A NOTE ON THE GOORMAGHTIGH EQUATION CONCERNING DIFFERENCE SET[S](#page-0-0)

YASUTSUGU FUJITA®[¤] and MAOHUA L[E](https://orcid.org/0000-0002-7502-2496)

(Received 1 May 2023; accepted 12 May 2023; first published online 23 June 2023)

Abstract

Let p be a prime and let r , s be positive integers. In this paper, we prove that the Goormaghtigh equation $(x^m - 1)/(x - 1) = (y^n - 1)/(y - 1)$, $x, y, m, n \in \mathbb{N}$, min $\{x, y\} > 1$, min $\{m, n\} > 2$ with $(x, y) = (p^r, p^s + 1)$
has only one solution $(x, y, m, n) = (2, 5, 5, 3)$. This result is related to the existence of some partial has only one solution $(x, y, m, n) = (2, 5, 5, 3)$. This result is related to the existence of some partial difference sets in combinatorics.

2020 *Mathematics subject classification*: primary 11D61; secondary 05B10, 11J86.

Keywords and phrases: exponential Diophantine equation, Goormaghtigh equation, generalised Ramanujan–Nagell equation, Baker's method, partial difference set.

1. Introduction

Let $\mathbb N$ be the set of all positive integers. One hundred years ago, Ratat [\[27\]](#page-9-0) and Rose and Goormaghtigh [\[28\]](#page-9-1) conjectured that the equation

$$
\frac{x^m - 1}{x - 1} = \frac{y^n - 1}{y - 1} \quad \text{for all } x, y, m, n \in \mathbb{N}, x \neq y, \min\{x, y\} > 1, \min\{m, n\} > 2, \quad (1.1)
$$

has only two solutions $(x, y, m, n) = (2, 5, 5, 3)$ and $(2, 90, 13, 3)$ with $x < y$. Equation [\(1.1\)](#page-0-1) is usually called the Goormaghtigh equation. The above conjecture is a very difficult problem in Diophantine equations. It was solved for some special cases (see [\[3,](#page-8-0) [5,](#page-8-1) [6,](#page-8-2) [9,](#page-8-3) [10,](#page-8-4) [12,](#page-8-5) [14–](#page-8-6)[18,](#page-8-7) [22,](#page-8-8) [23,](#page-9-2) [26,](#page-9-3) [29](#page-9-4)[–37\]](#page-9-5)). But, in general, the problem is far from solved. The solution of [\(1.1\)](#page-0-1) is closely related to some problems in number theory, combinatorics and algebra (see [\[1,](#page-8-9) [4,](#page-8-10) [13,](#page-8-11) [19,](#page-8-12) [21\]](#page-8-13)). For example, while discussing the partial geometries admitting Singer groups in combinatorics, Leung *et al.* [\[19\]](#page-8-12) found that the existence of partial difference sets in an elementary abelian 3-group is related to the solutions (x, y, m, n) of (1.1) with

$$
(x, y) = (2^r, 3), \tag{1.2}
$$

where *r* is a positive integer. In [\[19\]](#page-8-12), they proved that [\(1.1\)](#page-0-1) has no solutions (x, y, m, n) satisfying (1.2) .

[©] The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Let p be a prime and let r , s be positive integers. In this paper, we discuss the solutions (x, y, m, n) of (1.1) with

$$
(x, y) = (p^r, p^s + 1). \tag{1.3}
$$

Thus, we generalise the above-mentioned result in [\[19\]](#page-8-12) to prove the following theorem.

THEOREM 1.1. *Equation* [\(1.1\)](#page-0-1) has only one solution $(x, y, m, n) = (2, 5, 5, 3)$ with [\(1.3\)](#page-1-0).

Combining Theorem [1.1](#page-1-1) and [\[19,](#page-8-12) Corollary 37] with $q = \alpha + 1 = 2^{s} + 1$, we immediately obtain the following corollary which may be regarded as a generalisation of [\[19,](#page-8-12) Corollary 44].

COROLLARY 1.2. *Suppose that a proper partial geometry* Π *has at least two subgroup lines and that the parameters of the corresponding partial difference set have the form in* [\[19,](#page-8-12) (34)]*. Then,* Π *cannot be expressed as*

$$
\Pi = \text{pg}((2^s + 1)^u, (2^r - 1)(2^s + 1)^u + 2^s + 1, 2^s)
$$

with $r, s, t \in \mathbb{N}$.

