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Stability of the ‘rigid’ (m = 1) ballooning mode in a mirror axisymmetric trap is studied
for the case of oblique neutral beam injection (NBI), which creates an anisotropic
population of fast sloshing ions. Since small-scale modes with azimuthal numbers m > 1
in long thin (paraxial) mirror traps are easily stabilized by finite-Larmor-radius (FLR)
effects, suppression of the rigid ballooning and flute modes would mean stabilization of
all magnetohydrodynamic (MHD) modes, with the exception of the mirror and firehose
disturbances, which are intensively studied in geophysics, but have not yet been identified
in mirror traps. Large-scale ballooning mode can, in principle, be suppressed either by
the lateral perfectly conducting wall, or by the end MHD anchors such as the cusp, by
biased limiters or by a combination of these two methods. The effects of the wall shape,
vacuum gap width between the plasma column and the lateral wall, angle of oblique NBI,
radial profile of the plasma pressure and axial profile of the vacuum magnetic field are
studied. It is confirmed that the lateral conducting wall still creates the upper stability
zone, where the ratio β of the plasma pressure to the pressure of vacuum magnetic field
exceeds the second critical value βcr2, β > βcr2. However, in many cases the upper zone
is clamped from above by mirror instability. When the lateral wall is combined with end
MHD anchors, a lower stability zone β < βcr1 appears, where β is below the first critical
value βcr1. These two zones can overlap in the case of a sufficiently smooth radial pressure
profile, and/or a sufficiently low mirror ratio and/or a sufficiently narrow vacuum gap
between the plasma column and the lateral wall. However, even in this case, the range of
permissible values of beta is limited from above by the threshold of mirror instability βmm,
so that β < βmm < 1, in contrast to the case of transversal NBI, when neutral beams are
injected perpendicularly to the magnetic field.
Key words: plasma instabilities, fusion plasma

1. Introduction

In a series of articles, the stability of a so-called rigid ballooning mode with azimuthal
number m = 1 was studied for several model configurations of an axisymmetric mirror
trap (also called open or linear traps) using a numerical solution of the LoDestro equation
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(LoDestro 1986). The conditions for stabilization of these modes were found assuming
both a lateral perfectly conducting cylindrical wall surrounding the plasma column and
traditional magnetohydrodynamic (MHD) stabilizers attached to the central cell of such
a trap. A few model radial and axial plasma pressure profiles and model axial vacuum
magnetic field profiles we examined.

In quite realistic experimental conditions, oscillations of a ballooning perturbation with
an azimuthal number m � 2 are easily stabilized by finite-Larmor-radius (FLR) effects,
which, however, cannot stabilize the m = 1 mode, although they can make it ‘rigid’ in
a certain sense. Thus, stabilization of the rigid ballooning mode m = 1 is, in practice,
equivalent to the stabilization of all types of ballooning and flute disturbances.

In the first article (Kotelnikov et al. 2022b), which was followed by the two more papers
(Kotelnikov, Prikhodko & Yakovlev 2023; Zeng & Kotelnikov 2024), a plasma model with
isotropic pressure was implemented. It was assumed that the plasma column is surrounded
by a cylindrical perfectly conducting chamber with a variable radius, which is proportional
to the plasma radius with a constant coefficient. This shape was later called ‘proportional’
because it reproduced the shape of the plasma column on a larger scale.

The numerical code was then upgraded to implement a transverse neutral beam injection
(transverse NBI) model, which simulates the anisotropic fast ion pressure that occurs when
a beam of fast neutral atoms is injected into a relatively cold target plasma at right angles
to the axis of trap at a magnetic field minimum (Kotelnikov et al. 2023).

The next update to the numeric code added the ability to select a custom conductive
chamber shape. This possibility was demonstrated assuming an example of a conducting
chamber in the shape of a straight cylinder. Calculations published in Zeng & Kotelnikov
(2024) made it possible to compare the stabilizing effect of a proportional conducting
chamber with the effect of such a ‘straightened’ chamber for a model of the transverse
NBI.

The present paper reports the results of study for the case on oblique NBI. Oblique NBI
yields a population of fast ions, which are called sloshing ions. They are characterized
by a pressure distribution with a peak located somewhere between the median plane
of the mirror trap and magnetic mirror plugs. It is significant that, in addition to the
ballooning instability, mirror and firehose-type instabilities can also be raised under
oblique injection. It will be shown below that, in the high mirror ratio trap, it is these
instabilities that determine the ultimate pressure limit. All such limits are expressed
through the dimensionless parameter β (beta), which is defined by (3.8) as the ratio of the
transverse plasma pressure at the point of intersection of the trap axis with the midplane
to the vacuum field pressure in the same midplane.

The current article completes the series of three above cited publications that used
model functions to approximate radial and axial profiles of the plasma pressure and
vacuum magnetic fields. They were convenient for identifying general patterns in how
the ballooning instability threshold and margin depend on the mirror ratio, width of the
magnetic mirror plugs, shape and steepness of the radial and axial plasma pressure profile,
size and shape of the vacuum gap between the lateral conducting wall and the lateral
surface of the plasma column, as well as upon the stability margin created due to the end
MHD anchors such as magnetic cusps. In addition, the step-by-step complication of model
functions made it possible to break down the creation of a numerical code into stages, each
of which gave a new meaningful result.

Each stage began with a code modernization, and each modernization was accompanied
by a complication of the numerical code and an increase in the duration of calculations. If
for an isotropic plasma the recalculation of the data necessary to reproduce all the graphs
published so far took (after all subsequent improvements to implemented algorithms) no
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more than an hour on a desktop computer with a typical number of cores, then in the
case of a transverse NBI and a straightened camera, this would take few weeks. The
oblique NBI calculations presented in this paper initially took few months of intensive
work and only the transfer of calculations to a multi-core cluster made it possible to return
the duration of calculations to reasonable limits.

The reason for the slowdown in the numerical code is trivial: with each update, the
number of integrations that could be performed analytically inevitably decreased.

In the current version, the developed numerical code consists of a set of executable
modules written in the Wolfram Language© and combined into the PEK package,
so named in memory of my grandfather, Pavel E. Kotelnikov. As a result of recent
modernization, PEK has acquired the ability to use interpolated experimental profiles of
plasma pressure, magnetic field and lateral wall shape in addition to the model profiles
that have been used up to the present time.

To reduce inevitable repetition, the traditional review of the contents of many articles
on the topic of interest is omitted and the reader is referred to the publications cited above.
In addition to these, it is worth mentioning the work of Kesner et al. (Kesner 1985; Li,
Kesner & Lane 1985, 1987a; Li, Kesner & LoDestro 1987b) with which the results of this
work will be compared. In particular, it is worth noting the statement of Li, Kesner and
LoDestro in Li et al. (1987b). They wrote that, in a proportional chamber, the walls of
which are as close as possible to the surface of the plasma column, anisotropic plasma
is always stable near the threshold of mirror instability. Our calculations only partially
confirm this statement.

Also, in order to shorten the introductory part of the article, the formulation of the
LoDestro equation and boundary conditions has been moved to Appendix A. It has been
supplemented by recent findings, which have made it possible to calculate some more
integrals analytically. To understand the main part of the article, it is enough to explain that
it deals with the Sturm–Liouville problem for the LoDestro equation in the formulation
described in detail in §§ 2 and 5 of Kotelnikov et al. (2023).

Section 3 describes the anisotropic pressure distribution model in a mirror trap under
both transverse and oblique NBI. The beta limits imposed by the thresholds of mirror
and firehose instabilities are also calculated. Sections 4, 5 and 6 step-by-step present and
discuss the results of calculations of the critical beta values βcr1 and βcr2, first for the case
when there are no other means of MHD stabilization, except for the lateral conducting
wall, next for the case when only end MHD anchors are mounted and finally for the case
when infinitely strong MHD anchor stabilizers are used together in combination with the
lateral wall. In addition, § 6 explains how the PEK package simulates MHD anchors with
different stability margins.

2. Magnetic field model

In the paraxial approximation, the magnetic flux ψ is related to the distance r from the
axis z of an axially symmetric mirror trap by the equation

r2

2
=
∫ ψ

0

dψ
B
. (2.1)

The paraxial approximation means that the radius of curvature of the magnetic field
lines significantly exceeds both the plasma radius and the distance between the magnetic
mirrors. The equivalent condition for the applicability of such an approximation is
formulated as the smallness of the plasma column radius compared with the distance
between the magnetic mirrors.
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FIGURE 1. Axial profile of the vacuum magnetic field (2.3) for mirror ratio M = 32 and three
values of the index q indicated on the graphs as compared with the magnetic field in the
gas-dynamic trap (GDT, Bagryanskij et al. 1990) and the Wisconsin HTS axisymmetric mirror
(WHAM, Endrizzi et al. 2023) devices.

The true magnetic field B weakened by the diamagnetic effect is related to the vacuum
magnetic field Bv and transverse pressure p⊥ by the transverse equilibrium equation (where
the rationalized electromagnetic units are used, they are also known as Heaviside–Lorentz
units)

B2 + 2p⊥ = B2
v. (2.2)

In this form, it is approximately true in the paraxial approximation, when the radius of
the plasma column a = a(z) is everywhere small compared with the distance between the
magnetic mirrors.

In what follows, dimensionless notation is used, such that b = B/BR, bv = Bv/BR, with
BR being the magnetic field at the turning point of fast ions, where the plasma transverse
pressure drops to zero, p⊥ = p‖ = 0, as explained in the next section. The radial coordinate
r is normalized in such a way that ψ = 1 at the plasma lateral boundary r = a(z). The
three-parameter function

bv(z) = [1 + (M − 1) sinq(πz/2)
]
/R, (2.3)

earlier used by Kotelnikov et al. (2022b, 2023) and Zeng & Kotelnikov (2024),
approximates the axial profile of the vacuum magnetic field and which we used earlier.
It assumes normalization of both the true magnetic field B and the vacuum magnetic field
Bv by their common value at the tuning point BR of fast ions. In addition, we assume that
the magnetic plugs with mirror ratio M are located in the z = ±1 planes, which means
that longitudinal coordinate z is normalized by the distance between the midplane and the
mirror plug throat. The repeated choice of the function bv(z) = Bv(z)/BR in the form (2.3)
is due to the desire to simplify the comparison of new results with previous publications.

Parameter q in (2.3) determines the steepness and width of the magnetic mirrors: larger
q corresponds to a smaller fraction of the mirror plug in the total length of the trap, as
shown in figure 1.

Parameter R = BR/min(Bv) has the meaning of the mirror ratio between the turning
point B = Bv = BR, where the fast ion pressure drops to zero, and the minimum value
min(Bv) of the magnetic vacuum field in the middle plane of the trap.
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Parameter M = max(Bv)/min(Bv) = Bv(±1)/Bv(0) is equal to the mirror ratio in the
traditional sense.

3. Anisotropic pressure models

In publications on the stability of the rigid ballooning mode, two analytic models of
anisotropic pressure have previously been proposed. Kesner in his paper (Kesner 1985)
indicates that in the first model the transverse pressure p⊥ in a non-uniform magnetic field
b ≤ 1 varies according to the law

p⊥ = p(ψ)
(
1 − b2) , (3.1)

while in the second model
p⊥ = p(ψ) b2 (1 − b)n−1 , (3.2)

where p(ψ) is a function of magnetic flux ψ , b = 1 is the normalized magnetic field
at a ‘turning point’ where the fast ion pressure drops to zero and n ≥ 2 is an integer
index. Both models assume that, in the region b > 1, the plasma pressure is negligible,
p⊥ = 0, but there is a relatively cold plasma with low pressure that extends up to the
magnetic field peak bmax = max(Bv)/min(Bv) = M/R in a magnetic plug. Cold plasma
provides electrical contact with perfectly conducting end plates which imitate the end
MHD anchors.

