p)A if
p #qand pl;_, — pl, > A if p = q. Remark that the latter type can be replaced by
ply—2. Since P o a = 0, there is g, € Homg, (Q, Hy) such that & = hj, o g,. It implies
J(gp) = I4-2, i.e., Q and H,, are strictly isomorphic over Z, and the logarithm of O
has the same Honda’s p-type as H,,.

Matrices S(p) are defined for any prime p # g, put S(q) = 0. One can show that
S(p) and $(p') commute for any primes p, p’. For a positive integer [ = []7; p*/,
where py, ..., p,, are distinct primes, define S(1) = [T, S(p;)*. Let

630 =3 1SIX QX and (X,Y) = £7(§0) + £(V)).
=1

Then & is of p-type pI;_> —S(p) A for any prime p, and E is a formal group law over Z
([Ho, Theorem 8], [DGX, Proposition 2.5]). Thus Q) and E have the same p-type for
any prime p, and therefore are strictly isomorphic over Z. This is [CG, Theorem 1].

Galois Action Associated with a Torus

Let L/K be a finite Galois extension of degree n, 9 be a free Ox-module with
Ok[Gal(L/K)]- and Op-module structure extending the Ox-module structure such
that 7(Im) = I"t(m) for any 7 € Gal(L/K), ! € O and m € 9. Let my,...,m; be a
free Ok -basis of M, o € Gal(L/K), D € M;(Og) be the matrix of ¢ — id in the basis
mi,..., ms.

Lemma 5.5 IfL/K is tamely ramified, then D satisfies the conditions of Lemma 4.1.

Proof It suffices to prove that if x, y € 9t and ox — x = py, then there exists x" € 9
such that 0x’ — x’ = y. Let K be the subfield of L fixed by ¢. Then L/K is also tamely
ramified, and hence, tr; z: O > Og is surjective. Chose z € Oy so that tr; z(z) =1
and denote the order of o by q. Then z + 6z + -+ + 697z = 1. Finally, ox — x = py
implies y + oy +---+ 097y = 0 and

x'=-y-0z-(y+oy)o’z—(y+oy+a’y)oiz—---

~(y+oy+aty+--+01%y)0? 'z

satisfies the required condition. ]
Lete; = 1,...,e, be a free Og-basis of O and let T be an algebraic torus over
K of dimension d split over L. Let x3,...,x, be a free basis in the group X of

characters of T, which allows one to identify T; with (G%); and its Hopf algebra
with L[xy, x{', ..., x4,x;']. The natural action of Gal(L/K) on the Hopf algebra of
Ty induces an action on its formal completion with respect to the local parameters
x1-1...,x4 -1, thatis, on L[[x,...,x4]]-
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Let R be the Weil restriction of F with respect to O; /O and ey, ..., e,. For any
nilpotent Og-algebra N, one can identify R(N) with F% (N ®¢, ;) by

n

(S1>- -5 Sna) < (Zs(i—l)dﬂ ®e€i5..., Zs(i—l)d+d ® ei)-

i=1 i=1
Then a right action of Gal(L/K) on R can be defined as follows: for

S € HomoL(OL[[xl,...,xd]],NtX)oK OL),

putso =G 'osod, where & € Endo, (Or[[x1,...,x4]]) is the restriction of the action

ofeonL[[xy,...,x4]],and @ € Endp, (N ®¢, Or) is induced by o. This right action
can be considered as a (left) action of Gal(L/K)° on R, where Gal(L/K)® denotes the
opposite group of Gal(L/K).

Proposition 5.6 If L/K is tamely ramified, 0 € Gal(L/K), then o — id is pure as an
endomorphism of the formal group law R.

Proof Denote M =X ®v, Homo, (O, Ok). Then M has an Oy -module structure
induced from the O -module structure on Homg, (O, Ok). The group X is invari-
ant with respect to the Gal(L/K)-action on the Hopf algebra of T;. Besides, there isa
unique Gal(L/K)-action on Home, (O, Og) such that h*(17) = h(l) forany ! € Oy,
h € Homo, (O, Ok), 7 € Gal(L/K). Then there is a unique Ox[Gal(L/K)]-module
structure on 91 that satisfies 7(x®h) = 7(x)®h" forany x € X, h € Home, (Or, Ok),
7 € Gal(L/K). Clearly, 7(Im) = I"t(m) forany m € M, | € O, 7 € Gal(L/K). More-
over, according to [DGX, Proposition 6.3], /(o) is equal to the matrix of ¢ consid-

ered as an endomorphism of 9 in the basis my, ..., ma,, where m(;_1)q.; = x; ® €,
1<i<n1<l<d,and@,...,¢, is the basis of Homg, (O, Ok) dualto ey, ..., e,.
Lemma 5.5 completes the proof. ]

Let (H, h) denote a kernel of ¢ — id.

Corollary  If L/K is tamely ramified, then Im h(N) = Ker(o —id)(N) for any nilpo-
tent Og-algebra N.

This corollary can be interpreted as a consequence of a result on the Néron model
for an algebraic torus split over a tamely ramified extension. Indeed, recall that R can
be identified with the formal completion of the Weil restriction of (G¢, )0, with re-
spect to O /Ok. The latter scheme is canonically isomorphic to the connected com-
ponent Uy of the Néron model U for the Weil restriction of (G%,); with respect to
L/K. An action of Gal(L/K) on these Weil restrictions can be defined as above, and
due to the universal property of the Néron model, we get an action of Gal(L/K) on U.
According to [Ed], the fixed subscheme U” of U is smooth, provided L/K is tamely
ramified. The connected component of (U )? is canonically isomorphic to that of
U (see [DGX, Proposition 5.6]), and in particular, (Uy)? is also smooth. Denote
by H’' the formal completion of (Uy)?, and by A’ the completion of the morphism
1:(Up)? — Uy, which is the kernel of the endomorphism o — id of Uy. Since (Uy)°
is affine, Imh'(N) = Im ((N) = Ker(o —id) (N) for any nilpotent Og-algebra N, and
hence (H', h') is also a kernel of ¢ — id. This implies the required statement.
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