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Abstract

Although variance swaps have become an important financial derivative to hedge against
volatility risks, closed-form formulae have been developed only recently, when the
realized variance is defined on discrete sample points and no continuous approximation
is adopted to alleviate the mathematical difficulties associated with dealing with the
discreteness of the sample data. In this paper, a new closed-form pricing formula for
the value of a discretely sampled variance swap is presented under the assumption that
the underlying asset prices can be described by a mean-reverting Gaussian volatility
model. With the newly found analytical formula, not only can all the hedging ratios of
a variance swap be analytically derived, the numerical values of the swap price can be
efficiently computed as well.
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1. Introduction
Volatility measures the standard deviation of the returns of an underlying asset; thus,
it has undoubtedly become the most commonly used measure of risk. Volatility risk
has drawn a wider attention in the financial markets and trading this risk has also
increasingly become important to market practitioners; ranging from individuals to
financial institutions and pension funds in recent years, especially after the global
financial crisis. Since the mid-1990s, a new subset of derivative securities has arisen
which provides the investors with the opportunity to take a direct position, not in the
underlying asset, but in its volatility. Investors use volatility derivatives to trade the
spread between the realized and implied volatility levels, or hedge against volatility
risk of their portfolios. In practice, derivative products related to volatility and variance
have been experiencing sharp increases in trading volume recently [7].

Variance and volatility swaps are the first and most fundamental products and they
are now the most popular for their effective provision of volatility exposure. By nature,
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these products are forward contracts, which, at maturity, exchange the difference
between a fixed strike and realized variance/volatility, scaled by a predetermined
notional value. Generally, there are two types of volatility or variance swap products
[10]. One is the historical volatility or variance-based product whose payoff depends
on the realized volatility or variance discretely sampled at some prespecified sampling
points. Most products of this type are traded over-the-counter (OTC). Another class of
volatility or variance swaps is the implied-volatility-based products, such as the VIX
futures traded in the Chicago Board Options Exchange (CBOE). We shall primarily
focus our attention on variance swaps based on the former with the realized variance
being sampled discretely.

With rapid increase of the trading volume of variance swaps recently, both market
and academic interests for these products have increased and much research has been
devoted to develop efficient pricing methods. The valuation approaches for variance
swaps are generally classified into two types; numerical and analytical methods.

There are two subcategories of analytical methods. The most influential pioneering
works were proposed by Carr and Madan [8] and Demeterfi et al. [9], who showed how
to theoretically replicate a variance swap by a portfolio of standard options. Without
requiring to specify the function of the volatility process, their methods are indeed very
attractive. However, as pointed out by Carr and Corso [6], the replication strategy has a
drawback in that the sampling time of a variance swap in their models is assumed to be
continuous rather than discrete. Such an assumption implies that the results obtained
from their continuous models can only be viewed as an approximation for the real
cases in financial practice, in which all contacts are written with the realized variance
being calculated on a set of prespecified discrete sampling points. Another drawback
is that this strategy also requires options with a continuum of exercise prices, which is
not actually available in marketplaces. The second type of analytical methods is the
stochastic volatility models. Grunbichler and Longstaff [15] first proposed a pricing
model for volatility futures based on a mean-reverting square-root volatility process.
Heston and Nandi [18] derived an analytical solution for both variance and volatility
swaps based on the GARCH volatility process [17]. Howison et al. [19] considered
the pricing methods of variance swaps and volatility swaps under a variety of diffusion
and jump-diffusion models. Elliott et al. [11] developed a method to evaluate variance
swaps and volatility swaps under a continuous-time Markov-modulated version of the
stochastic volatility with regime switching. However, all these stochastic volatility
models assume continuous sampling of the realized variance processes, which results
in a systematic bias for the price of a variance swap. As pointed out by Zhu and Lian
[36], this assumption generally leads to large relative errors for variance swaps with
small sampling frequencies or long tenors.