The first model (3.1) was previously applied to the case of transverse injection of
neutral atom beams (transverse NBI) by Kotelnikov et al. (2023). It describes the pressure
distribution in an anisotropic plasma with a pressure peak near the magnetic field
minimum at the midplane of the central cell of a mirror trap. The second model (3.2)
is suitable for the case of an oblique NBI, when the pressure peak is located between the
middle plane of the trap and the magnetic mirror. It is this model with indices n = 2 and
n = 3 that is used in this article.

Kinetic theory proves that if the transverse pressure p⊥ is given as a function of b, then
the longitudinal pressure p‖ is uniquely determined using the parallel equilibrium equation
with a properly posed boundary condition (Newcomb 1981). The latter can be rewritten in
terms of the partial derivative with respect to b for a constant magnetic flux ψ as

p⊥ = −b2 ∂

∂b
p‖
b
. (3.3)

It would be wrong therefor to choose at random a couple of functions for the transverse
and longitudinal pressures, since they must correspond to a distribution function, which is
a solution to the kinetic equation. In § 3.4 the distribution functions that lead to (3.1) and
(3.2) are restored under some dedicated assumptions.

Another key result of the kinetic theory is the assertion that the function p⊥/b2 always
decreases as B increases, i.e.

∂

∂b
p⊥
b2

� 0. (3.4)

Obviously, both models of anisotropic pressure satisfy the condition (3.4). Note, however,
that the inequality (3.4) was proved under the assumption that the class of distribution of
fast ions F(ε, μ) as a function of energy ε and magnetic moment μ, is narrowed by the
condition

∂F
∂ε

≤ 0, (3.5)

for all ε and μ, so that F is everywhere monotone decreasing in ε. It can be shown, in
fact, that monotonicity in ε is required as a condition for local variational stability in
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6 I.A. Kotelnikov

the sense of the Grad energy criterion (Grad 1967). It also underlies the derivation of the
Kruskal–Oberman energy principle (Kruskal & Oberman 1958) and is considered by some
authors as a necessary requirement for the correct formulation of the energy principle
(Stupakov 1987). Refusal of the condition (3.5) leads, in particular, to the appearance of
new instabilities associated with resonances between longitudinal vibrations of ions and
the wave (Skovorodin, Zaytsev & Beklemishev 2013).

It is known that anisotropic plasma can be subject to the mirror (sometimes called
the diamagnetic) and firehose instabilities (sometimes called the garden hose instability).
According to the fluid Chew–Goldberger–Low theory, the stability of firehose-type
disturbances requires the inequality

p‖ � p⊥ + b2, (3.6)

to hold for any b (Kalsrud 1983; Ilgisonis 1993a). Stability against the mirror mode
implies that (Rudakov & Sagdeev 1961; Thompson 1964; Newcomb 1981; Ilgisonis 1993b;
Southwood & Kivelson 1993)

∂

∂b

(
p⊥ + b2

2

)
> 0. (3.7)

Simple, intuitively watertight, ways to derive criteria (3.6) and (3.7) are collected in
the student problems after lecture 25 in the author’s 2nd volume of ‘Lectures on plasma
physics’ (Kotelnikov 2021). All specified criteria of stability are satisfied for the pressure
model (3.1), which, we recall, corresponds to the case of transverse NBI. For the oblique
NBI model (3.2), these conditions impose restrictions on the value of beta, which are
specified below.

The firehose instability is essentially a modification of the Alfvén wave in an anisotropic
plasma. In a homogeneous plasma, its increment is proportional to the longitudinal
wavenumber k‖. In the low-frequency limit, firehose perturbations are strongly elongated
along magnetic field lines and represent bending or torsional vibrations of magnetic
flux tubes. Inhomogeneity of the magnetic field changes the threshold for the firehose
instability (Mirnov 1986).

In a homogeneous magnetic field, the increment of mirror instability is also proportional
to the longitudinal wavenumber k‖ and, oddly enough, inversely proportional to the
number of resonant ions with zero longitudinal velocity (Southwood & Kivelson 1993;
Pokhotelov et al. 2002). Near the threshold, mirror disturbances, like the flute ones, are
strongly elongated along magnetic field lines.

The criteria (3.6) and (3.7) should be interpreted as formal and reference. For the
pressure models described below, they first break down locally near two spatially separated
points on the axis of the plasma column. It has not yet been studied whether the
lateral conductive wall can influence the behaviour of the localized mirror and firehose
disturbances.

In PEK’s internal classification, the isotropic plasma variant is designated ‘A0’ and the
anisotropic pressure (3.1), which is formed under transverse NBI, is designated ‘A1’. The
oblique NBI modelled by (3.2) with an arbitrary index n ≥ 2 is denoted ‘An.’ The two
cases n = 2 and n = 3 discussed in detail in this article are abbreviated ‘A2’ and ‘A3.’

Method of the MHD stabilization is specified by an additional abbreviation. Variants
with conducting lateral wall stabilization are marked with the shorthand ‘Lw’ (for lateral
wall), and variants with joint lateral wall and conducting end plates installed in the throat
of the magnetic plug are marked with the shorthand ‘Cw’ (for combined wall). The design
of the lateral conducting wall in the form of a proportional chamber is labelled ‘Pr’
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On the stability of the rigid ballooning mode 7

(proportional). Thus, the label ‘A3-LwPr’ in a figure caption should be deciphered as the
variant of plasma with anisotropic pressure of the ‘A3’ type in a proportional conducting
chamber without the end MHD anchor. Continuing the line of Zeng & Kotelnikov (2024),
this paper compares, when it is suitable, the stabilizing effect of a proportional chamber
with a straightened chamber, which is assigned the abbreviation ‘St’ (straightened).

In what follows, the parameter beta is defined as the maximum of the ratio 2p⊥/b2
v

β = max(2p⊥/b2
v). (3.8)

In case the radial pressure profile is peaked at the trap axis, and the inequality (3.4) holds,
the maximum is reached on the trap axis (where ψ = 0) at the vacuum field minimum
(where min(Bv) = 1/R). Combining definition (3.8) and the dimensionless version of (2.2)
readily yields true magnetic field at the minimum

bmin =
√

1 − β/R. (3.9)

As shown in Kotelnikov et al. (2022b, 2023), there can exist from none to two stable
zones on the stability maps depending on the availability of lateral wall and MHD anchors.
Using notations introduced in Zeng & Kotelnikov (2024), one can specify than the Lw
configuration can provide an upper stability zone at a sufficiently large beta that exceeds
the second critical value, β > βcr2. In the Cw, Bw (blind wall) and Rw (ring wall)
configurations, a lower zone β < βcr1 can appear in addition to the upper one. These two
zones can merge when the vacuum gap between the plasma column and the inner surface
of the conducting shell is sufficiently narrow.

3.1. Pressure model A1
The A1 pressure model is described in detail in Zeng & Kotelnikov (2024). It is intended
for modelling the transverse NBI. To facilitate comparison with other pressure models, the
main properties of the A1 model are briefly summarized below, starting with the definition

p⊥ = p0fk(ψ)
(
1 − b2) ,

p‖ = p0fk(ψ) (1 − b)2 .

}
(3.10)

The dimensionless function fk(ψ) defines the radial pressure profile and is normalized so
that fk(0) = 1. It was chosen in Kotelnikov et al. (2022b) so that the integrals over ψ in
the coefficients of the LoDestro equation could be calculated analytically, at least for the
case of an isotropic plasma. For integer values of index k

fk(ψ) =
{

1 − ψ k, if 0 ≤ ψ ≤ 1,
0, otherwise,

(3.11)

and for k = ∞
f∞(ψ) = H(1 − ψ), (3.12)

where H(x) = 0 for x < 0 and H(x) = 1 for x > 0. In the case of oblique NBI, the integrals
over ψ in the coefficients of the LoDestro equations can be calculated only numerically,
and therefore there is no need to restrict the class of functions fk(ψ), except for the
comparison of the new and earlier results. Function f1 describes the most smooth radial
pressure profile. Maximal index k = ∞ corresponds to a stepwise profile with a sharp
boundary.
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(a) (b) (c)

FIGURE 2. Axial profiles of the transverse pressure in models A1 (a), A2 (b) and A3 (c)
described respectively by (3.10), (3.18) and (3.28) in magnetic field (2.3) at the axis of the trap
for mirror ratio M = 8, index q = 4 and various mirror ratios R at the turning points where the
pressure of hot plasma component drops to zero. The value β = 0.3 for this figure is chosen so
as not to exceed the threshold for excitation of the mirror and firehose instabilities for all values
of the parameter R indicated in the figure legend.

The equation of transverse equilibrium (2.2) is readily resolved regarding the true
magnetic field as

b(z, ψ) =
√

b2
v(z)− 2p0fk(ψ)

1 − 2p0fk(ψ)
. (3.13)

The plasma’s beta defined by (3.8) is related to parameter p0 in (3.10) by

β = 2
(
R2 − 1

)
p0

1 − 2p0
. (3.14)

Parameter p0 can vary within the range

0 < p0 < 1/2R2, (3.15)

and β → 1 for p0 → 1/2R2. For β > 1, transverse equilibrium near the median plane
of the trap is impossible, at least in the paraxial approximation and within the MHD
approach.1

Figure 2(a) shows the axial profile of the transverse pressure for the model A1 in
magnetic field (2.3). The pressure peak in this model is located at the midplane of the
trap and narrows as the local mirror ratio R at the turning point of fast ions decreases.

It seems intuitively obvious that the degree of anisotropy also increases as R decreases.
However, it is not so easy to give a completely satisfactory definition of the degree of
anisotropy suitable for all pressure models to be considered in this paper. If the degree of
anisotropy would be related to the pressure in the minimum magnetic field as

A1 = p⊥ − p‖
p⊥ + p‖

, (3.16)

then
A1 =

√
1 − β/R, (3.17)

which it is indeed inversely proportional to the parameter R.
It can be proved that the A1 pressure model is stable against the mirror and firehose

modes. For example, putting the first of (3.10) into (3.7) yields the inequality b (1 − 2p0) >
0, which is incompatible with condition 0 < p0 < 1/2R2 within the range 0 < b < 1.

1Equilibrium with β > 1 is still possible in systems where the ionic Larmor radius is large in a certain sense,
see Kotelnikov (2020), Kurshakov & Timofeev (2023), Timofeev, Kurshakov & Berendeev (2024) and Khristo &
Beklemishev (2025).
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3.2. Pressure model A2
The model (3.2) with index n = 2 reduces to

p⊥ = p0fk(ψ) b2 (1 − b) ,

p‖ = 1
2

p0fk(ψ) b (1 − b)2 ,

⎫⎬
⎭ (3.18)

in the region b < 1.
In case of pressure model A1 (3.1), (2.2) reduces to a second-order polynomial equation

with respect to b. For the model A2 the same equation is of the third order, and the model
A3 at n = 3 yields a fourth-order algebraic equation. As is well known, the solution to
such equations can always be expressed in terms of radicals, which saves us from the need
to solve these expressions numerically. However, the resulting formulas for a polynomial
of the third (and even more so, fourth) order are extremely cumbersome. Therefore, the
result of solving (2.2) is written below in a more compact form, which is introduced by
Wolfram Mathematica©

b = Root
[
2#3p + #2(−2p − 1)+ b2

v &, 2
]
. (3.19)

Literally, it means the second root of the cubic equation

2b3p + b2(−2p − 1)+ b2
v = 0 (3.20)

represented as a ‘pure function’ by the ampersand & in the first argument of the Root
built-in utility. Parameter p in this formula stands for p0fk(ψ). The Root utility arranges
the roots of the polynomials in an order known only to it, but in such a way that the real
roots come first.

