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Conditions for a plane projective

metric to be a norm

B.B. Phadke

Let J? be a metrization with distance xy of an open convex

set D in the '2-dimensional real affine plane such that

xy + yz = xz whenever x, y, z lie on an affine line with y

•between x and z and such that all the balls pa; 5 p are

compact. The study of such metrics, called open plane

projective metrics falls under the topic of Hubert's Problem IV

of his famous mathematical problems. In this paper it is proved

that if in R the sets of points equidistant from lines lie

again on lines then D must be the entire affine plane and the

distance must in fact be a norm. The paper contributes to and

gives extensions of similar results proved earlier. The novel

features of the present result are that in the space

collinearity of points x, y, z is taken only as a sufficient

condition for the equality xy + yz = xz . Consequently the

solution encompasses all normed linear planes, that is, norms

whose unit circles are not necessarily strictly convex are also

admitted.

1. The background

The idea of using a flatness condition on the equidistant loci is due

to Funk [4]. However, he considered only the case when D is either the

entire affine plane or the interior of a strictly convex closed curve.

Also his metric was finslerian. He showed that we obtain a minkowskian

(normed linear) geometry or his "Geometrie der spezifischen
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Massbestimmung", see [3, p. 232], when equidistant loci are lines locally,

that is an affine segment S in the space has a convex neighbourhood U

such that the points x in U at a constant distance from the line

containing S l ie on lines. Phadke [5] considered the problem in n

dimensions in the context of a straight desarguesian G-space (that i s ,

the space R as above except that xy + yz = xz if and only if x, y, z

l i e on an affine segment in that order). This formulation excluded all

normed linear spaces whose unit balls are not strictly convex because in a

straight G-space spheres are strictly convex whenever they are convex.

Recently Busemann [Z] generalized his G-spaces to include spaces in which

segments are not unique even locally. These spaces are called "chord

spaces". In a straight chord space convexity of balls does not always

imply strict convexity. The space R of the present paper is a straight

desarguesian chord space. Thus we show that the property of flatneas of

equidistant loci can be used to characterize the class of all normed linear

planes among the wider class of all straight desarguesian chord planes.

2. Statement of the theorem

Let R be a space as defined at the beginning of the paper. To
formulate our result , for a set U and a point p define
Mp = inf{mp | m (. M] and for a > 0 the equidistant locus
E(M, a) = {x | Mx = a] . Denoting the two sides of a line L by a"(£) ,

we define E~(L, a) = E(L, a) n o~(L) . We prove the following.

THEOREM. The space R is a normed linear space if and only if the
equidistants of affine lines are again affine lines.

A word about notation. Whenever Mp = qp we say that q is a foot
of p on M . The notation (pqr) means that p, q, r satisfy
pq + qr = pr . When p, q, r are points of an affine segment with q
lying between p and r we will write [pqr] . The symbol F(p, l)
stands for the set of feet of p on L . Q{a, b) denotes the affine
segment joining a and b .

3. Convexity of circles and the perpendicularity

To prove the theorem stated above the major step is to show that D

must be the entire affine plane. We first show that the circles must be
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convex, that is, whenever u and V lie in the disc px 5 p the affine

segment joining u and v also lies in that disc. Note first that

L, = #(£_, o) implies £„ = E[L , a) because choosing x € L , y € L

with xy = a we draw L, through y such that L = E[L , a) . If L-

did not coincide with £„ then L_ would contain points z on the side

of L ? not containing £ . All these points are at a distance greater

than a which is a contradiction to 3 € E[L-I > a) •

We use this fact to prove that the set of feet of a point on a line is

a connected set. Let x, y (. F(p, L) , xp = yp = a . If L' = E(L, a)

with p (. L and [xmy] then m has a foot n on L' . Q(m, n) meets

either Q(p, y) or Q(p, x) , say, Q{p, y) in I . If Im > ly we

would have ny £ nZ+Zj/ < nl+lm = run = a . But nz/ < a contradicts the

symmetry of "being equidistant" which was proved above. Hence Im £ ly .