Various numerical methods were also proposed recently. Little and Pant [20]
developed a finite-difference method for the valuation of the discretely sampled
variance swaps in an extended Black–Scholes framework with a local volatility
function. By exploring a dimension-reduction technique, their numerical approach
achieved both high efficiency and accuracy. Windcliff et al. [34] improved on the
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pricing algorithm for the discretely sampled volatility derivatives by allowing jumps in
the asset price process. Using the Monte Carlo (MC) simulation method, Broadie and
Jain [5] investigated the effect of discrete sampling and asset price jumps on the fair
strike prices of variance and volatility swaps under various stochastic volatility models
such as the Black–Scholes model [3], the Heston stochastic volatility model [16], the
Merton jump-diffusion model [22] and the Bates and Scott stochastic volatility and
jump model [2, 30].

Very recently, Zhu and Lian [36] presented an approach to obtain a closed-
form formula for variance swaps based on the discretely sampled realized variance
under Heston’s two-factor stochastic volatility model. Using the dimension-reduction
technique proposed by Little and Pant [20] and the generalized Fourier transform, they
found a simple formula by directly solving the governing partial differential equation
(PDE) system. Their newly derived exact formula shows a substantial advantage
in terms of both accuracy and efficiency over previous numerical or approximate
approaches in pricing variance swaps, which is a very useful tool in trading practice in
financial markets. Rujivan and Zhu [25] proposed a simplified approach which led to
exactly the same results presented by Zhu and Lian [36], but without the introduction
of a new state variable and the utilization of the generalized Fourier transform.

We present a new pricing formula for discretely sampled variance swaps based
on the mean-reverting Gaussian volatility model. Upon applying the general asset
valuation theory to obtain the associated PDE, and then solving it, we derive a closed-
form exact solution for discretely sampled variance swaps with the realized variance
defined as the sum of the percentage increment of the underlying asset price. We
also demonstrate through analytic asymptotic analysis that the pricing formula we
obtain for the discretely sampled variance swaps converges to that of its continuously
monitored counterpart.

In Section 2, we provide a description of the mean-reverting Gaussian volatility
model and variance swaps, followed by our analytical formula for the variance
swaps. In Section 3, some numerical tests are given, demonstrating the correctness
of our solution from various aspects. In the mean time, we also present some
comparisons with the Heston model, discussions for the restrictions of parameter space
and sensitivity tests for the key parameters. A brief summary is stated in Section 4.

2. Our model

This section briefly reviews the mean-reverting Gaussian volatility model, which
we adopt to describe the dynamics of the underlying asset first. Then, we shall show
our detailed approach to analytically solve the associated PDE, based on the method
proposed by Rujivan and Zhu [25].

2.1. The mean-reverting Gaussian volatility model Starting with Vasicek [32],
the mean-reverting Gaussian process (MRGP, also called the Ornstein–Uhlenbeck
process) is among the most commonly used stochastic processes in finance. We use the
MRGP to model interest rate [14, 32], spread [12], hazard rate [1], stochastic volatility
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[4, 29, 31], commodity convenience yields [21, 28] and other mean-reverting financial
variables. Nelson [23] has shown that the MRGP is the diffusion limit of the GARCH
(1,1) model.

In the mean-reverting Gaussian volatility model, the underlying asset price S t is
modelled by the following diffusion process with a stochastic instantaneous volatility
vt:

dS t = µS tdt + vtS tdBS
t ,

dvt = κ(θ − vt)dt + σdBv
t ,

where µ is the expected return of the underlying asset, θ is the long-term mean of
volatility, κ is a mean-reverting speed parameter of the volatility and σ is the so-called
volatility of volatility, which provides the magnitude of uncertainty in volatility. The
two Wiener processes dBS

t and dBv
t describe the random noise in asset and volatility,

respectively. They are assumed to be correlated with (dBS
t , dBv

t ) = ρ dt.
Using the existence theorem of the equivalent martingale measure, we change the

real probability measure to a risk-neutral probability measure and describe the process
as

dS t = rS t dt + vtS t dB̃S
t ,

dvt = κ∗(θ∗ − vt) dt + σ dB̃v
t ,

(2.1)

where r denotes the riskless interest rate; κ∗ and θ∗ are the risk-neutral parameters.
For the rest of this paper, our analysis will be based on the risk-neutral probability
measure.