The organisation of the paper is as follows. In Section [2,](#page-1-2) we prove Theorem [1.1](#page-1-1) in the case where $r \leq s$ using an upper bound for the number of solutions of the generalised Ramanujan–Nagell equations due to Bugeaud and Shorey [\[8\]](#page-8-14). In Section [3,](#page-3-0) using a lower bound for linear forms in three logarithms due to Matveev [\[24\]](#page-9-6), we show that if $r > s$ and $p^r > 3.436 \times 10^{15}$, then [\(1.1\)](#page-0-1) has no solutions (x, y, m, n) with [\(1.3\)](#page-1-0). Thus, the remaining case to be checked is $r > s$ and $p^r < 3.436 \times 10^{15}$. For this, we appeal to the reduction method due to Dujella and Petho $[11]$ $[11]$, based on $[2,$ Lemma] by Baker and Davenport, to complete the proof of Theorem [1.1](#page-1-1) in Section [4.](#page-6-0)

2. The case $r \leq s$

LEMMA 2.1 [\[20\]](#page-8-17). *The equation*

$$
\frac{X^k - 1}{X - 1} = Y^l \quad \text{for all } X, Y, k, l \in \mathbb{N}, X > 1, Y > 1, k > 2, l > 1,\tag{2.1}
$$

has only two solutions, $(X, Y, k, l) = (3, 11, 5, 2)$ *and* $(7, 20, 4, 2)$ *with* $2 \mid l$.

Let D_1 and D_2 be coprime positive integers and let *p* be a prime with $p \nmid D_1 D_2$. Further, let $N(D_1, D_2, p)$ denote the number of solutions (X, Z) of the equation

$$
D_1 X^2 + D_2 = p^Z \text{ for all } X, Z \in \mathbb{N}.
$$
 (2.2)

Combining the results in [\[7,](#page-8-18) [8\]](#page-8-14), we immediately obtain the following two lemmas.

LEMMA 2.2. *We have* $N(D_1, D_2, 2) \leq 1$, except for the following cases:

- (i) $N(1, 7, 2) = 5$, $(X, Z) = (1, 3), (3, 4), (5, 5), (11, 7)$ *and* (181, 15);
- (ii) $N(3, 5, 2) = 3$, $(X, Z) = (1, 3), (3, 5)$ *and* $(13, 9)$ *;*
- (iii) $N(7, 1, 2) = 2$, $(X, Z) = (1, 3)$ and $(3, 6)$;

[3] The Goormaghtigh equation 445

- (iv) $N(1, 2^{k+2} 1, 2) = 2$, $(X, Z) = (1, k + 2)$ and $(2^{k+1} 1, 2k + 2)$, where k is a *positive integer with* $k > 1$;
- (v) $N(3, 29, 2) = 2$, $(X, Z) = (1, 5)$ and $(209, 17)$;
- (vi) $N(5, 3, 2) = 2$, $(X, Z) = (1, 3)$ *and* $(5, 7)$;
- (vii) $N(13, 3, 2) = 2$, $(X, Z) = (1, 4)$ and $(71, 16)$;
- (viii) $N(21, 11, 2) = 2$, $(X, Z) = (1, 5)$ *and* $(79, 17)$ *; and*
- (ix) *if* $D_1a^2 = 2^k \delta$ *and* $D_2 = 3 \cdot 2^k + \delta$ *, where a, k are positive integers with* $k > 1$ α *and* $\delta \in \{1, -1\}$ *, then* $N(D_1, D_2, 2) = 2$, $(X, Z) = (a, k + 2)$ *and* $((2^{k+1} + \delta)a)$, $3k + 2$).

LEMMA 2.3. If $p \neq 2$, then $N(D_1, D_2, p) \leq 1$, except for the following cases:

- (i) $N(2, 1, 3) = 3$, $(X, Z) = (1, 1), (2, 2)$ *and* $(11, 5)$ *; and*
- (ii) *if* $4D_1a^2 = p^k \delta$ *and* $4D_2 = 3p^k + \delta$ *, where a, k are positive integers and* $\delta \in \{1, -1\}$, then $N(D_1, D_2, p) = 2$, $(X, Z) = (a, k)$ and $((2p^k + \delta)a, 3k)$.

PROPOSITION 2.4. *If* $r \leq s$, *then* [\(1.1\)](#page-0-1) *has only one solution* $(x, y, m, n) = (2, 5, 5, 3)$ *with [\(1.3\)](#page-1-0).*

PROOF. We now assume that (x, y, m, n) is a solution of (1.1) with (1.3) . Then

$$
\frac{p^{rm}-1}{p^r-1} = \frac{(p^s+1)^n - 1}{p^s}.
$$
\n(2.3)

When $r = s$, by [\(2.3\)](#page-2-0),

$$
\frac{p^{r(m+1)} - 1}{p^r - 1} = (p^r + 1)^n.
$$
\n(2.4)