Relative plasma pressure, i.e. the parameter beta, is defined by (3.8) as the maximum
of the ratio 2p⊥/b2

v. According to (3.4), this ratio is a decreasing function of b so that the
maximum is reached on the axis of the trap (where ψ = 0) at the minimum of the vacuum
field (where bv = 1/R). Hence

p0 = β

2(1 − β)
(
1 − √

1 − β/R
) . (3.21)

Inversion of (3.21) yields

β = Root
[
4#3p2

0 + #2 (4p2
0R2 − 12p2

0 + 4p0R2 + R2)
− #

(
8p2

0R2 − 12p2
0 + 4p0R2)− 4p2

0R2 + 4p2
0&, 2

]
. (3.22)

As follows from (3.21), parameter p0 tends to infinity as β → 1. In fact, the mirror mode
stability condition (3.7) imposes a more stringent condition

0 < p0 < 1. (3.23)

If p0 > 1, there is no continuous solution to (2.2). This can be verified by plotting the
left-hand side of the equation as a function of b. For p0 > 1, the maximum of this function
on the interval 0 < b < 1 exceeds 1, while the left-hand side of the equation is less than 1.
This means that paraxial equilibrium is impossible above the mirror instability threshold.
Near this threshold, unexpected phenomena such as equilibrium hysteresis appear. Plasma
can reside in two different states, between which a transition is possible by relieving excess
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10 I.A. Kotelnikov

(a) (b)

FIGURE 3. Threshold of mirror and firehose instabilities in an anisotropic plasma with oblique
NBI within the framework of models A2 (a) and A3 (b). Unstable areas are shaded. The same
shading scheme is used below in the stability maps without further reminder.

pressure (Kotelnikov 2011). Signs of such a transition were found in experiments at the
GDT facility (Kotelnikov, Bagryansky & Prikhodko 2010). Similar structures are observed
in the solar wind, see e.g. Winterhalter et al. (1994), Pantellini (1998) and Jiang et al.
(2022).

In practice, it turned out that the upper limit of the interval (3.23) is sometimes
inaccessible to the shooting method when solving the LoDestro equation (A2). The
solution of this equation with initial conditions (A13) and (A14) on the left boundary z = 0
of the domain of definition of the Sturm–Liouville problem (see Appendix A) sometimes
went to infinity, before reaching the right boundary z = zE. Most often this happened if
the parameter p0 was close enough to p0 = 1.

The threshold value of parameter p0, above which the mirror instability is excited, will
be further written as a function

pmm(R) = 1, (3.24)

where the subscript ‘mm’ stands for ‘mirror mode’. The beta limit is obtained from (3.22)
by substituting p0 = 1

βmm(R) = Root
[
4#3 + #2 (9R2 − 12

)+ #
(
12 − 12R2)+ 4R2 − 4 &, 2

]
. (3.25)

The firehose instability threshold is described by more cumbersome formulas

pfh(R) = Root
[
#3 (4R4 + 4R2)+ #2 (R4 − 30R2 − 27

)− 24#R2 − 4R2 &, j
]
, (3.26)

βfh(R) = Root
[
#3 + #2 (R2 − 9

)+ 24# − 16 &, j
]
, (3.27)

where j = 1 if 1 < R <
√

9 + 6
√

3 and j = 3 if R >
√

9 + 6
√

3; the subscript ‘fh’ is
shorthand for ‘firehose’ mode.

The stability zone bounded by the conditions β < βmm(R) and β < βfh(R) is shown in
figure 3(a). Its width shrinks to zero both in the R → 1 limit and in the R → ∞ limit. The
maximum width corresponds to the point of intersection of the curves β = βmm(R) and
β = βfh(R), where β = 0.6202, R = 3.358. At the same time, it is worth noting that, at
the maximum, these functions are equal to βmm(∞) = 2/3 and βfh(1) = 0.9126.

Limitation of the stability zone in an anisotropic plasma by the threshold of mirror
instability was taken into account earlier by Kesner et al. (Kesner 1985; Li et al. 1987b),
but the firehose instability did not attract the attention of these authors.
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(a) (b) (c)

FIGURE 4. Axial profile of the local beta β(z) = 2p⊥/B2
v in the magnetic field (2.3) for mirror

ratio M = 8, index q = 4 and various mirror ratios R at the turning points where the pressure
of the hot plasma component drops to zero: (a) transversal NBI, pressure model A1; (b) oblique
NBI, model A2; (c) oblique NBI, model A3. The values of the β parameter for each R value
indicated on the graphs are chosen to be equal to the smallest of the two stability thresholds for
the mirror and firehose instabilities.

Exceeding the threshold of mirror instability within the framework of the applicability
of the LoDestro equation is impossible, since this is equivalent to a violation of the
equilibrium configuration of the plasma in the paraxial approximation, which is indirectly
confirmed by experiments in a gas-dynamic trap (Kotelnikov et al. 2010). The PEK
code refused to continue computing if p0 > pmm. However, with a few tweaks, it works
above the firehose instability threshold. In some cases, it finds a solution in the interval
pfh(R) < p0 < pmm(R).

There are a number of theoretical papers (Kotelnikov et al. 2010; Kotelnikov 2011;
Beklemishev 2016) that predict the stabilization of mirror instability in a non-uniform
magnetic field. According to these works, when the mirror instability threshold is
exceeded, a region appears in the plasma near the trap axis, where something like a
magnetic field jump is formed, and non-paraxiality effects smooth out this jump. It is not
yet clear at the moment whether the LoDestro equation can be modified to extend its range
of applicability to equilibria with narrow non-paraxial jumps inside the plasma column.

The condition (3.6) guarantees the stability of small-scale perturbations of the firehose
type, which, if the parameter p0 slightly exceeds pfh(R), can become unstable near the axis
of the plasma column. It is expected that such perturbations are not critical for the rigid
ballooning mode.

Figure 4 confirms the above statement that the relation β(z) = 2p⊥/B2
v, which has the

meaning of a local beta, has a global maximum in the median plane of the trap. Moreover,
β(z) decreases monotonically in a monotonically increasing magnetic field. However,
kinetic calculations of the distribution function of sloshing ions using various numerical
codes, in particular the DOL code (Yurov, Prikhodko & Tsidulko 2016), show that, if the
condition (3.5) is violated, the β(z) dependence may turn out to be non-monotonic and a
local peak appears on the β(z) graph near fast ion turning point.

3.3. Pressure model A3
In the model A3, the pressure functions have the form

p⊥ = p0fk(ψ) b2 (1 − b)2 ,

p‖ = 1
3 p0fk(ψ) b (1 − b)3 .

}
(3.28)

In at least one respect, the A3 model is more realistic than the other anisotropic pressure
models discussed so far. The point is that in models A1 and A2 the derivative ∂p⊥/∂b
suffers a discontinuity at b = 1. It should be expected that the actual pressure distribution
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12 I.A. Kotelnikov

in a mirror trap should not have such a discontinuity, since it will inevitably be smoothed
out by Coulomb collisions of plasma particles. At the discontinuity point, the derivative
∂b/∂z tends to infinity, as on the threshold of mirror instability. In the A3 model, the
derivative ∂b/∂z also tends to infinity as it approaches the mirror instability threshold, but
this happens at some distance from the turning point b = 1, namely, at b = 3/4.

Comparing figures 2(a), 2(b) and 2(c), which show the axial transverse pressure profiles
for models A1, A2 and A3, respectively, one can see that, in the latter panel, the pressure
profile is smoother near the turning point. Another difference is that, for the same values
of the parameter R, the maximum pressure in the right panel is shifted closer to the centre
of the trap compared with the central panel.

It was noted in Kotelnikov et al. (2023) and Zeng & Kotelnikov (2024) that the
parameter R characterizes the degree of plasma anisotropy in the A1 model. According
to (3.17), the degree of anisotropy is higher for smaller R. In the case of oblique NBI (3.2)
this connection does not seem obvious. Kesner (1985) defines the degree of anisotropy
as the ratio of the transverse pressure to the longitudinal pressure at the magnetic field
minimum

AK = p⊥/p‖, at b = bmin =
√

1 − β/R. (3.29)

Examining the quantity p⊥/p‖ = nb/(1 − b) at an arbitrary b reveals it monotonically
increases up to infinity as it approaches the turning point b = 1. The point b = bmin is
distinguished only by the fact that the local beta maximum is located there. However, in
the model (3.2) the transverse pressure peak is in the field b = 2/(n + 1), where the ratio
p⊥/p‖ = 2n/(n − 1) does not depend on R. This and other similar facts indicate that model
(3.2) with any n actually describes the pressure distribution with an approximately fixed
degree of anisotropy.

In § 3.4 it is shown that the parameter R is related to the angle of injection of neutral
atoms. Note, however, that it is possible to invent such a definition of the degree of
anisotropy that yields the same result as (3.16) for the A1 model, namely

An = p⊥
p⊥ + np‖

=
√

1 − β

R
. (3.30)

In the A3 model, the true magnetic field in the plasma is expressed in terms of the real
root of a fourth-degree polynomial equation

b = Root
[
2#4p − 4#3p + #2(2p + 1)− b2

v &, 2
]
. (3.31)

Parameter β is still defined by (3.8), but (3.21) should be replaced by

p0 = β

2(1 − β)
(
1 − √

1 − β/R
)2 . (3.32)

The inverse expression is noticeably more complex than (3.22)

β = Root
[
4#4p2

0 + #3 (8p2
0R2 − 16p2

0 − 4p0R2)
+ #2 (4p2

0R4 − 24p2
0R2 + 24p2

0 + 4p0R4 + 8p0R2 + R4)
+ #

(−8p2
0R4 + 24p2

0R2 − 16p2
0 − 4p0R4 − 4p0R2)

+ 4p2
0R4 − 8p2

0R2 + 4p2
0 &, 1

]
. (3.33)
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The threshold value of p0, above which the mirror instability is excited, is now greater
than prescribed by (3.24)

pmm(R) = 4. (3.34)

The beta threshold is computed as a root of (3.33) at p = 4

βmm(R) = Root
[
64#4 + #3 (112R2 − 256

)+ #2 (81R4 − 352R2 + 384
)

+ #
(−144R4 + 368R2 − 256

)+ 64R4 − 128R2 + 64 &, 1
]
. (3.35)

The firehose instability threshold is described by equally cumbersome formulas

pfh(R) = Root
[
#3 (9R6 + 18R4 + 9R2)

+ #2 (2R6 − 150R4 − 264R2 − 128
)+ #

(
96R2 − 117R4)− 18R4 &, j

]
,

(3.36)

where j = 1 if R <
√

1
2(59 + 11

√
33), and j = 3 if R >

√
1
2(59 + 11

√
33). But the firehose

threshold over beta is written almost as simply as (3.27)

βfh(R) = Root
[
4#3 + #2 (R2 − 28

)+ 60# − 36 &, j
]
, (3.37)

where j = 1 if 1R < R∗ = 1
2 Root[#4 − 236#2 − 2048 &, 2], and j = 3 if R > R∗.

The stability zone bounded by the conditions β < βmm(R) and β < βfh(R) is shown in
figure 3(b). Its width shrinks to zero both in the R → 1 limit and in the R → ∞ limit.
The maximum width corresponds to the point of intersection of the curves β = βmm(R)
and β = βfh(R), where β = 0.8386, R = 2.071. At the same time, it is worth noting
that the maxima of these functions are respectively βmm(∞) = 8/9 and βfh(1) = 0.9468.
Comparing (a) and (b) in figure 3 one can see that, in model A3, this zone is noticeably
larger than in model A2. As can be assumed by looking at the graphs in figure 5 in the
next section, this fact is associated with the observation that the distribution function in
model A3 is slightly closer to isotropic than in model A2.