Consequently a S pm £ pl+lm £ pl+ly = py = a . Thus m is also a foot of

p on L . This proves that F(p, L) is a connected set for all p and

all L . A result of Busemann [2, p. 115D now implies that all the circles

px 5 p are convex.

A line H is said to be perpendicular to the line L if H

intersects L in a point / and each point of H has / as its foot on

L . Busemann's results [2, p. 115] again imply that when all the circles

are convex each p £ L is the origin of perpendiculars whose union

intersects L in a point or an affine segment. We note that although

perpendiculars exist, they are not unique (which was the case in Phadke

C5]).

4. Classification of the domains D

Although the perpendiculars are not unique the following still holds.

Given two equidistants L and L^ and a point x between them there

exists a common perpendicular to L^ through x . In fact let H be a

perpendicular through x to L. . Let H meet L in p and suppose

L. = E[L , a) . Take q (. H with qp = a . Since H is perpendicular to

L. , p is a foot of q on L . Hence q is at a distance a from
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L . Therefore q lies on L . Wow by the symmetry of the relation of

"being equidistant" q is also a foot of p on L . Hence the line

joining q to p , that is H , is perpendicular to £„ also. (See

Busemann [2, p. 115].)

In virtue of the above observation no extreme point of the affine

closure D of D can lie between two equidistants. Hence we can prove in

the same manner as in Phadke [5, p. 315] that D must either be a triangle

or a strip enclosed by two affine parallel lines or the entire affine

plane.

5. D is the entire affine plane

In this section we prove that our geometry cannot be defined inside a

triangle or a strip. The proof of the impossibility of the strip as given

in Phadke [5, p. 315, 3l6] does not need any change except one writes "a

perpendicular" in place of "the perpendicular". Hence we consider only the

case of- a triangle. Even in this case we can prove as in [5, p. 315] that

all equidistants of a line through a vertex must again pass through the

same vertex and that if a line does not pass through a vertex then all the

perpendiculars to that line pass through a vertex. However, the rest of

the proof given there cannot be carried through without modifications

because that proof used the continuous change of feet and perpendiculars

which is not available to us now because the feet and the perpendiculars

are no longer unique.

Nevertheless we prove that lines through one vertex are perpendicular

to lines through another vertex. Let a, b, a be the vertices of the

triangle D . Let L be a line passing through the vertex a and let

b € a~(L) and a € a (D . Let x (. a (L) have p € L as its foot. If

[cxp] does not hold let the line joining c and x meet L in q . We

prove xq = xp . For if xp < xq we can find a point u with [xuq]

such that xp < xu and the line L' joining u and p does not pass

through a vertex. But then the perpendicular to L' through x must pass

through c which is a contradiction to xu > xp . Thus lines passing

through a vertex are always perpendiculars. This implies that the line

joining c and p is perpendicular to all other lines through p . This
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is clearly impossible because otherwise a circle through p would shrink

to a segment on Q(c, p) . Thus the geometry cannot be defined inside a

triangle. As noted at the beginning of this section this implies that the

geometry can only be defined in the entire affine plane.

6. The metric is a norm

Since the geometry is defined in the entire affine plane, the

equidistant of a line is its affine parallel. We will show that every

metric circle px = p possesses parallel supporting lines at the endpoints

of every chord (diameter) through the centre. In fact if i is a

supporting line to the circle to an endpoint a of a diameter H then H

is a perpendicular to L . Consequently the equidistant to L through the

other end of H is also a supporting line of the circle. Since equi-

distant lines are affine parallels we have proved our assertion. By a

result of Busemann [J, p. 91] we know that a closed convex curve C has a

point 2 inside it as its affine centre if C possesses parallel support-

ing lines at the endpoints of every chord through z . Hence in our

geometry the metric centre p of a circle px = p is also its affine

centre. Therefore for any segment the metric midpoint is the same as its

affine midpoint. It is well known, see Busemann [I, p. 91*], that this

implies that the metric is a norm. This completes the proof of our theore

theorem.
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