If $2 | n, \text{ by } (2.4), \text{ the equation } (2.1) \text{ has a solution } (X, Y, k, l) = (p^r, p^r + 1, m + 1, n)$ $2 | n, \text{ by } (2.4), \text{ the equation } (2.1) \text{ has a solution } (X, Y, k, l) = (p^r, p^r + 1, m + 1, n)$ $2 | n, \text{ by } (2.4), \text{ the equation } (2.1) \text{ has a solution } (X, Y, k, l) = (p^r, p^r + 1, m + 1, n)$ $2 | n, \text{ by } (2.4), \text{ the equation } (2.1) \text{ has a solution } (X, Y, k, l) = (p^r, p^r + 1, m + 1, n)$ $2 | n, \text{ by } (2.4), \text{ the equation } (2.1) \text{ has a solution } (X, Y, k, l) = (p^r, p^r + 1, m + 1, n)$ with 2 | *l*. However, since $m > 2$, by Lemma [2.1,](#page-1-2) this is impossible. So 2 $\nmid n$ and $n \ge 3$.
Since $n^r + 1 > 2$ and $n^r = -1 \pmod{(n^r + 1)}$ by (2.4) Since $p^r + 1 > 2$ and $p^r \equiv -1 \pmod{(p^r + 1)}$, by [\(2.4\)](#page-2-1),

$$
0 \equiv (p^r - 1)(p^r + 1)^n \equiv p^{r(m+1)} - 1 \equiv (-1)^{m+1} - 1 \pmod{(p^r + 1)},
$$

from which we get $2 \mid m+1$. Hence, by [\(2.4\)](#page-2-1),

$$
\frac{(p^{2r})^{(m+1)/2} - 1}{p^{2r} - 1} = (p^r + 1)^{n-1}.
$$
\n(2.5)

Recall that $2 \nmid n$ and $n \ge 3$. We see from [\(2.5\)](#page-2-2) that if $(m + 1)/2 > 2$, then [\(2.1\)](#page-1-3) has a solution $(X, Y, k, l) = (p^{2r}, p^r + 1, (m + 1)/2, n - 1)$ with 2 | *l*. But, by Lemma [2.1](#page-1-2) again, this is impossible. Therefore, since $2 \nmid m$ and $m \geq 3$, we get $m = 3$, and by [\(2.5\)](#page-2-2),

$$
\frac{(p^{2r})^{(m+1)/2}-1}{p^{2r}-1} = \frac{p^{4r}-1}{p^{2r}-1} = p^{2r}+1 = (p^r+1)^{n-1} \ge (p^r+1)^2 > p^{2r}+1,
$$

which is a contradiction. Thus, [\(1.1\)](#page-0-1) has no solutions (x, y, m, n) with [\(1.3\)](#page-1-0) and $r = s$. When $r < s$, by [\(2.3\)](#page-2-0),

$$
(pr - 1)(ps + 1)n + (ps - pr + 1) = prm+s.
$$
 (2.6)

Since $r < s$, $p^r - 1$, $p^s + 1$ and $p^s - p^r + 1$ are positive integers satisfying

$$
\gcd((p^r-1)(p^s+1), p^s-p^r+1)=1, \quad p \nmid (p^r-1)(p^s+1)(p^s-p^r+1). \tag{2.7}
$$

If $2 \mid n$, by [\(2.6\)](#page-2-3), the equation [\(2.2\)](#page-1-4) has a solution

$$
(X,Z) = ((p^s + 1)^{n/2}, rm + s)
$$

for $(D_1, D_2) = (p^r - 1, p^s - p^r + 1)$. Notice that [\(2.2\)](#page-1-4) has another solution $(X, Z) =$ $(1, s)$ for $(D_1, D_2) = (p^r - 1, p^s - p^r + 1)$. So

$$
N(p^r - 1, p^s - p^r + 1, p) \ge 2.
$$
 (2.8)

However, by (2.7) , using Lemmas [2.2](#page-1-5) and [2.3,](#page-2-4) (2.8) is false.

Similarly, if $2 \nmid n$, by [\(2.6\)](#page-2-3), the equation [\(2.2\)](#page-1-4) has a solution

$$
(X, Z) = ((ps + 1)(n-1)/2, rm + s)
$$

for $(D_1, D_2) = ((p^r - 1)(p^s + 1), p^s - p^r + 1)$. Moreover, [\(2.2\)](#page-1-4) has another solution $(X, Z) = (1, r + s)$ for $(D_1, D_2) = ((p^r - 1)(p^s + 1), p^s - p^r + 1)$. So

$$
N((pr - 1)(ps + 1), ps - pr + 1, p) \ge 2.
$$
 (2.9)

Applying Lemmas [2.2](#page-1-5) and [2.3](#page-2-4) to [\(2.9\)](#page-3-3), we can only obtain

$$
(p, r, x) = (2, 1, 2). \tag{2.10}
$$

Therefore, by [\(1.3\)](#page-1-0) and [\(2.10\)](#page-3-4), we get $(D_1, D_2) = (5, 3)$ and $(x, y, m, n) = (2, 5, 5, 3)$. Thus, the proposition is proved. \Box

3. The case $r > s$

In this section, we assume that $r > s$ and (x, y, m, n) is a solution of [\(1.1\)](#page-0-1) with [\(1.3\)](#page-1-0).