3.4. Angle distribution of fast ions
For an arbitrary index n, the oblique injection model reads

p⊥ = p0fk(ψ) b2 (1 − b)n−1 , (3.38)

p‖ = p0fk(ψ)
b
n
(1 − b)n , (3.39)

p0 = β

2 (1 − β)
(
1 − √

1 − β/R
)n−1 . (3.40)

The threshold value of parameter p0 with respect to the excitation of the mirror instability
is given by

pmm(R) =
(

n − 2
n + 1

)2−n

. (3.41)

It is not possible to write formulas for βmm(R), pfh(R), βfh(R) in compact form.
Let us try to find an answer to the question: How realistic are the analytical models of

anisotropic pressure? Is it possible to specify the distribution function of fast ions, which
forms the pressure profiles that are given by (3.1) and (3.2)?
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14 I.A. Kotelnikov

FIGURE 5. Angular distribution of the fast ions in the A1, A2, A3 and A8 models for a set of
parameters R indicated in the graphs.

It is known that if the distribution of fast ions is given by a function F(ε, μ) of two
variables, the energy ε and the magnetic moment μ, then the dependence of the density N,
transverse p⊥ and longitudinal pressure p‖ on the magnetic field can be calculated through
double integrals of the distribution function over the variables ε and μ with different
weight factors

N(B) = 2
√

2πB
m3/2

∫ ∞

0

(∫ ε/B

ε/BR

F√
ε − μB

dμ
)

dε, (3.42)

p⊥(B) = 2
√

2πB2

m3/2

∫ ∞

0

(∫ ε/B

ε/BR

μF√
ε − μB

dμ
)

dε, (3.43)

p‖(B) = 4
√

2πB
m3/2

∫ ∞

0

(∫ ε/B

ε/BR

√
ε − μB F dμ

)
dε. (3.44)

The inverse problem of recovering the distribution function F depending on two variables
from a given dependence of p⊥(B) on one variable obviously does not have a unique
solution. The situation will not change if p‖(B) is added to p⊥(B), since these two functions
are related by the longitudinal equilibrium equation. The function N(B) is not yet known
to us.

The situation changes radically if the distribution function can be rewritten in the form
of F = F(ε, μ/ε), for example, F = g(ε)Fn(μBR/ε). Then the integrals are separated. By
replacing μ = ε sin2 θ/Bmin, B = BRb, BR = BminR, sin2 θ = X/R in (3.43), one obtains

p⊥(b) = 2
√

2πb2

m3/2

(∫ ∞

0
ε3/2g(ε) dε

)(∫ 1/b

1

XFn(X)√
1 − bX

dX
)
. (3.45)

The integral in the first pair of brackets gives a constant independent of b. Omitting this and
other constants leads to the Volterra integral equation of the first kind (see, e.g. Polyanin
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& Manzhirov 2008, chap. 10) for determining the function Fn(X)

(1 − b)n−1 =
∫ 1/b

1

XFn(X)√
1 − bX

dX. (3.46)

It is solved using the Laplace transform and the convolution theorem. To bring the last
equation to the canonical formulation of the convolution theorem, one needs to make a
few more changes of variables: b = 1/t; t = 1 + τ , X = 1 + x. This yields the equation

hn(τ ) = τ n−1

(1 + τ)n−1/2 =
∫ τ

0
K(τ − x)Qn(x)dx, (3.47)

where K(τ ) = 1/
√
τ is the kernel of the integral equation, and Qn(x) = (x + 1)Fn(x + 1).

By the convolution theorem, the Laplace image of the desired function Qn(x) is equal to
the Laplace image of the function hn(τ ) on the left-hand side of (3.47) divided by the
Laplace image of K(τ ). After performing the inverse Laplace transform, it is possible to
restore the function Fn(X). The result takes an unexpectedly simple form

Fn(X) = Γ (n)√
πΓ (n − 1/2)

(X − 1)n−3/2

Xn+1
. (3.48)

Recall that X = R sin2 θ , where θ is the pitch angle in the median plane. Function (3.48)
passes through a maximum at X = 2(n + 1)/5. In terms of the pitch angle, the last relation
means that

sin2 θ = 2(n + 1)/5R. (3.49)

Thus, parameter R can be interpreted as a measure of the slope of the NBI.
Examples of the angular distribution of charged particles are shown in figure 5 for the

A1, A2, A3 and A8 pressure models. Comparing these figures, it can be concluded that
the width of the angular distribution increases, and the degree of anisotropy in its intuitive
interpretation decreases as the index n gets larger.

Knowing the function Fn(X), one can find the plasma density distribution

N = n0fk(ψ)
b
2n
(1 − b)n−1 (1 + (2n − 1) b) , (3.50)

p0/n0 =
∫ ∞

0
ε3/2g(ε) dε

/∫ ∞

0
ε1/2g(ε) dε. (3.51)

In a similar way, it is possible to restore the angular part of the distribution function in
model A1

F1(X) = X2 + 3
√

X − 1 X2 tan−1
(√

X − 1
)− X − 2

2π
√

X − 1 X2
, (3.52)

and then the dependence of density on the magnetic field

N = n0fk(ψ)
1
2
(1 − b)(b + 3). (3.53)

https://doi.org/10.1017/S0022377824001338 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001338


16 I.A. Kotelnikov

4. MHD stabilization by lateral wall

It is advisable to divide the study of MHD stabilization of plasma in an open trap using a
perfectly conducting lateral wall and end MHD stabilizers into three parts. To begin with,
this section presents calculations for the case when only the lateral wall is used. The next
§ 5 details stabilization by the MHD end stabilizers. Finally, in § 6 maps of stability zones
under the combined action of the lateral wall and end stabilizers are presented.

If the lateral conducting wall is the only means of suppressing MHD instabilities,
any solution of the Sturm–Liouville problem for the LoDestro equation gives the second
critical beta, βcr2, which determines the lower margin of the upper stability zone β > βcr2.
Results of such solutions are reported below in this section for the magnetic field (2.3)
with mirror ratios selected from the set M ∈ {16, 8, 4, 2} for some most informative
combinations of parameters k ∈ {1, 2, 4,∞}, q ∈ {2, 4, 8} and R. As can be seen in
figure 1, the real magnetic field in the GDT and WHAM devices is better approximated
by large values of M and q. However, these values are not very convenient for identifying
trends caused by changes in the proportion of magnetic mirrors in the total length of
the magnetic trap. In addition, these values are reserved for comparison with upcoming
calculations with the real magnetic field in the GDT.

Parameter R varies from R = 1.1 to R = M, taking discrete values from some predefined
set, usually R ∈ {1.1, 1.2, 1.5, 2, 4, 8, 16}, but the maps in the plane {R, β} are based on a
more dense set.

The width of the vacuum gap between the lateral conducting wall and the lateral surface
of the plasma column is determined by the ratio of the radius of lateral conducting wall
rw(z) to the radius of the plasma column a(z). The ratio rw(z)/a(z) enters the LoDestro
equation (A2) through the function

Λ(z) = r2
w(z)+ a2(z)

r2
w(z)− a2(z)

. (4.1)

The PEK code accepts as an input parameter the ratio of the wall radius rw0 = rw(0) to the
radius of the plasma column a0 = a(0) in the median plane z = 0 of an imaginary trap,
where the magnetic field is minimal. Calculation was made for a discrete set of rw0/a0
values from

√
501/499 to ∞, which corresponds to λ0 = Λ(0) values from 500 to 1.

The results of calculations are presented below for both the proportional lateral wall
shape (labelled by Pr) and the straightened one (St). In the first case, the ratio rw(z)/a(z) =
rw0/a0 = const. is the same in all cross-sections z = const. of an imaginary trap, so
the function (4.1) is also constant, Λ(z) ≡ Λ0. The radius of the plasma column in all
cases decreases monotonically from the maximum value a0 in the median plane z = 0
through aR = √

2 at the turning point to the minimum value in the magnetic mirrors
amin = a(±1) = √

2R/M. Note that a0 in the theoretical treatment depends on parameter
R, radial index k and the value of p0 to be given as an input parameter at the code start. On
the contrary, in an experimental environment both rw0 and a0 can be considered as given
quantities.

The width of the vacuum gap in the proportional conducting shell decreases
monotonically. On the contrary, in a straightened chamber, the radius of the conducting
wall is fixed, rz = rw(0), so the vacuum gap increases monotonically as an observation
point moves from the centre of the trap to the mirror plugs. Thus, for the same ratio
rw0/a0 the average width of the vacuum gap is larger in case of straightened lateral wall.
It therefore turns out that the stable zones in the stability maps are always smaller in the
latter case (Zeng & Kotelnikov 2024).
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

( j) (k) (l)

FIGURE 6. Second critical beta vs R in the limit Λ → ∞ for three pressure models: A1
(a,d,g, j), A2 (b,e,h,k) and A3 (c, f,i,l). Stability zone of the ballooning rigid mode for a radial
pressure profile with a given index k is located above the margin curve, coloured as indicated in
the legend under ( j–l).

4.1. Minimal vacuum gap
There is hardly any need to prove that the stabilizing effect of the lateral conducting wall
is maximum when it is located closest to the surface of the plasma column. Therefore,
as a first study of a new configuration, it is reasonable to carry out calculations of the
critical beta with the conducting wall located as close as possible to the surface of the
plasma column. For the pressure model A1, corresponding to the transverse NBI, such
calculations are given in Kotelnikov et al. (2023) and Zeng & Kotelnikov (2024). Figures 6
and 7 are compiled to compare the stabilizing effect of the lateral wall for the three pressure
models: A1, A2, A3. They show a series of graphs for the case Λ0 = 500 and illustrate
the dependence of βcr2 on R and the lateral wall shape. Graphs in odd and even rows are
drawn for proportional and straightened conducting walls, respectively.

Both figures confirm the previously discovered strong dependence of the critical beta
βcr2 on the shape of the radial pressure profile, represented by the index k. The region of
stability with respect to the flute and ballooning disturbances in these figures is located
above the marginal beta curve βcr2(R), the colour of which is associated with the index k
according to the legend under the bottom row of graphs in each figure. The areas of mirror
and firehose instabilities are hatched by the scheme presented in figure 3. Minimal area of
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

( j) (k) (l)

FIGURE 7. Second critical beta vs R in the limit Λ → ∞ for three pressure models: A1
(a,d,g, j), A2 (b,e,h,k) and A3 (c, f,i,l). Stability zone of the ballooning rigid mode for a radial
pressure profile with a given index k is located above the margin curve, coloured as indicated in
the legend under ( j–l).

stability in respect to ballooning modes is shaded with the colour of the most upper curve.
Most often, this is the blue colour corresponding to the most smooth radial profile k = 1,
but in figure 7(b,h) this blue zone is invisible since the corresponding blue curve is too
short because it crosses the lower margin of the mirror mode. The PEK code quits above
the mirror threshold where paraxial equilibrium is not possible.

Previously, it was found for model A1 (Kotelnikov et al. 2023; Zeng & Kotelnikov 2024)
that, when the end MHD stabilizers are switched off, the critical value βcr2 depends only
very weakly on both the mirror ratio M and index q, which controls the axial profile of the
magnetic field. For this reason, in figure 6, illustrating the dependence on the parameter
M, only graphs with index q = 4 are kept, and the set of values of M is reduced to two,
M = 4 and M = 16. Similarly, in figure 7, illustrating the dependence on q, only graphs
with the mirror ratio M = 8 and a pair of index values q are kept, namely: q = 2 and
q = 8. In general, all these graphs only confirm the conclusion about the weak influence
of the magnetic field on the stabilizing properties of the lateral conducting wall within the
same model of anisotropic pressure.
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However, the differences between the three studied anisotropic pressure models A1, A2
and A3 are visible to the naked eye. These conclusions partially coincide with those of
Kesner (Kesner 1985). He stated that the critical beta was insensitive to the axial profile
of the magnetic field, but did not specify the value of the index n in (3.2) used in his
calculations.

