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Abstract

We define a knot to be half ribbon if it is the cross-section of a ribbon 2-knot, and observe
that ribbon implies half ribbon implies slice. We introduce the half ribbon genus of a knot K,
the minimum genus of a ribbon knotted surface of which K is a cross-section. We compute
this genus for all prime knots up to 12 crossings, and many 13-crossing knots. The same
approach yields new computations of the double slice genus. We also introduce the half
fusion number of a knot K, that measures the complexity of ribbon 2-knots of which K is
a cross-section. We show that it is bounded below by the Levine–Tristram signatures, and
differs from the standard fusion number by an arbitrarily large amount.
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440 BODEN ET AL.

1. Introduction

Knots in S3 naturally appear as equatorial cross-sections of knotted surfaces in S4. In
this paper we restrict to ribbon knotted surfaces, those that are particularly simple Morse-
theoretically (see Definition 3). We define a knot K to be half ribbon if it is the cross-section
of a ribbon knotted 2-sphere in S4. Ribbon knots are half ribbon (see Proposition 6), but the
converse is an open question. Half ribbon knots are slice, but the converse is also an open
question (as not every knotted 2-sphere is ribbon [25]).

Answering these questions would resolve the slice-ribbon conjecture, that posits that
every slice knot is ribbon [6]. Despite much effort, and results in both directions, it remains
open (see, for example, [1, 8, 9, 14, 16]). The notion of half ribbon arises naturally by split-
ting the slice-ribbon conjecture into two questions: (i) if K is a cross-section of a 2-knot is it
the cross-section of a ribbon 2-knot? and (ii) if K is a cross-section of a ribbon 2-knot does
it possess a ribbon disc?

We also introduce the half ribbon genus, ghr(K), of a knot K : the minimum genus of a rib-
bon knotted surface of which K is a cross-section. The half ribbon genus is an intermediate
between the slice genus, g4(K), and double slice genus, gds(K), in that

2g4(K) ≤ ghr(K) ≤ gds(K). (Proposition 8)

It follows that a knot of half ribbon genus one would be a counterexample to the slice-ribbon
conjecture. More generally, a knot of odd half ribbon genus would have distinct slice and
ribbon genera (see Question 3).

We determine the half ribbon genus of every prime knot of up to 12 crossings to be even.
In addition, we calculate 8 of the 65 previously unknown double slice genera of such knots.
The following result is proved in Section 3·2.

THEOREM 1. Let K be a prime knot with up to 12 crossings. Then ghr(K) = 2g4(K). If K
is one of the following knots then gds(K) = 2g4(K) also:

937, 1074, 11n148, 12a554, 12a896, 12a921, 12a1050, 12n554.

We also calculate the half ribbon genus of 2156 13-crossing knots, and in 247 such cases
determine the double slice genus.

Orson and Powell constructed a knot KM,N with 2g4(KM,N) = M and gds(KM,N) = N, for
all integers 0 ≤ M ≤ N with M even [21]. In Section 2·3 we observe that ghr(KM,N) = M,
so that the half ribbon and double slice genera differ by an arbitrarily large amount. The
analogous question regarding the slice and half ribbon genera is open. Answering it in full
generality is at least as hard as resolving the slice-ribbon conjecture (see Question B).

Suppose that K is a cross-section of a knotted surface S. The calculations of Theorem 1
rely on realising band attachments to K as 3-dimensional 1-handle attachments to S (see
Theorem 13). This allows us to prove that if J is obtained from K via a sequence of � band
attachments then

gds(J) − � ≤ gds(K) ≤ gds(J) + �

ghr(K) ≤ 2gr(J) + �,
(Corollary 14)

where gr(J) denotes the ribbon genus. We also prove a version of this result for general
ribbon cobordisms, Theorem 15, from which results of McDonald [19, Theorems 3·1, 3·2]
can be recovered.
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We consider a finer notion of complexity for half ribbon knots. Ribbon 2-knots are pre-
cisely those obtainable from a disjoint union of trivial 2-spheres by attaching 1-handles. The
minimum number of 1-handles required to form a 2-knot S in this way is the fusion number,
denoted f (S). We introduce the half fusion number, fh(K), of a half ribbon knot K : it is the
minimum f (S) such that K is a cross-section of S.