LEMMA 3.1. *If* $(p, s) \neq (2, 1)$ *, then n > p^r*. PROOF. By [\(2.3\)](#page-2-0),

$$
\frac{p^{rm}-1}{p^r-1}=\sum_{i=0}^{m-1}p^{ri}=\sum_{j=1}^n\binom{n}{j}p^{s(j-1)}=\frac{(p^s+1)^n-1}{p^s},
$$

from which we get

$$
p^{r}\left(\frac{p^{r(m-1)}-1}{p^{r}-1}\right) = (n-1) + \sum_{j=2}^{n} {n \choose j} p^{s(j-1)}.
$$
 (3.1)

Since *n* > 2 and *p* \uparrow (*p^{r(m-1)}* − 1)/(*p^r* − 1), we see from [\(3.1\)](#page-3-5) that *p* | *n* − 1 and

$$
p^r \|(n-1) + \sum_{j=2}^n \binom{n}{j} p^{s(j-1)}.
$$
\n(3.2)

[5] The Goormaghtigh equation 447

Let

$$
p^t \parallel n-1 \tag{3.3}
$$

and

$$
p^{t_j} || j
$$
 for all $j = 2, ..., n$, (3.4)

where *t* is a positive integer and t_i ($j = 2, ..., n$) are nonnegative integers. Then

$$
t_j \le \frac{\log j}{\log p} \le j - 1 \quad \text{for all } j = 2, \dots, n. \tag{3.5}
$$

Notice that both symbols ' \leq ' in [\(3.5\)](#page-4-0) can be taken by equal signs '=' if and only if $(p, t_j, j) = (2, 1, 2)$. It follows from (3.5) that if $(p, t_j) \neq (2, 1)$, then

$$
t_j < j - 1
$$
 for all $j = 2, ..., n$. (3.6)

Hence, since $gcd(j, j - 1) = 1$ and $(p, s) \neq (2, 1)$, by (3.3) , (3.4) and (3.6) ,

$$
\binom{n}{j} p^{s(j-1)} \equiv n(n-1) \binom{n-2}{j-2} \frac{p^{s(j-1)}}{(j-1)j} \equiv 0 \pmod{p^{t+1}} \quad \text{for all } j = 2, \dots, n. \tag{3.7}
$$

Therefore, by (3.3) and (3.7) ,

$$
p^t \|(n-1) + \sum_{j=2}^n \binom{n}{j} p^{s(j-1)}.
$$
 (3.8)

Comparing (3.2) and (3.8) ,

$$
t = r.\tag{3.9}
$$

Further, since *n* > 1, by [\(3.3\)](#page-4-1) and [\(3.9\)](#page-4-6), we obtain $n - 1 \ge p^r$ and $n > p^r$. The lemma is proved. \Box

Let \mathbb{Z} , \mathbb{Q} and \mathbb{R} be the sets of all integers, rational numbers and real numbers, respectively. Let α be an algebraic number of degree *d* and let $\alpha^{(1)}, \ldots, \alpha^{(d)}$ denote all the conjugates of α . Further, let

$$
f(X) = a \prod_{i=1}^{d} (X - \alpha^{(i)}) \in \mathbb{Z}[X] \quad \text{for all } a \in \mathbb{N}
$$

denote the minimal polynomial of α . Then

$$
h(\alpha) = \frac{1}{d} \Big(\log a + \sum_{i=1}^{d} \log \max\{1, |\alpha^{(i)}|\} \Big)
$$

is called the absolute logarithmic height of α .