In model A2, the stabilization boundary of ballooning instability is closely adjacent to
the threshold of mirror instability, so that the region of joint stability βcr2 < β < βmm turns
out to be very narrow. In model A3 this region is noticeably wider, especially in the region
R � 2. In both models, the zone of stabilization of ballooning modes partially overlaps the
region of firehose instability at R � 4.

Thus, it can be concluded that the stability properties of an anisotropic plasma are very
sensitive to details of the axial pressure profile.

In the most general terms, the last statement can hardly be disputed. At the same time, it
should be noted that model A2 apparently does not adequately describe a real experiment.
As follows from the discussion of (3.28), the point of origin of mirror instability in this
model coincides with the turning point b = 1 of fast ions, since the derivative ∂p⊥/∂b at
this point experiences a jump as a result of mathematical idealization. A quick look at
figure 5 shows that both the increase in anisotropy and the decrease in NBI tilt angle make
it more difficult to stabilize an anisotropic plasma.

Comparison of graphs in odd and even rows of figures 6 and 7 reveals that the shape of
the conducting chamber significantly deforms the shape of the βcr2(R) curves in the case of
oblique NBI simulated by the models A2 and A3. For the model A1, Zeng & Kotelnikov
(2024) came to the opposite conclusion that the effect of the shape of the conducting
chamber is insignificant. The apparent contradiction can be explained by the fact that the
width of the gap between the conducting wall and the plasma at the location of the pressure
peak plays a decisive role. In model A1 (transverse NBI), the pressure peak is located in
the midplane of the trap. For the same value of the parameter Λ0, the vacuum gap in the
midplane is the same for the proportional and straightened chambers, so the difference in
the gap width in other sections of the trap is not very significant. In the case of the A2 and
A3 models (oblique NBI), the peak is located outside the midplane. The size of the gap at
the location of the peak in the strengthened chamber will be larger than in the proportional
chamber; accordingly, the stabilizing effect of the conducting chamber will be less.

Comparison of graphs in successive columns of figures 6 and 7 shows that the critical
beta βcr2 is definitely smaller in the case of oblique injection (which is good), but the
stability zone disappears at large values of parameter R, since the plot of βcr2(R) crosses the
mirror instability threshold βmm(R) at approximately R ≈ 3.5–4. Considering that (3.49)
relates the parameter R to the injection angle θinj, one obtains θinj ≈ 40◦ in model A2 and
θinj ≈ 47◦ in model A3. In a straightened chamber, the βcr2 curve intersects the βmm curve
at a lower value of the parameter R ≈ 2, which corresponds to θinj ≈ 56◦ in model A2 and
θinj ≈ 70◦ in model A3.

The second observation is that the straightened chamber stabilizes the smoothest radial
pressure profile with index k = 1 noticeably worse in the sense that the range of values
of the R parameter at which this profile can be stabilized is noticeably narrower compared
with the proportional chamber. In § 6, it is shown that, in the presence of the end MHD
stabilizers, on the contrary, the smoothest radial profile is the easiest to stabilize because
the unstable zones on the stability maps in figures 11–18 are the smallest for the k = 1
radial profile.

It is useful to compare the above depicted calculations with the results of predecessors,
in particular, with the works of Kesner and his co-authors (Kesner 1985; Li et al. 1985,
1987a, b). In all these papers, the authors analyse the plasma model with a sharp boundary,
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(a) (b) (c)

FIGURE 8. Second critical beta βcr2 vs Kesner’s degree of anisotropy AK defined by (3.29) as
in Kesner (1985) for three models of anisotropic pressure and four mirror ratios, M ∈ {4, 8, 16}.
Dashed curve shows the mirror mode thresholds. Compare with figure 3 in Kesner (1985).

which corresponds to the infinite index k = ∞. Direct comparison is possible only with
the first of the listed publications, and then only with certain reservations. In other works,
the differences in the formulation of the problem are too great.

In his first work (Kesner 1985), Kesner approximated the vacuum magnetic field with
a parabola. In the model of magnetic field (2.3), a parabola can approximate the field
near the midplane in the case of q = 2. Therefore, results can be compared in cases
where the pressure peak is concentrated near the median plane, that is, at small values
of the parameter R ∈ {1.1, 1.2, 1.3}. The necessary data can be extracted from2 figure 2 of
Kesner (1985), which shows the calculation results (in our terms) for the model A1-LwPr
and zero vacuum gap. Comparing these data with figure 2(a,d,g, j) of Kotelnikov et al.
(2022b), one can see quite satisfactory agreement.

It is more difficult to compare the results of calculations in the case of oblique injection.
Figure 3 of Kesner (1985) shows the graph of βcr2 depending on Kesner’s anisotropy
degree (3.29) in the range from AK = 1 to AK = 6. The explanation of that figure indicates
that the plasma occupies the entire length of the trap up to the magnetic mirrors, i.e.
R = M, but the magnetic field was still approximated by a parabola. The values of the
parameters M, R, n are not specified in the article, however, taking into account the
definition (3.29) of the anisotropy parameter in that article, one can assume that there
should be n � M in order to have such values of AK . Formally, this means that comparison
with my calculations for n = 2 (i.e. model A2) and n = 3 (model A3) is impossible.

An alternative possibility to ‘organize’ a large parameter AK involves the simultaneous
limits R → 1 and β → 0. Parameter AK may well fall into the range 1–6 for n = 2–3
if β � 1 and R = 1.1–2. In order to draw figure 8 in {AK, β} coordinates, suitable for
comparison with figure 3 in Kesner (1985), βcr2 was calculated for a set of discrete values
of R with four values of the mirror ratio M ∈ {2, 4, 8, 16}. Comparing figure 8 and figure 3
of Kesner (1985), one can see some qualitative discrepancies. The most evident of them
is that, in figure 8(b,c), the width of the stable zone between the βcr2 and βmm curves
decreases as AK becomes smaller whereas figure 8 demonstrates an opposite tendency.

It does not follow from this fact that Kesner’s results are wrong. In fact, we do not quite
understand his prerequisites because some important details are missed. In addition, the
choice of parameters AK and β for figure 3 of Kesner (1985) axes is unsuccessful, since
parameter AK itself depends on β.

2A reference to a figure in another article is hereinafter supplemented with a superscript indicating the reference
number in the bibliography.
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4.2. Effect of the vacuum gap
The width of the vacuum gap between the lateral surface of the plasma column and the
inner surface of the conducting chamber of a selected type is determined by the parameter

rw0/a0 =
√
(Λ0 + 1)/(Λ0 − 1). (4.2)

In § 4.1 it was shown that, in the limit rw0/a0 → 1, the critical beta remains essentially
unchanged when both the mirror ratio M and the index q change. This conclusion holds
for any value of rw0/a0, so it is sufficient to show only one (say, the average) value of the
index and one value of the mirror ratio. In addition, the range of changes in the parameter
R is limited below by the interval R ∈ [1.1 . . . 4], since at R � 4 the margin of stability
with respect to ballooning oscillations lies inside the firehose instability zone.

Figures 9 and 10 contain series of graphs of βcr2 vs ratio rw0/a0 at fixed mirror ratio
M = 8 and fixed axial profile index q = 4. Figure 9 is compiled for a proportional chamber
LwPr, and figure 10 repeats the same graphs for the LwSt configuration.

Comparison of graphs within any row demonstrates a strong dependence of βcr2 on
the pressure model. It can be seen that, for rw/a ≈ 2, the lowest critical beta is much
smaller in the case of the oblique NBI imitated by model A2 (middle column) compared
with the transverse NBI described by model A1 (left column). In other words, with an
oblique NBI it is easier to achieve a stable plasma confinement mode. The effect is even
more significant in model A3 (right column). However, it is very difficult to stabilize a
plasma with a maximally smooth radial pressure profile k = 1 during oblique injection.
In model A2, the blue curve corresponding to the index k = 1 is completely absent from
most graphs. In addition, in model A2, the boundary of the stability zone β = βcr2 rests
on the threshold of mirror instability β = βmm even for a not very large ratio rw/a. As is
noted above, model A2 is not realistic enough. Model A3 predicts a wider range of rw/a
values at which stabilization by a properly designed conducting chamber is possible.

5. MHD stabilization by end anchors

A proven method for suppressing MHD instabilities in an axially symmetric mirror trap
is to attach end MHD anchors to the central mirror cell on the side of each of the two
magnetic mirrors (Ryutov et al. 2011). The PEK package simulates MHD end stabilizers
using boundary conditions of the form (A11) in the z = zE plane, where an imaginary
conducting end plate is located. The further such a plate is placed from the centre of the
trap, the less its stabilizing effect (Zeng & Kotelnikov 2024).

If zE > 1, the end plate is located behind the magnetic mirror and may not be virtual but
real, as in some experiments at the GDT installation (Soldatkina et al. 2017, 2020). It is
interesting and to some extent unexpected that such a plate, contrary to well-founded fears,
did not lead to degradation of plasma parameters, even if it was placed relatively close to
the neck of the magnetic plug. Variant zE > 1 simulates a terminal MHD stabilizer of the
cusp type (Taylor 1963; Logan 1980, 1981; Baker et al. 1984; Anikeev et al. 1997; Li et al.
2023).

If zE < 1, the imaginary end plate is located in front of the magnetic plug. In the problem
of stabilizing the rigid ballooning mode, we can assume that its role is played by a limiter
in the form of a ring, which is used in the vortex confinement method (Bagryansky et al.
2003; Bagryansky, Beklemishev & Soldatkina 2007; Beklemishev 2008; Bagryansky et al.
2011).

Calculation of the stability margin that is created by one or another design of the end
MHD anchor is a separate task. It is beyond the scope of this article (see, for example,
Nagornyi & Stupakov 1984; Kuz’min & Lysyanskij 1990). The end plate, located behind
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FIGURE 9. Stability maps for the LwPr configuration and three pressure models: A1
(a,d,g, j,m), A2 (b,e,h,k,n) and A3 (c, f,i,l,o). The second critical beta is drawn as a function
of rw/a for the model magnetic field (2.3) with index q = 4, set of mirror ratios R ∈
{1.1, 1.2, 1.5, 2, 4, 8} at the turning point and fixed mirror ratio M = 8. The stable zone for a
radial pressure profile with an index k is located above the curve βcr2 coloured according to the
legend under (m–o). Compare with figure 10.

the magnetic plug, imitates an MHD anchor, which has a smaller stability margin. On the
contrary, the end plate installed in front of the magnetic plug imitates an MHD anchor,
which has a larger stability margin.

According to the historically established classification inside the PEK package, the
variants zE = 1, zE > 1 and zE < 1 are designated as Cw (combined wall), Bw (blind wall)
and Rw (ring wall), respectively, although, in the current version of the PEK package, the
calculation of all three options is carried out by a common module. To limit the number
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FIGURE 10. Stability maps for the LwSt configuration and three pressure models: A1
(a,d,g, j,m), A2 (b,e,h,k,n) and A3 (c, f,i,l,o). The second critical beta is drawn as a function
of rw/a for the model magnetic field (2.3) with index q = 4, set of mirror ratios R ∈
{1.1, 1.2, 1.5, 2, 4, 8} at the turning point and fixed mirror ratio M = 8. The stable zone for a
radial pressure profile with an index k is located above the curve βcr2 coloured according to the
legend under (m–o). Compare with figure 9.

of figures, only the case zE = 1 (Cw) is presented below, when an imaginary conducting
plate is located in the neck of the magnetic plug.