Notice that the MRGP allows volatility to take negative values, unlike the Heston
model, and this is not admissible since volatility is positive by definition. However,
as pointed out by Schöbel and Zhu [26], the probabilities that the volatility could
become negative are negligibly small under the MRGP for a wide range of reasonable
parameter values. Therefore, the MRGP is still among the most commonly used
stochastic processes in finance for its tractability.

2.2. Variance swaps Variance swaps are forward contracts on the future realized
variance of the returns of the specified underlying asset. The long position of a
variance swap pays a fixed delivery price at expiration and receives the floating
amounts of annualized realized variance, while the short position is just the opposite.
Thus, it can be easily used for investors to gain exposure to volatility risk.

Usually, the payoff of a variance swap at expiry can be written as VT = (σ2
R − K) ×

L, where T is the lifetime of the contract, σ2
R is the annualized realized variance over

the contract life [0,T ], K is the strike price for the variance swap and L is the notional
amount of the swap in dollars per annualized volatility point squared.

The procedure of how the realized variance should be calculated is usually clearly
specified in the contract. It usually includes details about the source and the
observation frequency of the price of the underlying asset, the annualization factor
which is used in moving to an annualized variance and the method of calculating the
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variance. A typical formula for the measure of realized variance is

σ2
R =

AF
N

N∑
i=1

(S ti − S ti−1

S ti−1

)2
× 1002, (2.2)

where S ti is the closing price of the underlying asset at the ith observation time ti,
and there are altogether N observations. AF is the annualized factor converting this
expression to an annualized variance. We assume equally spaced discrete observations,
so that the annualized factor is a simple expression AF = 1/∆t = N/T .

Under the risk-neutral argument, the value of a variance swap at time t is the
expected present value of the future payoff, Vt = EQ

t [e−r(T−t)L(σ2
R − K)], where Q is

the risk-neutral probability measure and EQ
t [·] = EQ[· | Ft] denotes the conditional

expectation at time t; Ft is the filtration up to time t. This should be zero at the
beginning of the contract since there is no cost to enter into a swap. Therefore,
the fair variance delivery price is easily defined as K = EQ

0 [σ2
R]. The variance swap

valuation problem is, therefore, reduced to calculating the expectation value of the
future realized variance in the risk-neutral world.

2.3. Our approach to price variance swaps We discuss our approach to find an
analytical solution for the fair delivery price of a discretely sampled realized variance
swap under the mean-reverting Gaussian volatility process. Our solution approach
begins with taking the expectation of σ2

R in (2.2). Since

EQ
0 [σ2

R] = EQ
0

[AF
N

N∑
i=1

(S ti − S ti−1

S ti−1

)2]
× 1002 =

1
T

N∑
i=1

EQ
0

[(S ti − S ti−1

S ti−1

)2]
× 1002, (2.3)

the problem of pricing a variance swap, therefore, reduces to calculating N
expectations in the form

EQ
0

[(S ti − S ti−1

S ti−1

)2]
(2.4)

for some fixed time period ∆t and N different tenors ti = i∆t (i = 1, . . . , N). The rest
of this section focuses on obtaining the expectation of this expression. In the process
of calculating this expectation, i is regarded as a constant. Hence, both ti and ti−1 are
regarded as known constants.

Noticing that F0 ⊂ Fti−1 and S ti−1 is Fti−1-measurable, we apply the tower property
[33, p. 88] to the conditional expectation in (2.4) and obtain a double conditional
expectation as follows:

EQ
0

[(S ti − S ti−1

S ti−1

)2]
= EQ

0

[
EQ

ti−1

{(S ti − S ti−1

S ti−1

)2}]
= EQ

0

[ 1
S 2

ti−1

{EQ
ti−1

(S 2
ti ) − 2S ti−1 EQ

ti−1
(S ti )} + 1

]
. (2.5)

The expectations EQ
ti−1

[S ti ] and EQ
ti−1

[S 2
ti ] on the right-hand side of (2.5) are easily

calculated by using the following proposition with γ = 1 and γ = 2, respectively.
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Proposition 2.1. For any given γ ∈ R\{0}, if S t follows the dynamics described in (2.1)
and the parameters satisfy (κ∗ − ργσ)2 > σ2γ(γ − 1), then the conditional expectation
of Yt = S γ

t is

EQ
ti−1

[Yt] = EQ[Yt | (Yti−1 = y, vti−1 = v)] = yeC(γ, ti−t)+D(γ, ti−t)v+E(γ, ti−t)v2
(2.6)

for all t ∈ [ti−1, ti] and (y, v) ∈ (0,∞) × (−∞,∞), with

C(γ, τ) = −
1
2

ln
[
{â(γ) + b̂(γ)}eb̂(γ)τ − â(γ) + b̂(γ)