LEMMA 3.2 ([\[24,](#page-9-6) [25\]](#page-9-7)). Let α_1 , α_2 , α_3 be three distinct real algebraic numbers with $\min\{\alpha_1, \alpha_2, \alpha_3\} > 1$ *and let* b_1, b_2, b_3 *be three positive integers with* $\gcd(b_1, b_2, b_3) = 1$ *.*

Further, let

$$
\Lambda = b_1 \log \alpha_1 + b_2 \log \alpha_2 - b_3 \log \alpha_3.
$$

 $If \Lambda \neq 0, then$

$$
\log|A| > -CD^2A_1A_2A_3\log(1.5eDB\log(eD)),
$$

where

$$
D = [\mathbb{Q}(\alpha_1, \alpha_2, \alpha_3) : \mathbb{Q}], \quad D' = [\mathbb{R}(\alpha_1, \alpha_2, \alpha_3) : \mathbb{R}], \tag{3.10}
$$

$$
A_j \ge \max\{D \ln(\alpha_j), |\log \alpha_j|\} \quad \text{for } j = 1, 2, 3,
$$
\n
$$
(3.11)
$$

$$
B \ge \max\Big\{b_j \frac{A_j}{A_1} \Big| j = 1, 2, 3\Big\},\tag{3.12}
$$

$$
C = \frac{5 \times 16^5}{6D'} e^3 (7 + 2D') \left(\frac{3e}{2}\right)^{D'} (26.25 + \log(D^2 \log(eD))).
$$
 (3.13)

PROPOSITION 3.3. If $r > s$ and $p^r > 3.436 \times 10^{15}$, then [\(1.1\)](#page-0-1) has no solutions (*x*, *y*, *m*, *n*) *with [\(1.3\)](#page-1-0).*

PROOF. By [\[19\]](#page-8-12), the proposition holds for $(p, s) = (2, 1)$. We can therefore assume that $(p, s) \neq (2, 1)$. By (2.3) ,

$$
(pr - 1)(ps + 1)n = prm+s + (pr - ps - 1).
$$
 (3.14)

Since $p^r - p^s - 1 > 0$, taking the logarithms of both sides of [\(3.14\)](#page-5-0),

$$
\log(p^r - 1) + n \log(p^s + 1) = (rm + s) \log p + \log \left(1 + \frac{p^r - p^s - 1}{p^{rm + s}}\right). \tag{3.15}
$$

Since $\log(1 + \varepsilon) < \varepsilon$ for any $\varepsilon > 0$, by [\(3.15\)](#page-5-1),
0 < $\log(n^r - 1) + n \log(n)$

$$
0 < \log(p^{r} - 1) + n \log(p^{s} + 1) - (rm + s) \log p
$$

= $\log \left(1 + \frac{p^{r} - p^{s} - 1}{p^{rm + s}} \right) < \frac{p^{r} - p^{s} - 1}{p^{rm + s}}.$ (3.16)

Take

$$
\alpha_1 = p^r - 1
$$
, $\alpha_2 = p^s + 1$, $\alpha_3 = p$, $b_1 = 1$, $b_2 = n$, $b_3 = rm + s$ (3.17)

and

$$
\Lambda = \log(p^r - 1) + n \log(p^s + 1) - (rm + s) \log p. \tag{3.18}
$$

By [\(3.16\)](#page-5-2) and [\(3.18\)](#page-5-3), we have $\Lambda > 0$ and

$$
(rm + s) \log p + \log \Lambda < \log(p^r - p^s - 1) < \log(p^r - 1). \tag{3.19}
$$

In order to apply Lemma [3.2,](#page-4-7) by [\(3.10\)](#page-5-4), [\(3.11\)](#page-5-5) and [\(3.17\)](#page-5-6), we can choose the following parameters.

$$
D = D' = 1,\tag{3.20}
$$

$$
A_1 = \log(p^r - 1), \quad A_2 = \log(p^s + 1), \quad A_3 = \log p. \tag{3.21}
$$

Further, by [\(3.12\)](#page-5-7), [\(3.13\)](#page-5-8), [\(3.16\)](#page-5-2), [\(3.20\)](#page-5-9) and [\(3.21\)](#page-5-10),

$$
B = \frac{(rm+s)\log p}{\log(p^r - 1)}
$$

and

$$
C < 1.691 \times 10^{10}.\tag{3.22}
$$

Applying Lemma [3.2](#page-4-7) to [\(3.17\)](#page-5-6) and [\(3.18\)](#page-5-3), by [\(3.20\)](#page-5-9)–[\(3.22\)](#page-6-1),

$$
\log A > -1.691 \times 10^{10} (\log(p^r - 1)) (\log(p^s + 1)) (\log p)
$$

$$
\times \left(1.406 + \log \left(\frac{(rm + s) \log p}{\log(p^r - 1)} \right) \right).
$$
(3.23)

Substituting [\(3.23\)](#page-6-2) into [\(3.19\)](#page-5-11), we get

$$
1 + 1.691 \times 10^{10} (\log(p^s + 1)) (\log p) \left(1.406 + \log \left(\frac{(rm + s) \log p}{\log(p^r - 1)} \right) \right) > \frac{(rm + s) \log p}{\log(p^r - 1)}.
$$
\n(3.24)