The absence of a lateral conducting shell corresponds to the limit rw/a0 → ∞ (that is,
Λ → 1). In this limit, the shape of the conducting shell obviously does not matter and, in
this sense, the options CwPr, CwSt (as well as BwPr, BwSt, RwPr, RwSt) are equivalent.
The PEK package in this limit finds at most one root, but now, in contrast to § 4, this is the
upper margin βcr1 of the lower stability zone.
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FIGURE 11. First critical beta βcr1 for the CwPr configuration and three pressure models: A1
(a–c), A2 (d–f ) and A3 (g–i) at mirror ratio M = 15 vs parameter R in the limit Λ → 1. The
stability zone of rigid ballooning perturbation for a radial pressure profile with a given index k is
located below the curve, coloured as indicated in the legend under (g–i).

The series of figures 11–13 illustrates the dependence of βcr1 on the parameter R for three
models of anisotropic pressure A1, A2, A3, three values of the mirror ratio M ∈ {24, 16, 8}
and three magnetic field profiles, corresponding to index values q ∈ {2, 4, 8}. Analysis of
the graphs in these figures shows that, when using MHD stabilizers, all previously made
conclusions for the case of lateral wall stabilization have to be reversed.

The stability zone for the radial profile with index k is located below the curve β =
βcr1(R), coloured as indicated in the legend under the bottom row in each figure. Absence
of a curve for a certain range of R means that the corresponding radial profile k is stable
over the entire interval of beta values allowed by the inequalities 0 < β < 1 (in the case
of transverse NBI as described by the A1 model) or 0 < β < βmm below the threshold
of mirror instability (in the case of oblique NBI simulated by the models A2, A3, . . . ).
The areas where the mirror and firehose modes are unstable are shaded in blue and brown
colours, respectively. Computation was performed for a wider set of mirror ratios M then
mentioned above but no βcr1 was found for M � 4 .

Comparison of figures 11–13 reveals a strong dependence of the ballooning instability
threshold on the mirror ratio M. This drastically differentiates the lower zone of stability
from the upper one which exists exclusively due to the lateral conducting wall, as discussed
in § 4. The lower stability zone tends to expand as the mirror ratio becomes smaller. This
fact is quite consistent with the intuitive expectations that a decrease in M improves the
contact of the end MHD stabilizer with the central section of the open trap.

Comparison of the first, second and third rows in any of the three figures (more
precisely: comparison of graphs in the same column, but in different rows) demonstrates
that there is a qualitative and quantitative difference between the anisotropic pressure
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FIGURE 12. Same maps as in figure 11 but for mirror ratio M = 8.

(a) (b) (c)

FIGURE 13. Same maps as in figure 11 but for mirror ratio M = 4. The rows A2-CwPr and
A3-CwPr are not shown as they do not have an unstable zone for rigid ballooning modes.

models. It is especially noticeable when passing from transverse injection (model A1)
to oblique injection (models A2 and A3). The difference between models A2 and A3 is
limited in quantitative indicators, although it is quite noticeable. It can also be noted that
the influence of the radial profile on the value of βcr1 in model A1 is more noticeable than
in models A2 and A3. This statement follows from the fact that the distance between curves
of different colours in the graphs in the first row of each of figures 11–13 is significantly
larger than in the second and third rows. The absence of a blue, yellow or green curves
means that the corresponding fairly smooth radial profiles are stable with respect to
ballooning perturbations of plasma equilibrium. Again, this effect is more pronounced in
the case of transverse NBI, whereas, in the case of oblique injection, the firehose instability
threshold βfh in terms of beta value is often lower than the ballooning instability threshold
βcr1.

Comparison of graphs within every row of any of the three figures shows that the shape
of the axial profile of the magnetic field has a significant effect on the value of βcr1. This
fact is most noticeable in the case of transverse injection (model A1, first row of each
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figure) and also significantly distinguishes stabilization using end MHD stabilizers from
stabilization using a lateral wall. The general tendency is that the narrowing and steepening
of magnetic mirrors expands the lower stability zone.

With transverse injection, the entire range 0 < β < 1 can be made stable for any radial
pressure profile if M, R are sufficiently low. With oblique injection, the β = 1 limit
on transverse equilibrium is unattainable due to the development of mirror instability.
However, the last statement was proven only within the paraxial approximation. A number
of publications give reason to assume that the threshold of shear instability can be
exceeded in non-paraxial open traps (Lansky 1993; Lotov 1996; Kotelnikov et al. 2010;
Kotelnikov 2011; Beklemishev 2016).

Comparing figures 6 and 7 from § 4.1 with figures 11–13 it is easy to notice that, as R
increases, the boundaries of the lower and upper stability zones shift in opposite directions,
and in such a way that both zones contract. Note also that in all the figures the blue curves
are located above the yellow ones, the yellow ones are above the green ones and the green
ones are above the red ones. In other words, the boundary of both the upper stability zone
and the boundary of the upper stability zone shift downward as the radial pressure profile
steepens. But if for the upper zone this order means that it becomes wider as the radial
profile steepens, then the expansion of the lower zone, on the contrary, occurs as the radial
profile is smoothed.

6. Combined MHD stabilization

Taking into account the existence of upper and lower stability zones when the two
stabilization methods are applied separately, which were successively described in §§ 4
and 5, it is easy to believe that, with the simultaneous application of these two stabilization
methods, both stability zones will be preserved. The first indication of the presence of two
zones of stability can be found in the works of D’Ippolito and Hafizi (D’Ippolito & Hafizi
1981) and D’Ippolito and Myra (D’Ippolito & Myra 1984). After the author’s work, it was
shown earlier (Kotelnikov, Lizunov & Zeng 2022a; Kotelnikov et al. 2022b, 2023; Zeng
& Kotelnikov 2024) that the simultaneous existence of two stability zones has become a
proven fact using the examples of isotropic plasma and anisotropic plasma in the special
case of transverse NBI. The lower zone exists at low plasma pressure, at 0 < β < βcr1,
and the second, at high pressure, at βcr2 < β <1 . These two zones merge for larger Λ,
providing overall stability for any beta in the range 0 < β < 1. It will be shown below that
the last statement should be corrected in the case of inclined NBI.

When the lateral wall and end stabilizers act together, PEK often does not find solutions
for the set of parameters discussed in the previous sections. This could mean either that
the ballooning perturbations are stable over the entire range of available beta values
below the mirror instability threshold, or that there is an error in the program. Therefore,
calculations in the Cw, Bw and Rw modes usually began with the case R = M, when
the instability zone has maximum dimensions for a fixed set of parameter values k, q,
M, zE. The remaining part of the article also begins with the case R = M. In order not
to overload the article with an excessive number of figures, the results of calculations in
the Bw and Rw configurations are omitted below. The main conclusion from the analysis
of these configurations is quite banal. The Rw configuration is more stable than the Cw
configuration, and the Bw configuration, on the contrary, is less stable in the sense that the
instability zone is larger than in the Cw configuration.

6.1. Wide pressure peak, M = R
The series figures 14–16 visualizes the calculation results for the special case R = M when
the hot plasma component occupies the entire mirror trap from plug to plug. Initially,
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this case was highlighted among many others in Kotelnikov et al. (2020) in order to
compare the stability of anisotropic plasma, which is formed under transverse NBI, with
the stability of isotropic plasma. In the A1 model, the R = M variant corresponds to the
minimum anisotropy. However, in models A2 and A3, parameter R cannot serve as a
measure of anisotropy, as shown in § 3.4, but it is related to the injection angle θinj by
(3.49). Too large values of R, R � 2(n + 1)/5 correspond to too small angles of injection
θinj, which can hardly be of interest from a practical point of view. Taking into account this
explanation, the range of the parameter R is further reduced compared with the range that
was adopted in previously published analogues for the transverse NBI model, in particular
in figure 9 of Kotelnikov et al. (2023).

In the first two rows, figures 14–16 present the stability maps for the A1 model,
corresponding to the transverse NBI. In figures 14 and 15, composed respectively for
M = 16 and M = 8, they are followed by two rows of graphs for the oblique NBI model
A2 and the last two rows contain maps for oblique NBI model A3. Figure 16 has only two
tows since the plasma produced by oblique NBI is stable against ballooning perturbation
in the entire range of β below the mirror instability threshold.

The difference between the first two rows and the four following ones is so obvious
that it almost could not be commented on. With oblique injection, there is practically
no upper stability zone βcr2, which was present both during transverse NBI and in
isotropic plasma, as shown in figure 10 in Kotelnikov et al. (2023). It can be said that,
with oblique NBI, the upper stability zone is absorbed into the region of mirror mode
instability.

One can also notice a significant decrease in the value of βcr1 for all radial pressure
profiles. This effect is accompanied by the appearance of an instability zone for smooth
radial profiles (with indices k = 1, k = 2) in the range of small values of parameter rw/a
at which such zones were not present in the A1 model. The brown hatching from the third
to sixth rows means that, in the A2 and A3 models, the margin of the stability zone of
the rigid ballooning mode passes entirely inside the zone of firehose MHD instability. It
is important to emphasize that the threshold of firehose instability is determined by the
criterion (3.6), which is obtained for a homogeneous magnetic field. In an inhomogeneous
magnetic field, the threshold should be slightly lower, as shown in V. Mirnov’s dissertation
(Mirnov 1986). We are not aware of experiments with plasma in open traps in which
manifestations of hose instability would be reliably recorded. Therefore, it would be
premature to assert that a transition beyond the formal boundary of firehose instability
is not possible.

As for the threshold of mirror instability, the PEK code is currently unable to perform
calculations in the area above its threshold.

As can be seen from the analysis of figures 14–16, with joint stabilization by the
lateral wall and end MHD stabilizers, the instability zone βcr1 < β < βcr2 decreases as q
increases. In other words, open traps with short magnetic plugs are more stable than traps
in which the magnetic field increases smoothly as you move from the centre of the trap to
the magnetic plugs. This observation is consistent with the long-standing calculations of
V. Mirnov and O. Bushkova. They calculated the threshold of ballooning instability with
respect to small-scale disturbances (Bushkova & Mirnov 1986), ignoring the effects of the
finite Larmor radius. Later, the results of those calculations were confirmed in the work
(Kotelnikov et al. 2022a).

With fixed parameters q, M, R, the instability zone is maximal for the steepest radial
pressure profile (k = ∞) and may be absent altogether for smooth profiles (k = 1, k = 2).
Without stabilization by the end MHD anchors, the opposite situation occurs: the stability
zone is smaller and may be absent altogether for smooth profiles.
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FIGURE 14. Stability maps for model magnetic field (2.3) and anisotropic plasma pressure
models (3.10) (a–f ), (3.18) (g–l) and (3.28) (m–r) at combined MHD stabilization by lateral
wall and end MHD anchors, q ∈ {2, 4, 8}, M = R = 16. The unstable zone is located between the
lower βcr1(rw/a0) and upper branches βcr2(rw/a0) of every curve. Correspondence of the index k
to the colour of the curves is shown at the bottom of the figure. Shaded common zone of stability
lies to the left of the curve for the most steep radial pressure profile (k = ∞). (a,d,g, j,m,p) Show
the maps for a ‘parabolic’ magnetic field with the index q = 2, (c, f,i,l,o,r) show the maps for the
‘quasi-flat hole’ magnetic field with q = 8. Panels (a–c,g–i,m–o) and (d–f, j–l,p–r) show maps
for the CwPr and CwSt configurations, respectively.
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FIGURE 15. Same as in figure 14 but for M = R = 8.

6.2. Effect of pressure peak width, 1 < R < M
The case R = M, considered in § 6.1, corresponds to the widest pressure profile along the
trap axis. Recall that the parameter R in the magnetic field model (2.3) makes sense of
a plug ratio in the section of an open trap where the pressure of hot ions decreases to
almost zero. Thus, parameter R is a characteristic of the extent of the plasma pressure
peak localization region, which is universally suitable for all A1, A2, A3, . . . anisotropic
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FIGURE 16. Same as in figure 14 but for M = R = 4. Rows for the A2 and A3 models are
dropped since the rigid ballooning mode is stable in the entire region below the mirror instability
threshold.

pressure models studied so far. In addition, in the A1 model, which simulates transverse
NBI, parameter R characterizes the degree of plasma anisotropy, whereas in the case
of oblique NBI, described by the A2 and A3 models, it is associated with the angle of
inclination of the NBI to the direction of the magnetic field.