As only the trivial 2-knot has fusion number zero it follows that fh(K) = 0 if and only if
gds(K) = 0. The Levine–Tristram signatures bound the double slice genus from below [21],
and we prove that this also holds for the half fusion number:

fh(K) ≥ max
ω∈S1

�{1}
{|σω(K)|} . (Theorem 11)

Together with the observation (made in Section 2·4) that f (K) − gds(K) can be arbitrarily
large, this poses the question: what is the precise relationship between the double slice genus
and half fusion number?

The fusion number of ribbon knot K, f (K), is the minimum number of bands in a ribbon
disc for K. As described in Section 2·4 the fusion number is bounded below by the half
fusion number. We prove that these quantities can differ by an arbitrarily large amount: for
all integers 0 ≤ M < N there exists a ribbon knot K with

fh(K) = M and f (K) ≥ N. (Proposition 12)

For such a knot K arbitrarily more bands are required in a ribbon disc than 1-handles are
required to form a ribbon 2-knot (of which K appears as a cross-section). In other words,
the structure of the set of ribbon discs for K is in some sense distinct to that of such ribbon
2-knots.

Conventions. All manifolds and embeddings are smooth and orientable. Knots are labelled
as per KnotInfo [18].

2. Dividing ribbon knotted surfaces

We recall necessary background in Section 2·1 before tackling our main objects of study
in Sections 2·2 to 2·4.

2·1. Background

A 1-link is a link in S3, and 1-link of one component is a 1-knot. A 2-knot is an embedding
S2 ↪→ S4, and a surface-knot is an embedding F ↪→ S4 for F a closed orientable surface. A
surface-knot is trivial if it bounds an embedded handlebody in S4. All of the above objects
are considered up to ambient isotopy.

Henceforth we denote by S3
0 an equator in S4, and by B4+, B4− the associated hemispheres

(so that S4 = B4+ ∪S3
0

B4−).

Definition 2. Let K be a 1-knot and S a surface-knot. We say that K divides S if there
exists an equator S3

0 such that S3
0 ∩ S = K. We also refer to K as a cross-section of S.

Every 1-knot divides a surface-knot, and this relationship has been of great interest to
low-dimensional topologists for almost a century. Questions on this relationship are broadly
of two kinds. First, given a fixed 1-knot how complex are the surface-knots that it divides?
Obversely, for surface-knots of a given complexity what are the 1-knots that divide them?
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442 BODEN ET AL.

Fig. 1. On the left: a ribbon surface F formed of discs and bands. On the right: the induced
sphere-tube presentation of the double of F.

The focus of this paper is a question of the second type: studying the 1-knots that divide
ribbon surface-knots.

Definition 3 (Ribbon surface-knot). We say that a surface-knot is ribbon if it bounds a
properly embedded handlebody in B5 on which the radial height function restricts to a Morse
function without critical points of index 2.

Before presenting formal definitions of our main objects of interest we fix some further
terminology.

Definition 4 (Slice, ribbon surface). A slice surface for a 1-link K is a compact orientable
surface F properly embedded in B4 such that ∂F = K. A ribbon surface is a slice surface
on which the radial height function restricts to a Morse function without critical points of
index 2.

This Morse-theoretic definition of a ribbon surface is equivalent to the definition via sur-
faces immersed in S3 with ribbon singularities (see, for example, [11, Lemma 11·9]). Note
that slice surface and surface-knot are distinct concepts, likewise ribbon surface and ribbon
surface-knot.

Given a slice surface F for a 1-knot K we may form a surface-knot divided by K as
follows. Regard K as lying in an equator S3

0 and F in B4+. Denote by F the surface obtained
by reflecting F through S3

0. The surface-knot F ∪K F is known as the double of F, and K
divides it by construction.

An embedded 2-sphere in S4 is standard if it is in Morse position with exactly two critical
points (of index 0 and 2 necessarily). An isotopy representative of a surface-knot is a sphere-
tube presentation if it is obtained by attaching 3-dimensional 1-handles to a disjoint union
of standard 2-spheres. A surface-knot is ribbon if and only if it possesses a sphere-tube
presentation [12, Section 5·6].