2b̂(γ)

]
+

[ â(γ) + b̂(γ)
4

+
2κ∗2θ∗2γ(γ − 1)

b̂2(γ)
+ γr

]
τ

−
4κ∗2θ∗2γ(γ −1)[{2â(γ) + b̂(γ)}eb̂(γ)τ− 4â(γ)eb̂(γ)τ/2+ 2â(γ) − b̂(γ)]

b̂3(γ)((â(γ) + b̂(γ))eb̂(γ)τ − â(γ) + b̂(γ))
,

D(γ, τ) =
κ∗θ∗γ(γ − 1)(eb̂(γ)τ/2 − 1)2

σ2b̂(γ)((â(γ) + b̂(γ))eb̂(γ)τ − â(γ) + b̂(γ))
,

E(γ, τ) =
γ(γ − 1)(eb̂(γ)τ − 1)

(â(γ) + b̂(γ))eb̂(γ)τ − â(γ) + b̂(γ)
,

(2.7)

where â(γ) = 2κ∗ − 2ργσ and b̂(γ) =
√

â2(γ) − 4σ2γ(γ − 1).

The proof of this proposition is given in Appendix A. The inequality imposed
in Proposition 2.1 is a sufficient condition for a global solution. For pricing
variance swaps, only two values γ = 1 and γ = 2 are needed, which have a
restricted global solution with κ∗ > (2ρ +

√
2)σ or κ∗ < (2ρ −

√
2)σ in the parameter

space. For (2ρ −
√

2)σ ≤ κ∗ ≤ (2ρ +
√

2)σ, only local solutions exist, as shown in
Appendix A.

Using Proposition 2.1 with γ = 1 and γ = 2, respectively, we compute the two
conditional expectations

EQ
ti−1

[S ti ] = S ti−1 eC(1,∆t)+D(1,∆t)vti−1 +E(1,∆t)v2
ti−1 = S ti−1 er∆t, (2.8)

EQ
ti−1

[S 2
ti ] = S 2

ti−1
eC(2,∆t)+D(2,∆t)vti−1 +E(2,∆t)v2

ti−1 . (2.9)

Therefore,

EQ
0

[(S ti − S ti−1

S ti−1

)2]
= EQ

0 [eC(2,∆t)+D(2,∆t)vti−1 +E(2,∆t)v2
ti−1 − 2er∆t + 1], (2.10)

obtained by substituting the expectations in (2.8) and (2.9) into (2.5).
For the case i = 1, the time ti−1 = 0 and vti−1 = v0 is F0-measurable, so the

expectation in (2.10) can be reduced to

EQ
0

[(S t1 − S 0

S 0

)2]
= eC(2,∆t)+D(2,∆t)v0+E(2,∆t)v2

0 − 2er∆t + 1. (2.11)
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For any other cases with i > 1, notice that the expectation in (2.10) is not related to the
process S t, since the right-hand side of (2.10) is independent of S t. So,

EQ
0

[(S ti − S ti−1

S ti−1

)2]
= EQ

0 [eC(2,∆t)+D(2,∆t)vti−1 +E(2,∆t)v2
ti−1 − 2er∆t + 1]

=

∫ ∞

−∞

f (vti−1 )p(vti−1 |v0) dvti−1 , (2.12)

where f (v) = eC(2,∆t)+D(2,∆t)v+E(2,∆t)v2
− 2er∆t + 1 and p(vti−1 | v0) is the transition density

of the MRGP from state (v0, 0) to state (vti−1 , ti−1): that is, if we solve the MRGP with
v(0) = v0, then the random variable v(ti−1) has density p(vti−1 | v0) in the variable vti−1 .