Hence, since $(p, s) \neq (2, 1)$ and $p^s + 1 \geq 4$, by [\(3.23\)](#page-6-2), we can calculate that

$$
\frac{(rm+s)\log p}{\log(p^r-1)} < 1.501 \times 10^{12} (\log(p^s+1)) (\log p) (\log \log(p^s+1)).\tag{3.25}
$$

On the other hand, by [\(3.16\)](#page-5-2),

$$
\frac{(rm+s)\log p}{\log(p^r-1)} > \left(1 - \frac{p^r - p^s - 1}{p^{rm+s}\log(p^r-1)}\right) + \frac{n\log(p^s+1)}{\log(p^r-1)}
$$

>
$$
\frac{n\log(p^s+1)}{\log(p^r-1)}.
$$
(3.26)

Since $\log p \le (\log p^r)/2$ for $r \ge 2$, the combination of [\(3.25\)](#page-6-3) and [\(3.26\)](#page-6-4) yields

$$
n < 1.501 \times 10^{12} (\log p)(\log(p^r - 1))(\log \log(p^s + 1))
$$
\n
$$
< 7.505 \times 10^{11} (\log p^r)^2 (\log \log p^r). \tag{3.27}
$$

Further, since $(p, s) \neq (2, 1)$, by Lemma [3.1,](#page-3-7) we have $n > p^r$. Hence, by [\(3.27\)](#page-6-5),

$$
p^r < 7.505 \times 10^{11} (\log p^r)^2 (\log \log p^r). \tag{3.28}
$$

Therefore, by [\(3.28\)](#page-6-6), we obtain $p^r < 3.436 \times 10^{15}$. Thus, if $r > s$ and $p^r > 3.436 \times$ 10^{15} , then [\(1.1\)](#page-0-1) has no solutions (x, y, m, n) with [\(1.3\)](#page-1-0). The proposition is proved. \Box

4. Proof of Theorem [1.1](#page-1-1)

We continue to assume that $r > s$ and that (x, y, m, n) is a solution of [\(1.1\)](#page-0-1) with [\(1.3\)](#page-1-0). Put $m' = rm + s$. By [\(3.25\)](#page-6-3),

$$
m' < 1.501 \times 10^{12} (\log(p^r - 1)) (\log(p^s + 1)) (\log \log(p^s + 1)).\tag{4.1}
$$

450 **1.450** Y. Fujita and M.-H. Le **1.450** [8]

Since Proposition [3.3](#page-5-12) implies that $p^s \le p^{r-1} < 1.718 \times 10^{15}$, we see from [\(4.1\)](#page-6-7) that

$$
m' < 6.702 \times 10^{15}.\tag{4.2}
$$

On the other hand, we deduce from Lemma [3.1](#page-3-7) and [\(3.26\)](#page-6-4) that

$$
m' > \frac{n \log(p^s + 1)}{\log p} > \frac{p^r \log(p^r + 1)}{\log p}.
$$
 (4.3)

Now, by [\(3.16\)](#page-5-2),

$$
0 < n - m'\kappa + \mu < AB^{-m'}, \tag{4.4}
$$

where

$$
m' = rm + s, \quad \kappa = \frac{\log p}{\log(p^s + 1)}, \quad \mu = \frac{\log(p^r - 1)}{\log(p^s + 1)}, \quad A = \frac{p^r - p^s - 1}{\log(p^s + 1)}, \quad B = p.
$$

LEMMA 4.1. Let κ , μ , $A > 0$ and $B \ge 1$ be real numbers and let M' be a positive integer. *Let p*/*q be a convergent of the continued fraction expansion of <i>κ such that q* > 6*M'*, *and nut* $\epsilon = ||u|| - M'||\kappa d||$ *where* $|| \cdot ||$ *denotes the distance from the nearest integer and put* $\varepsilon = ||\mu q|| - M'||\kappa q||$, where $|| \cdot ||$ denotes the distance from the nearest integer.
If $\varepsilon > 0$, then inequality (4.4) has no integer solution (n, m') satisfying *If* ε > ⁰*, then inequality [\(4.4\)](#page-7-0) has no integer solution* (*n*, *^m*) *satisfying*

$$
\frac{\log(Aq/\varepsilon)}{\log B} \le m' \le M'.
$$

PROOF. Since the assertion is identical with that of [\[11,](#page-8-15) Lemma 5a] if the middle term of inequalities [\(4.4\)](#page-7-0) is multiplied by −1, the lemma is proved in the same way as [\[11,](#page-8-15) Lemma 5a]. \Box