We frequently make use of the fact that the double of a ribbon surface for K is a ribbon
surface-knot divided by K. This is described in [19, Figure 2] and the related discussion
(for full details see, for example, [12, Section 5]). We suffice ourselves by observing, as in
Figure 1, that a ribbon surface is made up of discs and bands; upon doubling discs become
trivial 2-spheres and bands become 1-handles in a sphere-tube presentation of the double.
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2·2. Dividing spheres

We say that a 1-knot K is slice if it divides a 2-knot [2, 7], and that K is doubly slice if it
divides the trivial 2-knot [6, 24].

Using Definition 3 we introduce a notion that lies between slice and doubly slice.

Definition 5 (Half ribbon). We say that a 1-knot K is half ribbon if it divides a ribbon
2-knot.

Notice that as the trivial 2-knot is ribbon it follows that a doubly slice 1-knot is half ribbon
(the converse fails, for example, on the 1-knot 61). Half ribbon knots are of course slice, but
the status of the converse is an open question (as outlined in Question 1).

Recall that a 1-knot K is ribbon if it bounds a ribbon surface of genus 0; such a surface is
known as a ribbon disc for K.

PROPOSITION 6. Ribbon 1-knots are half ribbon.

Proof. Suppose that D is a ribbon disc for a 1-knot K. The double of D is a ribbon 2-knot
that K divides by construction.

Thus doubly slice implies slice but the converse is false, and ribbon implies half ribbon
but the converse may be false. In other words, ribbon is to the property of dividing a ribbon
2-knot as doubly slice is to slice, whence the name half ribbon.

Proposition 6 shows that the slice-ribbon conjecture splits into the following questions.

Question A. Let K be a 1-knot.

1. If K divides a 2-knot must it divide a ribbon 2-knot?

2. If K divides a ribbon 2-knot must it possess a ribbon disc?

A negative answer to (i) or (ii) would yield a counterexample to the slice-ribbon
conjecture.

2·3. Dividing surfaces

The slice genus of a 1-knot K, g4(K), is the minimum genus of a slice surface for K. The
ribbon genus of K, gr(K), is the minimum genus of a ribbon surface for K.

Notice that taking the double of a slice surface for K yields a surface-knot divided by
K. Generically this surface-knot will be nontrivial. Restricting to trivial surface-knots (not
necessarily doubles of slice surfaces for 1-knots) yields the double slice genus of K, gds(K),
the minimum genus of a trivial surface-knot divided by K [17].

Just as in Section 2·2 we can use Definition 3 to define a quantity intermediate to the slice
and double slice genera.

Definition 7 (Half ribbon genus). Let K be a 1-knot. The half ribbon genus of K, ghr(K),
is the minimum genus of a ribbon surface-knot divided by K.
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444 BODEN ET AL.

Fig. 2. Schematic diagrams of the split union of S1 and S2, and the surface-knots S’ and S′′.

Of course, K is of half ribbon genus zero if and only if it is half ribbon. The half ribbon
genus is finite for all 1-knots as it is bounded above by the double slice genus and twice the
ribbon genus.

PROPOSITION 8. Let K be a 1-knot, then

2g4(K) ≤ ghr(K) ≤ 2gr(K) ≤ gds(K).

Proof. Let F be a ribbon surface for K with g(F) = gr(K). The double of F is a ribbon
surface-knot of genus 2gr(K) and is divided by K, so that ghr(K) ≤ 2gr(K). As the double of
F is not necessarily trivial we have 2gr(K) ≤ gds(K).

PROPOSITION 9. The half ribbon genus is subadditive with respect to the connected sum of
1-knots.