We derive the transition density p(vti−1 | v0) by solving the MRGP with v(0) = v0.
Applying Itô’s formula [24, p. 44] to eκ

∗tv(t) gives

deκ
∗tv(t) = κ∗eκ

∗tv(t) dt + eκ
∗t[κ∗(θ∗ − v(t)) dt + σ dB̃v

t ]

= κ∗θ∗eκ
∗t dt + σeκ

∗t dB̃v
t . (2.13)

Integration of both sides of (2.13) yields

v(t) = e−κ
∗tv0 + θ∗(1 − e−κ

∗t) + σe−κ
∗t
∫ t

0
eκ
∗ s dB̃v

s. (2.14)

Note that the random variable
∫ t

0 eκ
∗ s dB̃v

s appearing on the right-hand side of (2.14) is
normally distributed with mean zero and variance∫ t

0
e2κ∗ s ds =

1
2κ∗

(e2κ∗t − 1).

Therefore, v(t) is normally distributed with mean e−κ
∗tv0 + θ∗(1 − e−κ

∗t) and variance
(σ2/2κ∗)(1 − e−2κ∗t). For simplicity of notation, we denote µ̂(t) = e−κ

∗tv0 + θ∗(1 − e−κ
∗t)

and σ̂2(t) = (σ2/2κ∗)(1 − e−2κ∗t). Then, the transition density of the MRGP is

p(vti−1 | v0) =
1

√
2πσ̂(ti−1)

e−[vti−1−µ̂(ti−1)]2/2σ̂2(ti−1). (2.15)

After a careful calculation, we have successfully carried out the integration in
equation (2.12) analytically and obtained a fully closed-form solution as our final
solution for the price of a variance swap with the realized variance defined by (2.2). We
have the following solution: when the parameters satisfy [1/2σ̂2(ti−1)] − E(2,∆t) > 0,

EQ
0

[(S ti − S ti−1

S ti−1

)2]
= (1 − 2σ̂2(ti−1)E(2,∆t))−1/2e[(σ̂2(ti−1)D(2,∆t)+µ̂(ti−1))2/2σ̂2(ti−1)(1−2σ̂2(ti−1)E(2,∆t))]+L(t)

− 2er∆t + 1, (2.16)

where L(t) = C(2,∆t) − µ̂2(ti−1)/2σ̂2(ti−1). The details of analytically carrying out the
integration in equation (2.12) are provided in Appendix B.
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Utilizing equations (2.11) and (2.16), the summations in equation (2.3) are carried
out. When the parameters satisfy [1/2σ̂2(ti−1)] − E(2,∆t) > 0, for any 2 ≤ i ≤ N, we
obtain the fair strike price for the variance swap as

K = EQ
0 [σ2

R] =
1
T

[
f (v0) +

N∑
i=2

fi(v0)
]
× 1002, (2.17)

where

fi(v0) = (1 − 2σ̂2(ti−1)E(2,∆t))−1/2e[(σ̂2(ti−1)D(2,∆t)+µ̂(ti−1))2/2σ̂2(ti−1)(1−2σ̂2(ti−1)E(2,∆t))]+L(t)

− 2er∆t + 1

and f (v0) = eC(2,∆t)+D(2,∆t)v0+E(2,∆t)v2
0 − 2er∆t + 1.

Note that the restrictions for any 2 ≤ i ≤ N, [1/2σ̂2(ti−1)] − E(2,∆t) > 0 are reduced,
since 1/2σ̂2(t) = κ∗/σ2(1 − e−2κ∗t) is decreasing as a function of t, and 0 = t0 <
t1 < · · · < tN = T . So, the above restrictions are reduced for i = N, [1/2σ̂2(tN−1)] −
E(2,∆t) > 0, namely,

κ∗

σ2(1 − e−2κ∗(N−1)∆t)
− E(2,∆t) > 0. (2.18)

Further, κ∗/[σ2(1 − e−2κ∗(N−1)∆t)] − E(2,∆t) is decreasing as a function of ∆t, because
its derivative function is always negative. So, if ∆t is sufficiently small, that is,
∆t < ∆t∗, condition (2.18) is fulfilled, where

∆t∗ = min
∆t>0

[
κ∗

{σ2(1 − e−2κ∗(N−1)∆t)}
− E(2,∆t) = 0

]
.