To study the effect of the extent of the region occupied by fast ions, which are formed
during the injection of beams of neutral atoms, in real experiments at the GDT facility
at the Budker Institute of Nuclear Physics, the magnetic field is reprofiled in the axial
direction, forming a short well (Shmigelsky et al. 2024). A similar operation in the
numerical study with the model field (2.3) in use involves increasing parameters q and
M. As can be seen from figure 1, short magnetic plugs as in the GDT correspond to higher
values of q and M than those adopted in the current and earlier works. Corresponding
calculations for model magnetic field (2.3) are planned for publication together with
calculations for the real magnetic field in GDT and ALIANCE facilities.

Maps of stability for the case q = 4, M = 16 and five values of the parameter R ∈
1.2, 1.5, 2, 4, 8 are presented in figure 17 for the proportional lateral wall chamber and
figure 18 for the straightened chamber. The first thing that catches eye when analysing these
figures is the absence of an unstable zone at small values of the parameter R for all three
models of anisotropic pressure A1, A2, A3, and the marginal value of R for transverse NBI
is noticeably smaller than for oblique NBI. From this point of view, oblique NBI appears
to be preferable to transverse NBI.

The second conclusion that arises when comparing graphs in the same row in these
figures is that transverse NBI, with other things being equal, allows us to achieve higher
values of relative pressure β than oblique NBI. This circumstance is due to the fact that
the limiting beta in the case of oblique injection is limited by the mirror instability, not
the ballooning one. From this point of view, transverse NBI appears to be preferable to
oblique NBI.

7. Conclusions

This article completes a series of three publications (Kotelnikov et al. 2022b, 2023;
Zeng & Kotelnikov 2024) in which the stability of a rigid ballooning mode with an
azimuthal number m = 1 was studied using a model magnetic field profile (2.3) along
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FIGURE 17. Stability maps vs ratio rw/a for the A1, A2 and A3 pressure models in the CwPr
configuration simulating combined stabilization by the proportional lateral conducting chamber
and end MHD anchors; q = 4, M = 16, R ∈ {1.2, 1.5, 2, 4, 8}. The instability zone is located
between βcr1(rw/a) (lower branch of the marginal curve) and βcr2(rw/a) (upper branch of the
same colour); in the case of inclined injection, which corresponds to the A2 and A3 models, the
upper branch is completely or partially absorbed by the region of mirror instability; the stability
zone is shaded for a plasma with a sharp boundary (k = ∞), for which it has the minimum
dimensions.

the axis of a linear open trap and model pressure profiles of the hot plasma component
along the radius (3.11). The use of model profiles at the stage of development, debugging
and testing of the PEK software package was a natural and reasonable solution from
many points of view. In particular, as the models become more complex, the calculation
time increases by tens, hundreds and thousands of times. In addition, the use of model
functions, depending on a small set of parameters, to approximate the vacuum magnetic
field and the radial distribution of plasma pressure, made it possible to obtain relatively
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FIGURE 18. Same as in figure 17 but for CwSt configuration simulating combined stabilization
by the straightened lateral conducting wall and the end MHD anchors.

simple recommendations for achieving maximum beta in open traps. The main results can
be formulated in several statements:

(i) When only a lateral conducting wall is used for MHD stabilization, stable plasma
confinement occurs in the upper zone β > βcr2, which expands with a decrease in
the mirror ratio R at the turning point of fast ions produced by NBI. A steep radial
pressure profile is the most stable in this case. The dependence on the magnetic field
profile is minimal for transverse NBI, but significant for oblique NBI. The second
marginal beta βcr2 is only slightly affected by the mirror ratio M and axial profile of
the vacuum magnetic field.

(ii) When only end MHD anchors are used, stable confinement occurs in the lower zone
β < βcr1, which expands with a decrease in M and/or R. A smooth radial pressure
profile and steep axial magnetic field profile are the most stable. The first marginal
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beta βcr1 is strongly affected by the mirror ratio M and the axial profile of the vacuum
magnetic field.

(iii) In the case of oblique NBI at a small angle of injection (R � 4), beta is limited by
the threshold of mirror instability rather than by the ballooning instability.

(iv) Wall stabilization of ballooning perturbations is especially effective in combination
with end MHD anchors, which make it possible to suppress all MHD oscillations in
the range 0 < β < 1 for transverse NBI and 0 < β < βmm(R) for oblique NBI.

(v) The size of the stable zones in all cases essentially depends on the radial and
axial profiles of the plasma pressure, width and shape of the vacuum gap, plasma
anisotropy, angle of injection and stability margin of MHD anchors. The axial profile
of the magnetic field is significant in all cases when the end MHD stabilizers are
switched on.

Further development of the PEK software package should include a series of minor
and major upgrades. The first step in this queue will be to connect the modules for
calculating the actual magnetic field in the GDT, CAT and ALIANCE facilities. At the
program level, this step has already been completed. The other most anticipated major
modernization should be the inclusion of dissipative processes, both inside the plasma
and in the conductors surrounding it.

List of notations

M Mirror ratio at the neck of the magnetic plug
R Mirror ratio at the turning point of the sloshing ions
L Mirror ratio at the location of the limiting ring or conducting end wall simulating

the MHD anchor
ψ Normalized magnetic flux with ψ = 1 at the lateral boundary of the plasma

column
z Normalized coordinate along the axes of the plasma column with z = 0 in the

midplane of the trap and z = ±1 on the magnetic plugs
r Normalized radial coordinate r = 0 on the axes of the trap and r = a on the lateral

surface of the plasma column
a Normalized radius of the plasma column as a function z
a0 Value of a(z) in the trap midplane
rw Radius of the conducting cylinder surrounding the plasma column
rw0 Value of rw in the trap midplane
Λ Dimensionless function of the ratio rw(z)/a(z), included in the LoDestro equation
Λ0 Value of Λ(z) in the trap midplane
bv Normalized vacuum magnetic field as a function of z with bv = 1 at turning points

of sloshing ions and bv = 1/R in the mirror trap midplane
b Normalized true magnetic field with b = 1 at the turning points of sloshing ions
p⊥ Normalized transverse plasma pressure as a function of ψ and z
p‖ Normalized longitudinal plasma pressure as a function of ψ and z
p0 Value of p⊥ on the axis of the plasma column in the midplane of the trap
F Distribution function of sloshing ions as a function of energy ε and magnetic

moment μ
fk Dimensionless function ψ associated with the radial pressure profile with fk = 1

on the axes of the plasma column and fk = 1 on the lateral surface
k Index of function fk, where k = ∞ corresponds to the step profile pressure with a

sharp boundary, and k = 1 corresponds to a smooth quasi-parabolic profile
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q Index of the axial profile of the vacuum magnetic field, where q = 2 corresponds
to a quasi-parabolic profile, and larger q values simulate a profile with shorter
magnetic plugs

Lw Lateral wall configuration without MHD end anchors
Cw Combined wall configuration with lateral wall and MHD end anchors, simulated

by conducting end plates located at the magnetic plugs
Bw Blind wall configuration similar Cw to with weaker end MHD stabilizers imitated

by the conducting end plates located behind magnetic plugs
Rw Ring wall configuration with annular limiters located beyond the turning points

and before magnetic plugs imitated by a conducting end plate located in front of
the magnetic plug

Pr Proportional shape of the wall of the conducting cylinder surrounding the plasma
column

St Straightened shape of the wall of the conducting cylinder surrounding the plasma
column

β The beta parameter is defined as the maximum of the ratio 2p⊥/b2
v

βcr1 The first critical beta value defining the upper boundary of the lower stability zone
against rigid ballooning modes due to MHD end anchors

βcr2 Second critical beta value defining the lower boundary of the upper stability zone
against rigid ballooning modes due to the lateral wall

βmm Beta value at the upper boundary of the stability zone against mirror modes
βfh Beta value at the upper boundary of the stability zone against hose modes
θ Pitch angle
θinj Inclination angle of NBI

Acknowledgements

The author thanks P. Bagryansky, C. Forest, A. Ivanov, V. Prikhodko, S. Putvinsky,
E. Shmigelsky, D. Yakovlev, P. Yushmanov and Q. Zeng for numerous discussions and
valuable comments at different stages of development of the PEK package. Special thanks
to A. Beklemishev for discussing the conditions for the applicability of the LoDestro
equation, V. Ilgisonis for discussing the firehose instability threshold, A. Milstein for
discussing the properties of second-order ordinary differential equations with singular
coefficients and V. Mirnov for answering many of my questions.

Editor C. Forest thanks the referees for their advice in evaluating this article.

Funding

This work was supported by the Russian Science Foundation under the Grant
24-12-00309 awarded to Novosibirsk State University. This work is also a part of the state
assignment of the Russian Federation for the Budker Institute of Nuclear Physics.

Declaration of interests

The author reports no conflict of interest.

Data availability statement

The data that support the findings of this study are not openly available.

https://doi.org/10.1017/S0022377824001338 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001338


On the stability of the rigid ballooning mode 35

Appendix A. LoDestro equation

The LoDestro equation is a second-order ordinary differential equation for the function

φ(z) = a(z)Bv(z)ξn(z), (A1)

which depends on single coordinate z along the trap axis and is expressed in terms of
the variable radius of the plasma column boundary a = a(z), the vacuum magnetic field
Bv = Bv(z) and the virtual small displacement ξn = ξn(z) of the plasma column from the
axis. In its final form, the LoDestro equation reads

0 = d
dz

[
Λ+ 1 − 2 〈p̄〉

B2
v

]
dφ
dz

+ φ

[
− d

dz

(
B′
v

Bv
+ 2a′

a

)(
1 − 〈p̄〉

B2
v

)
+ ω2 〈ρ〉

B2
v

− 2 〈p̄〉
B2
v

a′′
v

av
− 1

2

(
B′
v

Bv
+ 2a′

a

)2 (
1 − 〈p̄〉

B2
v

)]
, (A2)

where the derivative d/dz in the first two lines acts on all factors to the right of it, and the
prime (′) is a shorthand for d/dz. Other notations are defined as follows:

a2

2
=
∫ 1

0

dψ
B
, (A3)

r2

2
=
∫ ψ

0

dψ
B
, (A4)

B2 = B2
v − 2p⊥, (A5)

av(z) =
√

2
Bv(z)

, (A6)

p̄ = p⊥ + p‖
2

, (A7)

〈p̄〉 = 2
a2

∫ 1

0

dψ
B

p̄, (A8)

Λ = r2
w + a2

r2
w − a2

. (A9)

Equation (A4) relates the radial coordinate r and the magnetic flux ψ through a ring
of radius r in the z plane. The magnetic field B = B(ψ, z), weakened by the plasma
diamagnetism, in the paraxial (long–thin) approximation (which assumes small curvature
of field lines) is related to the vacuum magnetic field Bv = Bv(z) by the equation of
transverse equilibrium equation (A5). Kinetic theory predicts (see, for example, Newcomb
1981) that the transverse and longitudinal plasma pressures can be considered as functions
of the magnetic field B and magnetic flux ψ , i.e. p⊥ = p⊥(B, ψ), p‖ = p‖(B, ψ). In (A2),
one must assume that the magnetic field B is already expressed in terms of ψ and z,
and therefore p⊥ = p⊥(ψ, z), p‖ = p‖(ψ, z). The angled brackets in (A2) denote the mean
value of an arbitrary function of ψ and z over the plasma cross-section. In particular, the
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average value 〈ρ〉 of the density ρ = ρ(ψ, z) is calculated using a formula similar to (A8),
and ω is the angular frequency of oscillations.