Proof. Let K1, K2 be 1-knots and S1, S2 ribbon surface-knots such that Ki divides Si. Denote
by S the split union of S1 and S2. That is, S is a disjoint union of S1 and S2, and there exists
a 4-ball B such that S1 ∩ B = S1, S2 ∩ B =∅.

Let S’ be the result of adding a 1-handle between the components of S, chosen so that its
core intersects ∂B in exactly one point and the connected sum of K1 and K2 appears as the
equatorial cross-section.

As S1 and S2 are ribbon they possess sphere-tube presentations. Let S′′ be the surface-knot
obtained by first isotoping S1 and S2 into such presentations and then adding a 1-handle
between them, the core of which intersects ∂B in exactly one point. (Notice that the isotopy
taking S1 and S2 to their sphere-tube presentations may be chosen to fix ∂B pointwise.) A
schematic for the split union of S1 and S2, together with S’ and S′′, is given in Figure 2.

It follows that S′′ is a ribbon surface-knot as it possesses a sphere-tube presentation. By
[12, Proposition 1·2·11] the surface-knots S’ and S′′ are identical. Thus S’ is a ribbon surface-
knot divided by K1#K2 of genus g(S1) + g(S2), so that ghr(K1#K2) ≤ ghr(K1) + ghr(K2).

W. Chen constructed the first examples of 1-knots of arbitrarily large double slice genus
[4]. These 1-knots are ribbon and are therefore of half ribbon genus zero by Proposition 6.

Let K denote the mirror image of a 1-knot K. Orson and Powell showed that the knot

J =
(

#
M
2 52

)
#

(
#N−M820

)
satisfies 2g4(J) = M and gds(J) = N, for all integers 0 ≤ M ≤ N

with M even [21]. As 2g4
(
52

) = gds
(
52

) = 2 and 820 is ribbon we have that ghr
(
52

) = 2
and ghr(820) = 0 by Proposition 8, and ghr(J) = M by Proposition 9. It follows that the half
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ribbon and doubly slice genera differ by an arbitrarily large amount. The analogous question
regarding the slice genus remains open.

Question B. Given integers 0 ≤ M ≤ N ≤ P does there exist a 1-knot K such that

2g4(K) = M, ghr(K) = N, gds(K) = P?

Does there exist a prime 1-knot with this property?

Answering Question 2 for all M, N, P is at least as hard as finding a 1-knot with distinct
slice and ribbon genera.

Question C. Does there exist a 1-knot J of odd half ribbon genus?
Such a J must have distinct slice and ribbon genera by Proposition 8.

In Section 3 we determine the half ribbon genus of all 1-knots up to 12 crossings to be
even.

Specialising further, establishing the existence of 1-knots of half ribbon genus one would
resolve the slice-ribbon conjecture in the negative.

Question D. Does there exist a 1-knot K of half ribbon genus one?
Such a K would be a counterexample to the slice-ribbon conjecture: g4(K) = 0 by

Proposition 8, but K is not ribbon as ghr(K) 
= 0.

Satoh defined a surjective map from the category of welded knots to that of ribbon tori
[23]. Can this map be used to address Question 4?

2·4. Fusion numbers

In Sections 2·2 and 2·3 we consider the problem of minimising the genus of a surface-knot
divided by a given 1-knot. In this section we consider minimising the following alternative
measure of complexity.

Let K be a ribbon 1-knot. The fusion number of K, f (K), is the minimum number of
bands in a ribbon disc for K. Let S be a ribbon 2-knot. The fusion number of S, f (S), is the
minimum number of 1-handles in a sphere-tube presentation for S.

For half ribbon 1-knots we define a new quantity in terms of the fusion number of the
ribbon 2-knots they divide.

Definition 10 (Half fusion number). Let K be a half ribbon 1-knot. The half fusion number
of K, fh(K), is the minimum fusion number of a ribbon 2-knot divided by K.

Note that f (S) = 0 if and only if S is a trivial 2-knot, so that fh(K) = 0 if and only if
gds(K) = 0. The proof of Proposition 9 also establishes the subadditivity of the half fusion
number with respect to the connected sum of 1-knots.