Contracts with log returns are usually priced in a similar way as well. But
the pricing formula in this case is much more complicated and the corresponding
derivation process is also quite involved. We plan a forthcoming paper to price log
returns in a similar way.

A couple of more points should be noted at the end of this subsection. Firstly,
with the newly found analytical solution, all the hedging ratios of a variance swap are
also analytically obtained by taking partial derivatives against various parameters in
the model. Since the partial derivatives are readily calculated with some symbolic
calculation packages, these are omitted here. Secondly, using formula (2.7) in
Proposition 2.1, one easily derives an explicit formula for every conditional moment
of the underlying asset price, EQ

ti−1
[S γ

t ], under the mean-reverting Gaussian volatility
model (2.1). These explicit formulae are used in a similar way to what has been
presented in this paper to price derivatives based on higher moments such as skewness
swaps and kurtosis swaps discussed by Schoutens [27].

2.4. Fair strike price for continuously monitored variance swaps As mentioned
in Section 1, most of the existing pricing models of variance derivative products
assume continuous sampling of the realized variance processes. For the convenience
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of calculation, in the continuous models, the realized variance (2.2) is usually
approximated by

σ2
R =

1
T

∫ T

0
v2

t dt × 1002. (2.19)

The expectation of this continuous integral is easily obtained by utilizing the
second stochastic process defined in equation (2.1). Indeed, noticing that v(t) is
normally distributed with mean µ̂(t) = e−κ

∗tv0 + θ∗(1 − e−κ
∗t) and variance σ̂2(t) =

σ2(1 − e−2κ∗t)/2κ∗, we have EQ
0 [v2

t ] = Var[vt] + E2[vt] = σ̂2(t) + µ̂2(t), where Var[·]
denotes the variance of a random variable. Therefore, the fair strike price of the
continuously sampled variance swaps is

K∞ = EQ
0 [σ2

R] =
1
T

∫ T

0
EQ

0 [v2
t ] dt × 1002 =

1
T

∫ T

0
(σ̂2(t) + µ̂2(t))dt × 1002

=

[
θ∗2 +

σ2

2κ∗
+

2θ∗(v0 − θ
∗)

κ∗T
(1 − e−κ

∗T ) +
(v0 − θ

∗)2 − σ2/2κ∗

2κ∗T
(1 − e−2κ∗T )

]
× 1002.

(2.20)

It is proved that our solution (2.17) approaches the equation (2.20) by taking the
asymptotic limit of vanishing sampling time interval, that is,

K∞ = lim
∆t→0

1
T

[
f (v0) +

N∑
i=2

fi(v0)
]
× 1002

=

[
θ∗2 +

σ2

2κ∗
+

2θ∗(v0 − θ
∗)

κ∗T
(1 − e−κ

∗T ) +
(v0 − θ

∗)2 − σ2/2κ∗

2κ∗T
(1 − e−2κ∗T )

]
× 1002.

(2.21)

The details of the proof of this limit are presented in Appendix C. This limit implies
that the continuous sampling case is mostly viewed as a special case of our solution
for the discrete sampling variance swaps with the sampling period shrinking down to
zero.

3. Numerical tests and discussion

In this section, we show some numerical tests for illustration purposes. Some
comparisons with the Monte Carlo (MC) simulations give readers a sense of
verification for our solution. In addition, comparisons with the continuous sampling
model will also help readers understand the improvement in accuracy with our exact
solution. We also discuss the connection between the Heston model and ours, the
restrictions of parameter space and their influence on the strike price and show the
sensitivity of the fair strike price of discretely sampled variance swaps to the change
of the key parameters in the model.

In our numerical examples, we adopt the following nondimensional parameters
(unless otherwise stated): v0 = 0.2, κ∗ = 4, θ∗ = 0.2, ρ = −0.64, σ = 0.1, r = 0.0953,
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Figure 1. A comparison of fair strike values based on the discrete model, continuous model and MC
simulations.

T = 1. This set of parameters for the mean-reverting Gaussian volatility model was
also adopted by Stein and Stein [31] and Schöbel and Zhu [26]. We took the asset
price S 0 = 1 and the number of the paths N = 200 000 for all the MC simulations
presented here.