By Proposition [3.3,](#page-5-12) [\(4.2\)](#page-7-1) and [\(4.4\)](#page-7-0), we may apply Lemma [4.1](#page-7-2) with $M' = 6.702 \times$ 10^{15} in the ranges

$$
2 \le p < \sqrt{R}, \quad 1 \le s < r < \log_p R
$$

with $(p, s) \neq (2, 1)$, where $R = 3.436 \times 10^{15}$. For $7 \leq p < \sqrt{R}$, the first step of reduction gives $m' < 43$, which contradicts (4.3) with $n > 7$ and $r > 2$. For $n = 5$, the first and gives $m' \leq 43$, which contradicts [\(4.3\)](#page-7-3) with $p \geq 7$ and $r \geq 2$. For $p = 5$, the first and second steps of reduction give $m' \le 52$ and $m' \le 30$, respectively. The latter contradicts [\(4.3\)](#page-7-3) with $p = 5$ and $r \ge 2$. For $p = 3$, the first and second steps of reduction give *m'* ≤ 75 and *m'* ≤ 45, respectively, which, together with [\(4.3\)](#page-7-3), yields *r* = 2. For *p* = 2, the first and second steps of reduction give $m' \le 126$ and $m' \le 75$, respectively, from which by (4.3) we obtain $r \in \{3, 4\}$.

Thus, it remains to consider the cases where

$$
(p, r, s) \in \{(2, 3, 2), (2, 4, 2), (2, 4, 3), (3, 2, 1)\}.
$$
 (4.5)

In view of the bounds for $m' = rm + s$ obtained above, it suffices to check that [\(3.14\)](#page-5-0) with [\(4.5\)](#page-7-4) has no solution (m, n) in the ranges $m \le 24$ and $n \le 34$, which can be easily done. Therefore, the theorem is proved.

Acknowledgement

The authors thank the anonymous referee for suggesting the addition of a connection between Theorem [1.1](#page-1-1) and the results in [\[19\]](#page-8-12), which led to Corollary [1.2.](#page-1-6)