Orson and Powell showed that the Levine–Tristram signatures bound the double slice
genus from below [21]. The same is true of the half fusion number.

THEOREM 11. Let K be a half ribbon 1-knot. Then

fh(K) ≥ max
ω∈S1

�{1}
{|σω(K)|} .
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446 BODEN ET AL.

Fig. 3. Attaching 1-handles with cores given by the dashed arcs introduces an unlink to the
equatorial cross-section.

Proof. Let S be a ribbon 2-knot divided by K such that f (S) = fh(K). By adding f (S)
1-handles to S it can be converted into a trivial surface-knot S’ [20]. Moreover, as the result
of adding a 1-handle depends only on its core [12, Proposition 5·1·6] these handles may be
chosen so that K ∪ U divides S’, for K ∪ U the split union of K and an unlink U. Generically
the handles may intersect the equatorial S3 so that we cannot avoid the appearance of this
unlink, as per the schematic given in Figure 3.

The genus of S’ is equal to f (S) and bounds from above the weak double slice genus of
K ∪ U, denoted g1

ds(K ∪ U) [5, Equation 1]. Conway and Orson showed that the Levine–
Tristram signatures bound this quantity from below [5, Corollary 1·3], so that

|σω(K ∪ U)| ≤ g1
ds(K ∪ U) ≤ g(S′) = fh(K).

The proposition follows by the additivity of the signature under disjoint union.

In the proof above the surface-knot divided by K is trivialised by attaching fh(K)
1-handles. However, this does not allow us to conclude that gds(K) bounds fh(K) from below,
as we can guarantee only that K ∪ U divides this trivial surface-knot.

Let D be a ribbon disc for a 1-knot K. The bands of D yield 1-handles in the double of D,
that is a ribbon 2-knot divided by K. It follows that fh(K) ≤ f (K). There exist ribbon knots
whose fusion and half fusion numbers are arbitrarily far apart.

PROPOSITION 12. For all integers 0 ≤ M < N there exists a ribbon 1-knot K such that
fh(K) = M and f (K) ≥ N.

Proof. Juhaśz, Miller and Zemke defined an invariant of 1-knots using knot Floer homology,
denoted Ordv(K), and proved that it bounds the fusion number of ribbon 1-knots from below
[10, Corollary 1·7]. Denote by Tp,q the positive (p,q)-torus knot and let Cp,q = Tp,q#Tp,q. It
is established in [10, Equation 1·7] that

Ordv(Cp,q) = f (Cp,q) = min {p, q} − 1.

Notice that fh(Cp,q) = 0 as Cp,q is doubly slice. Let KM = Cp,q#
(
#M820

)
. The 1-knot

820 is chosen as for ω = eπ i/3 we have σω(820) = fh(820) = f (820) = 1. Observe that M =
σω(KM) ≤ fh(KM) by Theorem 11 and the additivity of the signature with respect to con-
nected sum. That the half fusion number is subadditive with respect to connected sum
implies that fh(KM) = M, in fact.
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Further, applying [10, Equation 1·4] yields

Ordv(KM) = max
{
Ordv(Cp,q), Ordv(820)

}

= min {p, q} − 1

so that min {p, q} − 1 ≤ f (KM). A suitably large choice of p and q completes the proof.

Proposition 12 establishes that the set of ribbon 2-knots divided by a 1-knot K is in some
sense distinct to the set of ribbon discs for K.

Note that as gds(820) = 1 and the double slice genus is subadditive the proof of
Proposition 12 shows that the difference f (K) − gds(K) can also be made arbitrarily large.

3. Calculations

The calculation of the slice genus of prime 1-knots of up to 12 crossings has recently
been completed, with input from a large number of authors [3, 13, 15, 22]. Karageorghis
and Swenton also calculated the double slice genus of all but 68 of these 1-knots [13], three
of which were later determined by Brittenham and Hermiller [3].