3.1. Monte Carlo simulations The aim in our MC simulations is primarily to
obtain some benchmark values for our solution equation (2.17), so we do not focus our
attention on the use of some variance-reduction techniques that can further enhance the
computational efficiency. We employ the simple Euler–Maruyama discretization for
the mean-reverting Gaussian volatility model in our MC simulations:S t = S t−1 + rS t−1∆t + vt−1S t−1

√
∆t

(
ρW1

t +

√
1 − ρ2W2

t
)
,

vt = vt−1 + κ∗(θ∗ − vt−1)∆t + σ
√

∆tW1
t ,

(3.1)

where W1
t and W2

t are two independent standard normal random variables.
We have shown in Figure 1 and Table 1 that there are three sets of data for the strike

price of variance swaps obtained from equation (2.17), those from MC simulations
(3.1) (the numbers in the parentheses are the standard errors for those simulation
results) and the numerical results obtained from the continuously monitored realized
variance equation (2.20). The results from our exact solution perfectly match the
results from the MC simulations, which illustrates that our exact solution is correct.

From Figure 1, the values of our discrete model asymptotically approach the values
of the continuous approximation model when the sampling frequency increases and
the variance defined in (2.19) appears to be the limit of the realized variance defined in
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Table 1. The numerical results of the discrete model, continuous model and MC simulations.

Sampling frequency Discrete model Continuous model MC simulations

Quarterly (N = 4) 446.6086 410.9380
446.5703

(315.9506)∗

Monthly (N = 12) 421.9536 410.9380
421.8617

(187.1228)

Fortnightly (N = 26) 415.8955 410.9380
415.6284

(139.8798)

Weekly (N = 52) 413.3882 410.9380
413.6953

(113.9293)

Daily (N = 252) 411.4388 410.9380
411.4958
(88.2443)

∗The reason why the standard errors in our MC simulations seem to be a bit large is that the realized
variance defined by (2.2) has been magnified by 10 000 times.

equation (2.2) as ∆t→ 0. This is in line with our claim in (2.21) and once again verified
the correctness of our solution for the discrete sampling cases, taking the continuous
sampling case as a special case with the sampling period shrinking down to zero.

Compared with MC simulations, computational efficiency is enormously enhanced
in our exact solution in terms of computational time. The MC simulations take a
much longer time than our analytical solution does; for example, for weekly sampling
variance swaps when the number of paths is 500 000 in MC simulations, computational
time reaches 2 168.4 s, while implementing equation (2.17) just took 0.012 seconds.
This is not surprising at all since time consumption is a well-known drawback of MC
simulations. The difference is even more significant when the sampling frequency is
increased.

3.2. Comparison with Heston model We compare our formula (2.17) with the fair
strike price obtained by Rujivan and Zhu [25]. As pointed out by Schöbel and Zhu [26],
it is relatively difficult to exhibit the inherent connection between the Heston model
and our model since he models variance instead of volatility. If the volatility follows
a MRGP as in (2.1), from Itô’s formula, then the process for the squared volatility
y(t) = v2(t) is

dyt = [σ2 + 2κ∗θ∗
√

yt − 2κ∗yt] dt + 2σ
√

yt dB̃v
t . (3.2)

This is a mean-reverting double square-root process with the additional drift term
2κ∗θ∗

√
yt. For the special case θ∗ = 0, (3.2) is reduced to the Heston model with

parameters

κh = 2κ∗, θh =
σ2

2κ∗
, σh = 2σ. (3.3)

Indeed, Heston assumed that volatility followed an Ornstein–Uhlenbeck process
with a mean-reversion level equal to zero in Heston [16], that is,

dvt = −βvt dt + δ dBt. (3.4)
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Table 2. The numerical results of our formula and the formula in Rujivan and Zhu [25].