Parameter Λ is, generally speaking, a function of the z coordinate. It implicitly depends
on the plasma parameters and magnetic field through the dependence of the plasma
column radius a = a(z) on them. In the special case of a proportional chamber, when
rw(z)/a(z) = const., the function Λ(z) becomes constant, which simplifies the equation
somewhat. Namely, for the sake of such simplification, in most papers by other authors
they assume that Λ = const..

Traditionally, two types of boundary conditions are considered. In the presence of
conducting end plates located in the magnetic mirrors at z = ±1, the boundary condition

φ(±1) = 0 (A10)

should be chosen. In a more general case, when the conducting end plate is installed
somewhere in the behind-the-mirror region, namely, in the plane with coordinates z =
±zE, the zero boundary condition must obviously be assigned to this plane

φ(±zE) = 0. (A11)

By solving the LoDestro equation with the boundary condition (A11), it is possible to
simulate the effect of the end MHD anchors with different stability margins.

If the plasma ends are electrically isolated, the boundary condition

φ′(±zE) = 0 (A12)

is applied at z = ±zE. As a rule, it implies that other methods of MHD stabilization in
addition to stabilization by a conducting lateral wall are not used.

An obvious fit to the LoDestro equation with boundary conditions (A11) or (A12) is the
trivial solution φ ≡ 0. To eliminate the trivial solution, we impose a normalization in the
form of one more condition

φ(0) = 1. (A13)

Taking into account the symmetry of the magnetic field in actually existing open traps with
respect to the median plane z = 0, it suffices to find a solution to the LoDestro equation
at half the distance between the magnetic mirrors, for example, in the interval 0 < z < 1.
Due to the same symmetry, the desired function φ(z) must be even, therefore

φ′(0) = 0. (A14)

It is convenient to search for a solution to the LoDestro equation by choosing the boundary
conditions (A13) and (A14). In theory, a second-order linear ordinary differential
condition with two boundary conditions must always have a solution. However, the third
boundary condition (A11) or (A12) can only be satisfied for a certain combination of
parameters. If the parameters of the plasma, magnetic field and geometry of the lateral
conducting wall are given, the third boundary condition should be considered as a
nonlinear equation for the square ω2 of frequency ω. If the root of such an equation is
positive, the MHD oscillations with azimuthal number m = 1 are stable; if ω2 < 0, then
instability takes place. On the margin of the stability zone ω2 = 0. In this case, the solution
of the boundary-value problem (A2), (A13), (A14) with the additional boundary condition
(A11) or (A12) gives the critical value of beta, respectively both βcr1 and βcr2 or only βcr2.

As was mentioned by Kotelnikov et al. (2023), the LoDestro equation (A2) with
boundary conditions (A11) or (A12) constitutes the standard Sturm–Liouville problem.
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At first glance, it may seem that the solution of such a problem is rather standard.
However, the equation has the peculiarity that its coefficients could be singular. In the
anisotropic pressure model A1 relevant to the transverse NBI, the singularity appears near
the minimum of the magnetic field in the limit β → 1. In the case of oblique NBI models
A2, A3, . . . , some coefficients of the LoDestro equations can have a singularity near point
z where the condition (3.7) of the mirror stability breaks at the plasma column axis.

For example, in the A3 model, the singularity occurs at p0 → pmm = 4 in a magnetic
field b = 3/4, which corresponds to bv = √

27/32. Specifically, the coefficient at the
function φ(z) in (A2) has a second-order pole, −217b′

v(z)
2/36( p − pmm)

2, and the
coefficient at the first derivative φ′(z) has a first-order pole, 11b′

v(z)/9
√

6( p − pmm). For
the magnetic field model (2.3), the coordinate of the singular point can be found explicitly

zmm = 2
π

sin−1

⎛
⎝(3

√
6R − 8

8M − 8

)1/q
⎞
⎠ . (A15)

Reproducing the method of § 5 of Kotelnikov et al. (2023), we denote by zR the
coordinate of the turning point on the z axis, where b = bv = 1 and p⊥ = p‖ = 0. For
the magnetic field model (2.3) we have

zR = 2
π

arcsin

((
R − 1
M − 1

)1/q
)
. (A16)

In the adopted models of an anisotropic plasma, its pressure is zero in the region zR < z <
1 between the turning point b = bv = 1 and the magnetic mirror throat b = bv = M/R. At
zero pressure, the LoDestro equation (A2) takes an extremely simple form

0 = d
dz

[
(Λ+ 1)

dφ
dz

]
. (A17)

Its solution is the equality
[Λ(z)+ 1]φ′(z) = const., (A18)

where the constant on its right-hand side can be found from the boundary condition at
z = zE.

In the case of a plasma with electrically isolated ends, the boundary condition (A12) at
z = zE should be applied, so that φ′(zE) = 0. Hence, the constant on the right-hand side of
(A18) is also zero. Since the factorΛ(z)+ 1 is greater than zero everywhere, we conclude
that φ′(z) = 0 in the entire region zR < z < zE. Thus, it is sufficient to find a numerical
solution of the original equation (A2) in the region 0 < z < zR, but one must be careful
when setting the boundary conditions for z = zR.

It should be taken into account that the derivative φ′(z) undergoes a jump at z = zR.
Indeed, integrating (A2) over an infinitesimal neighbourhood of the point zR from z−

R to z+
R

yields the equation

[Λ(zR)+ 1]
[
φ′(z+

R )− φ′(z−
R )
] = [Q(z+

R )− Q(z−
R )
]
φ(zR), (A19)

in which we took into account that Λ, φ and 〈p̄〉 are continuous at the point z = zR, in
contrast to the derivative φ′(z) and the coefficient

Q(z) = B′
v

Bv
+ 2a′

a
= 2a′

a
− 2a′

v

av
. (A20)
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The jump in the coefficient is due to the fact that, for b = bv = 1, the derivative of
functions such as (3.18) jumps (only in the case of pressure models A1 and A2). Since
φ′(z+

R ) = 0 and Q(z+
R ) = 0, (A19) yields the value φ′(z−

R ) that the derivative of φ′(z) must
have at the point z−

R on the right boundary of the interval 0 < z < zR from its inner side

φ′(z−
R ) = Q(z−

R )

Λ(zR)+ 1
φ(zR). (A21)

When solving (A2) on the interval 0 < z < z−
R , the boundary condition (A21) should be

used instead of (A12). Note that the zE coordinate is not included in (A21).
For all pressure models parameter Q(z−

R ) can be found in analytic form. Namely, for
model A1

Q−
∞ = − 2p

(1 − 2p)
b′
v(1), (A22)

Q−
1 =

(
1 + log(1 − 2p)

2p

)
b′
v(1), (A23)

Q−
2 = 1

2

⎛
⎜⎜⎝

√
2
√

1
p

− 2 sin−1
(√

2
√

p
)

2p − 1
+ 2

⎞
⎟⎟⎠ b′

v(1), (A24)

Q−
4 = 1

2

((
2p

2p − 1

)3/4
(

tan−1

(
4

√
2p

2p − 1

)
+ tanh−1

(
4

√
2p

2p − 1

))

+

⎧⎪⎪⎨
⎪⎪⎩8 4

√
p + 4

√
2 − 4p log

(√
1 − 2p +

√
2p − 23/4 4

√
(1 − 2p)p

)

− 4
√

2 − 4p log
(√

1 − 2p +
√

2p + 23/4 4
√
(1 − 2p)p

)

− 2(−1)3/4 4
√

4p − 2 tan−1

⎛
⎜⎜⎝1 − 1 + i

4

√
1 − 1

2p

⎞
⎟⎟⎠

+ 2(−1)3/4 4
√

4p − 2 tan−1

⎛
⎜⎜⎝1 + 1 + i

4

√
1 − 1

2p

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭
/{

4 4
√

p
}
⎞
⎟⎟⎠ b′

v(1);

(A25)

for model A2

Q−
∞ = p

p − 1
b′
v(1), (A26)

Q−
1 = p + log(1 − p)

p
b′
v(1), (A27)
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Q−
2 = 1

2

(
2 − 2 sin−1 (√p

)
√
(1 − p)p

)
b′
v(1), (A28)

Q−
4 = 1

2

{[
8 4
√

p +
√

2 4
√

1 − p log
(√

1 − p + √
p −

√
2 4
√
(1 − p)p

)

−
√

2 4
√

1 − p log
(√

1 − p + √
p +

√
2 4
√
(1 − p)p

)

+ 2
√

2 4
√

1 − p tan−1

(
1 −

√
2 4

√
p

1 − p

)

− 2
√

2 4
√

1 − p tan−1

(√
2 4

√
− p

p − 1
+ 1
)]/[

4 4
√

p
]

+
(

p
p − 1

)3/4 (
tan−1

(
4

√
p

p − 1

)
+ tanh−1

(
4

√
p

p − 1

))}
b′
v(1),

(A29)

where

b′
v(1) = πq(R − 1)

2R

√(
M − 1
R − 1

)2/q

− 1. (A30)

For model A3 and above
Q−

∞ = Q−
1 = Q−

2 = Q−
4 = 0. (A31)

Let us move on to solving (A2) with boundary conditions (A13) and (A14) for z = 0 and
(A11) for z = zE. As shown above, in the region zR < z < zE the desired solution satisfies
(A18) but the constant in this equation is now equal to [Λ(zR)+ 1]φ′(z+

R ), rather than zero.
Hence, the derivative φ′(z) at z = z+

R is equal to

φ′(z+
R ) = −φ(zR)

[Λ(zR)+ 1]
∫ zE

zR

dz
Λ(z)+ 1

. (A32)

Substituting φ(z+
R ) into (A19) and taking into account that Q(z+

R ) = 0 yields the derivative
φ′(z−

R ) on the right boundary of the interval 0 < z < zR from its inner side

φ′(z−
R ) =

⎡
⎢⎢⎣ Q(z−

R )

Λ(zR)+ 1
− 1

[Λ(zR)+ 1]
∫ zE

zR

dz
Λ(z)+ 1

⎤
⎥⎥⎦φ(zR). (A33)

This is the boundary condition that should be used instead of (A11) in the problem of
ballooning instability with a combination of lateral wall stabilization and stabilization by
conducting end plates. In the case of Λ(z) = const. under consideration in this paper it
reduces to

φ′(z−
R ) =

[
Q(z−

R )

Λ+ 1
− 1

zE − zR

]
φ(zR). (A34)

If a conducting limiter is installed before the magnetic plug at mirror ratio L, R < L <
M, as in the RwPr or RwSt configurations, then the limiter coordinate zE is calculated by a
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formula similar to (A16), in which R → L should be replaced. If the conducting end plate
is placed behind the magnetic plug as in BwSt or BwPr configuration, then

zE = 2 − 2
π

arcsin

((
L − 1
M − 1

)1/q
)
. (A35)

The integrals in (A32) and (A33) were calculated analytically. For example, for the
magnetic field model (3.28) with the index q = 2, a relatively short expression is found∫ 1

zR

Λ(zR)+ 1
Λ(z)+ 1

dz = 1

π
√

M
(
r2

w − 2
) ×

[
−π

(√
M r2

w (zs − 1)+ M + 1
)

+ π (M − 1) cos (πzs)

+ 2 (M + 1 − (M − 1) cos (πzs)) tan−1
(√

M tan
(πzs

2

))]
, (A36)

where

r2
w = a2

0
Λ0 + 1
Λ0 − 1

> 2 (A37)

denotes the dimensionless square of the radius of the conducting wall in the model of a
straightened cylinder. For magnetic field profiles with indices q = 4 and q = 8, much more
cumbersome formulas are obtained, but they still speed up the calculation of integrals by
several times as compared with numerical integration.
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