In this section we calculate the half ribbon genus of every prime 1-knot up to 12 crossings.
Additionally, we compute the double slice genus in 8 of the 65 previously undetermined
cases. We apply our methods to 13-crossing 1-knots, calculating the half ribbon genus of
2156 of them. In 247 such cases we are also able to determine the double slice genus.

Section 3·1 describes how ribbon cobordisms between 1-knots can be realised on surface-
knots they divide, and Section 3·2 gives the results of our calculations.

3·1. Handle attachments defined by ribbon cobordisms

Recent calculations of the slice and double slice genera have employed upper bounds
obtained from various sequences of band attachments. Our calculations rely on the obser-
vation that if K divides a surface-knot S, attaching bands to K may be realised by adding
1-handles to S.

THEOREM 13. Let K, J be 1-links, C a connected cobordism from K to J defined by
attaching � bands to K, and C its reverse. Suppose that J divides a surface-knot S with
S = S+ ∪J S−. Then:

(i) the surface-knot S′ = S+ ∪ C ∪K C ∪ S− is obtained from S by attaching � 1-handles;

(ii) if S+ is a ribbon surface for J and S− = S+ then S’ is ribbon;

(iii) if S is trivial then S’ is trivial.

Proof.

(i) The bands of C become 1-handles in S’, that may be thought of as being attached to
the cylinder J × [0, 1] in S+ ∪ (J × [0, 1]) ∪ S−.

(ii) If S+ is a ribbon surface for J then S+ ∪ C is a ribbon surface for K, the double of
which is a ribbon surface-knot.

(iii) Attaching 1-handles to a trivial surface-knot yields a trivial surface-knot
[11, Proposition 11·2].
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448 BODEN ET AL.

The superslice genus, gs(K), of a 1-knot K is the minimum genus of a slice surface for K
the double of which is a trivial surface-knot [4].

COROLLARY 14. Let K, J be 1-knots. Suppose that J is obtained from K via a sequence of
� band attachments. Then:

(i) gds(J) − � ≤ gds(K) ≤ gds(J) + �;

(ii) 2gs(J) − � ≤ 2gs(K) ≤ 2gs(J) + �;

(iii) ghr(K) ≤ 2gr(J) + �.

Proof.

(i) Let J divide a trivial surface-knot S with g(S) = gds(J). By Theorem 13 K divides a
trivial surface-knot of genus gds(J) + �, whence the rightmost inequality. Reversing
the roles of K and J gives the leftmost.

(ii) Let F be a slice surface for J with g(F) = gs(J). Denote by C the cobordism defined
by the sequence of � bands. Then F ∪ C is a slice surface for K of genus gs(J) + (�/2)
(the number of bands is even as C is orientable with two boundary components). The
double of F ∪ C is a surface-knot of genus 2gs(J) + �, and is trivial by Theorem 13.
The rightmost inequality follows from the fact that K divides this surface-knot by
construction. Reversing the roles of K and J gives the leftmost.

(iii) Let F be a ribbon surface for J with g(F) = gr(J). A doubling process similar to that
given above shows that K divides a ribbon surface of genus 2gr(K) + �.

Picking J as the unknot in Corollary 14 (i), (ii) recovers [19, Theorem 3·1]. It is unknown
if attaching a 1-handle to a ribbon surface-knot preserves the ribbon property. This causes
Corollary 14 (iii) to be of a different form to Corollary 14 (i), (ii). The result of attaching a
1-handle h to a surface-knot S depends only on the homotopy class of the core, γ , of h in
the complement of S [12, Proposition 5·1·6]. If S is ribbon it may be isotoped into a sphere-
tube presentation. The trace of this isotopy is of codimension 1 so that it and γ generically
intersect in points. It is therefore unclear if the isotopy can be completed in the presence of
h.

Let K and J be 1-knots and C a cobordism between them. We say that C is a ribbon cobor-
dism from K to J if we do not encounter a birth of an unknotted and unlinked component
when traversing C from K to J. A ribbon concordance is a ribbon cobordism of genus 0.