References

- [1] A. Abdollahi and A. Mohammadi Hassanabadi, 'Noncyclic graph of a group', *Comm. Algebra* 35 (2007), 2057–2081.
- [2] A. Baker and H. Davenport, 'The equations $3x^2 - 2 = y^2$ and $8x^2 - 7 = z^2$ ', *Q. J. Math. Oxford Ser. (2)* 20 (1969), 129–137.
- [3] R. Balasubramanian and T. N. Shorey, 'On the equation $a(x^m - 1)/(x - 1) = b(y^n - 1)/(y - 1)$ ', *Math. Scand.* 46 (1980), 177–182.
- [4] P. T. Bateman and R. M. Stemmler, 'Waring's problem for algebraic number fields and primes of the form $(p^r - 1)/(p^d - 1)$ ['], *Illinois J. Math.* **6** (1962), 142–156.
- [5] M. A. Bennett, B. Garbuz and A. Marten, 'Goormaghtigh's equation: small parameters', *Publ. Math. Debrecen* 96 (2020), 91–110.
- [6] M. A. Bennett, A. Gherga and D. Kreso, 'An old and new approach to Goormaghtigh's equation', *Trans. Amer. Math. Soc.* 373 (2020), 5707–5745.
- [7] Y. Bugeaud, M. Mignotte and S. Siksek, 'Classical and modular approaches to exponential Diophantine equations, I: Fibonacci and Lucas perfect powers', *Ann. of Math. (2)* 163 (2006), 969–1018.
- [8] Y. Bugeaud and T. N. Shorey, 'On the number of solutions of the generalized Ramanujan–Nagell equation', *J. reine angew. Math.* 539 (2001), 55–74.
- [9] Y. Bugeaud and T. N. Shorey, 'On the Diophantine equation $(x^m - 1) / (x - 1) = (y^n - 1) / (y - 1)$ ', *Pacific J. Math.* 207 (2002), 61–75.
- [10] H. Davenport, D. J. Lewis and A. Schinzel, 'Equations of the form *f*(*x*) = *g*(*y*)', *Q. J. Math. Oxford Ser. (2)* 12 (1961), 304–312.
- [11] A. Dujella and A. Pethő, 'A generalization of a theorem of Baker and Davenport', Q. J. Math. *Oxford Ser. (2)* 49 (1998), 291–306.
- [12] B. He, 'A remark on the Diophantine equation $(x^3 - 1)/(x - 1) = (y^n - 1)/(y - 1)$ ', *Glas. Mat. Ser. III* 44 (2009), 1–6.
- [13] B. He and A. Togbé, 'On the number of solutions of Goormaghtigh equation for given *x* and *y*', *Indag. Math. (N. S.)* 19 (2008), 65–72.
- [14] K. Karanikolov, 'Sur une équation diophantienne considérée par Goormaghtigh', *Ann. Polon. Math.* 14 (1963), 69–76 (in French).
- [15] S. Laishram and T. N. Shorey, 'Baker's explicit *abc*-conjecture and applications', *Acta Arith.* 155 (2012), 419–429.
- [16] M.-H. Le, 'On the Diophantine equation $(x^3 1)/(x 1) = (y^n 1)/(y 1)$ ', *Trans. Amer. Math. Soc.* 351 (1999), 1063–1074.
- [17] M.-H. Le, 'Exceptional solutions of the exponential Diophantine equation $(x^3 1)/(x 1) =$ (*yⁿ* [−] 1)/(*^y* [−] 1)', *J. reine angew. Math.* ⁵⁴³ (2002), 187–192.
- [18] M.-H. Le, 'On Goormaghtigh's equation $(x^3 - 1)/(x - 1) = (y^n - 1)/(y - 1)$ ', *Acta Math. Sinica (Chinese Ser.)* 45 (2002), 505–508 (in Chinese).
- [19] K.-H. Leung, S.-H. Ma and B. Schmidt, 'Proper partial geometries with Singer group and pseudogeometric partial difference sets', *J. Combin. Theory Ser. A* 115 (2008), 147–177.
- [20] W. Ljunggren, 'Some theorems on indeterminate equations of the form $(x^n - 1)/(x - 1) = y^q$ ', *Norsk Mat. Tidsskr.* 25 (1943), 17–20 (in Norwegian).
- [21] F. Luca, 'On an equation of Goormaghtigh', *Mosc. J. Comb. Number Theory* 1 (2011), 74–88.
- [22] A. Makowski and A. Schinzel, 'Sur l'équation indéterminée de R. Goormaghtigh', *Mathesis* 68 (1959), 128–142 (in French).
- [23] A. Makowski and A. Schinzel, 'Sur l'équation indéterminée de R. Goormaghtigh (Deuxième note)', *Mathesis* 70 (1965), 94–96 (in French).
- [24] E. M. Matveev, 'An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers II', *Izv. Math.* 64 (2000), 1217–1269.
- [25] M. Mignotte and P. M. Voutier, 'A kit for linear forms in three logarithms', Preprint, 2023, [arXiv:2205.08899v2;](https://arxiv.org/abs/2205.08899v2;) with an appendix by M. Laurent.
- [26] Y. V. Nesterenko and T. N. Shorey, 'On the equation of Goormaghtigh', *Acta Arith.* 83 (1998), 381–389.
- [27] R. Ratat, *Interméd. des math.* 23 (1916), 150.
- [28] J. Rose and R. Goormaghtigh, *Interméd. des math.* 24 (1917), 88–90.
- [29] N. Saradha, 'Application of the explicit *abc*-conjecture to two Diophantine equations', *Acta Arith.* 151 (2012), 401–419.
- [30] T. N. Shorey, 'Integers with identical digits', *Acta Arith.* 53 (1989), 187–205.
- [31] T. N. Shorey, 'Exponential Diophantine equations involving products of consecutive integers and related equations', in: *Number Theory* (eds. R. P. Bambah, V. C. Dumir and R. J. Hans-Gill) (Birkhäuser, Basel, 2000), 463–495.
- [32] T. N. Shorey, 'An equation of Goormaghtigh and Diophantine approximations', in: *Current Trends in Number Theory* (eds. S. D. Adhikari, S. A. Katre and B. Ramakrishnan) (Hindustan Book Agency, New Delhi, 2002), 185–197.
- [33] T. N. Shorey, 'Diophantine approximations, Diophantine equations, transcendence and applications', *Indian J. Pure Appl. Math.* 37 (2006), 9–39.
- [34] T. N. Shorey and R. Tijdeman, 'New applications of Diophantine approximations to Diophantine equations', *Math. Scand.* 39 (1976), 5–18.
- [35] R. Tijdeman, 'Some applications of Diophantine approximation', in: *Number Theory for the Millennium III* (eds. M. A. Bennett, B. C. Berndt, N. Boston, H. G. Diamond, A. J. Hildebrand and W. Phillpp) (A. K. Peters, Natick, MA, 2002), 261–284.
- [36] H. Yang and R.-Q. Fu, 'A note on the Goormaghtigh equation', *Period. Math. Hungar.* 79 (2019), 86–93.
- [37] P.-Z. Yuan, 'On the Diophantine equation $(x^3 - 1)/(x - 1) = (y^n - 1)/(y - 1)$ ', *J. Number Theory* 112 (2005), 20–25.

YASUTSUGU FUJITA, Department of Mathematics, College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba, Japan e-mail: fujita.yasutsugu@nihon-u.ac.jp

MAOHUA LE, Institute of Mathematics,

Lingnan Normal College, Zhanjiang, Guangdong 524048 China e-mail: lemaohua2008@163.com