Theorem 13 is similar to the following description of the union of a ribbon concordance
with its reverse given by Zemke [26]

1
. If C is a ribbon concordance from K to J then C ∪K C

is obtained from J × [0, 1] by taking a disjoint union with trivial 2-knots and attaching them
to J × [0, 1] via 1-handles. This operation is known as taking a tube sum with trivial 2-knots.

This description can be combined in a straightforward manner with Theorem 13 to obtain
the following results. We expect these more general results to be useful in further study of
the double slice and half ribbon genera.

1 Our definition is consistent with the reverse of what Zemke refers to as a ribbon concordance.
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Fig. 4. On the left: bands defining a ribbon cobordism C. On the right: a schematic of C ∪ C
(some handles have been isotoped away from the equator for aesthetic purposes).

THEOREM 15. Let K, J be 1-links, C a connected ribbon cobordism from K to J with s
saddles and d deaths. If J divides a surface-knot S then K divides a surface-knot, S’, obtained
from S by attaching (s − d) 1-handles to S and taking the tube sum with d trivial 2-knots.

Proof. The saddles of C split into two types. Up to isotopy we may assume that as we move
in reverse through C (from J to K) we first see the creation of a d-component unlink, the
components of which are then joined together by bands to produce a 1-knot. The saddles of
C associated to these bands yield the tube sums that contribute to S’. The remaining (s − d)
saddles of C yield the 1-handles attached to S. A schematic example is given in Figure 4.

COROLLARY 16. Suppose that there exists a ribbon cobordism from K to J with s saddles
and d deaths. Then:

(i) gds(J) − s ≤ gds(K) ≤ gds(J) + s;

(ii) ghr(K) ≤ 2gr(J) + s − d.

Proof. (i)Suppose that J divides a trivial surface-knot S with g(S) = gds(J). By Theorem 15
K divides a surface-knot, S’, obtained from S by attaching (s − d) 1-handles to S and taking
d tube sums with trivial 2-knots. Denote by S1 the result of attaching the (s − d) 1-handles
to S. As S is trivial S1 is trivial, and g(S1) = g(S) + s − d.

Denote by T the set of trivial 2-knots that will be tube summed to S1 to produce S’. A
1-handle is trivial if it bounds an embedded D1 × D2. As the d components of T are formed
by doubling a ribbon cobordism they may be connected with (d − 1) trivial 1-handles to
produce a single trivial 2-knot, T’, without altering the equatorial cross-section. We may
add an additional trivial 1-handle between S1 and T’ to produce a trivial surface-knot, S2,
also without altering the cross-section. Notice that g(S2) = g(S) + s − d.

Finally, consider the set of d 1-handles defined by the tube sums that produce S’. We may
add these 1-handles to S2 (as it includes both S and T) to produce a trivial surface-knot, S3, of
genus g(S2) + d = gds(J) + s. That the trivial 1-handles above are attached without altering
the cross-section ensures that K divides S3.
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Fig. 5. A diagram of the 1-knot 1074, together with three bands. Attaching the bands labelled A
and B realises a crossing change that yields a diagram of the 1-knot 946. Subsequently attaching
the band labelled C defines a ribbon disc for 946.

(ii) Let F be a ribbon surface for J with g(F) = gr(J). Then J divides the genus 2gr(J)
surface-knot S with sphere-tube presentation given by the double of F. By Theorem 15
K divides a surface-knot S′ obtained from S by attaching 1-handles and taking tube sums
with trivial 2-knots. Thus S’ is ribbon as it also has a sphere-tube presentation, and g(S′) =
2gr(J) + s − d (only the (s − d) 1-handles attached to S affect the genus of S’).

Picking J as the unknot in Corollary 16 (i) recovers [19, Theorem 3·2].

3·1. Determining genera

As employed by Lewark–McCoy and Brittenham–Hermiller the operations of switching
a crossing, switching a pair of crossings of zero writhe, and taking the oriented resolution at
two crossings are all realizable by attaching two bands [15, Lemma 5].

To calculate the half ribbon genus we combine specific examples of these operations
found by Lewark–McCoy and Brittenham–Hermiller, calculations of the double slice genus
by Karageorghis–Swenton, and Corollary 14.

For the 1-knots that Lewark–McCoy and Brittenham–Hermiller do not provide a suitable
operation we made an independent computer search for crossing changes to ribbon or doubly
slice 1-knots.

Proof of Theorem 1. The slice-ribbon conjecture has been verified up to 12 crossings.
Therefore 2g4(K) = ghr(K) = 0 for all slice 1-knots.

If K is not slice and gds(K) was determined prior to this work then 2g4(K) = gds(K) [18],
so that 2g4(K) = ghr(K) also by Theorem 8.

This leaves 58 cases of undetermined half ribbon genus, as described in Table I (7 of the 65
cases undetermined by Karageorghis and Swenton are slice). These 1-knots are obtainable
from a ribbon 1-knot by attaching two bands as shown by Lewark–McCoy [15, Appendix A],
Brittenham–Hermiller [3, Section 4], or our crossing change search. Therefore these 1-knots
have half ribbon genus equal to 2 by Corollary 14 and Proposition 8 (recall that they are not
slice). An example of this process in the case of 1074 is given in Figure 5.

Finally, as depicted in Table 1 the 1-knots 937, 1074, 11n148, 12a554, 12a896, 12a921,
12a1050, 11n148, 12n554 are obtainable from a doubly slice 1-knot by attaching two bands,
so that they have double slice genus 2 by Corollary 14 (they were shown to have double slice
genus 2 or 3 by Karageorghis and Swenton).
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Table 1. The second and third columns list the result
of attaching two bands, as given by [15, Appendix A]
and [3, Section 4], respectively. The fourth column lists
the result of a crossing change, found by our com-
puter search. If we were able to calculate a previously
unknown value of gds it is listed in the fifth column.

Knot L-M B-H C.c. gds

937 946 2
948 820
1074 946 2
10103 88
11a135 61
11a155 820
11a173 820
11a327 820
11a352 61
11n71 820
11n75 820
11n148 41#41 2
11n167 61
12a164 820
12a166 820
12a177 61
12a247 88
12a265 61
12a298 820
12a327 88
12a396 820
12a413 820
12a449 61
12a493 61
12a503 1075
12a554 946 2
12a735 61
12a750 61
12a769 61

Knot L-M B-H C.c. gds

12a873 820
12a895 1087
12a896 31#31 2
12a905 1087
12a921 41#41 2
12a971 61
12a1050 946 2
12a1085 61
12a1194 88
12a1200 61
12a1226 820
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Table 1. Continued.

Knot L-M B-H C.c. gds

12n147 88
12n334 61
12n379 820
12n388 61
12n396 61
12n460 61
12n480 61
12n495 820
12n524 61
12n537 61
12n554 946 2
12n555 61
12n577 10140
12n583 61
12n737 61
12n813 61
12n846 61
12n869 820

This leaves 57 prime 1-knots of up to 12 crossings with unknown double slice genus.
Our methods extend fruitfully into 13-crossing 1-knots. Specifically, we restricted to 13-

crossing 1-knots of signature 2 and searched for crossing changes to ribbon or doubly slice
1-knots. This allows us to show that 2156 such 1-knots have half ribbon genus 2, of which
247 have double slice genus 2. The full results of these calculations are provided on the
webpage https://www.mas.ncl.ac.uk/william.rushworth/ccdata.html and on the arXiv listing
https://arxiv.org/abs/2209.15577.

Just as this paper studies 1-knots that appear as cross-sections of ribbon 2-knots, one
could study those that appear as cross-sections of homotopy ribbon 2-knots. In addition to
being possibly distinct to half ribbon in the smooth category, such a definition extends to the
topological category. The most basic question one might ask in this setting is as follows.

Question E. Is every topologically slice 1-knot the cross-section of a homotopy-ribbon
2-knot?

Finally, although we do not pursue it here, the notion of half ribbon genus can readily
be extended to allow for knotted surfaces of more than one component, as is done for the
double slice genus [5, Equation 1]. There are natural generalisations of Theorems 13 and 15
to this setting.
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