Sampling frequency Our formula Formula in Rujivan and Zhu [25]
Quarterly (N = 4) 85.9348 85.9348
Monthly (N = 12) 69.0009 69.0009
Weekly (N = 52) 62.7607 62.7607
Daily (N = 252) 61.2996 61.2996

Then, the variance of instantaneous stock returns y(t) = v2(t) follows a square-root
process

dyt = κh(θh − yt) dt + σh
√

yt dBt (3.5)

with

κh = 2β, θh =
δ2

κh
, σh = 2δ. (3.6)

The only difference between equation (2.1) and equation (3.4) is the mean-reversion
parameter θ∗, which in (2.1) generally differs from zero, whereas in (3.4) it is always
nil. Since θ∗ gives the level of volatility in the long run, the process (3.4) is not very
reasonable. But the Heston model is based on the process (3.5) not (3.4). Note that the
parameters in (3.5) are overdetermined by (3.6). Hence, for a wide range of values for
κh, θh and σh, process (3.5) cannot be derived from (3.4). Therefore, the two processes
(3.4) and (3.5) are not mutually consistent for many parameter values.

Table 2 gives the numerical results of our formula and the fair strike price obtained
in Rujivan and Zhu [25] with the parameters θ∗ = 0, κh = 2κ∗, θh = σ2/2κ∗ andσh = 2σ.
The values obtained from the two models are the same in this special case. The
theoretical proof of this consistency is in Appendix D.

3.3. Restrictions of parameter space We discuss the restrictions of parameter
space under which our formula (2.17) is financially meaningful, that is, the strike price
obtained from (2.17) is a nonnegative finite real number. Proposition 2.1 has shown
that for the parameters satisfying κ∗ > (2ρ +

√
2)σ or κ∗ < (2ρ −

√
2)σ, equation

(2.6) has a global solution, while for those satisfying (2ρ −
√

2)σ ≤ κ∗ ≤ (2ρ +
√

2)σ,
only local solutions of (2.6) exist. Indeed, for the parameters (2ρ −

√
2)σ ≤ κ∗ ≤

(2ρ +
√

2) σ, the numerical implementations of (2.17) resulted in some complex
numbers, which is apparently unreasonable since they are the strike price of some
variance swaps.

Table 3 presents the numerical results of fair strike values obtained from our
solution (2.17) and MC simulations with the parameters on the dividing line in the
parameter space, namely, we take κ∗ = (2ρ +

√
2)σ = 0.0134 in the calculation. This

table shows that with the parameters on the dividing line in the parameter space, our
exact solution (2.17) has produced some complex numbers; thus, it is not suitable
any more, while the strike price obtained from MC simulations is still a finite real
number. We have the same results for those parameters satisfying (2ρ −

√
2)σ < κ∗ <
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Table 3. The numerical results of our formula and MC simulations with κ∗ = 0.0134.

Sampling frequency Our formula MC simulations

Quarterly (N = 4) 4.8180e+002 + 2.0722e−005i
483.9658

(440.7224)

Monthly (N = 12) 4.5853e+002 + 2.0003e−005i
461.2613

(314.1468)

Weekly (N = 52) 4.5742e+002 + 1.9593e−005i
452.1572

(255.5134)

Daily (N = 252) 4.5208e+002 + 1.9594e−005i
450.7324

(241.3925)

Table 4. The numerical results of our formula and MC simulations with κ∗ = 0.005.

Sampling frequency Our formula MC simulations

Quarterly (N = 4) 4.8390e+002 + 1.9780e−012i
483.7322

(435.5521)

Monthly (N = 12) 4.6103e+002 − 2.2727e−012i
460.3388

(313.7185)

Weekly (N = 52) 4.5240e+002 − 8.9277e−013i
452.4789

(256.2517)

Daily (N = 252) 4.5036e+002 − 6.6077e−011i
450.5263

(241.9733)

(2ρ +
√

2)σ and Table 4 is an example when κ∗ = 0.005. Fortunately, for a wide range
of reasonable parameter values (that is, those adopted by Stein and Stein [31] and
Schöbel and Zhu [26]), the inequalities κ∗ > (2ρ +

√
2)σ or κ∗ < (2ρ −

√
2)σ (at the

same time (2.18)) is satisfied and our exact solution (2.17) is used safely.
We provide a plot of the fair strike price against mean-reverting speed parameter

κ∗ in Figure 2 to illustrate the influence on the strike price when κ∗ varies across the
dividing line in the parameter space. Since for the parameters presented previously
in this section, those κ∗ satisfying the inequality (2ρ −

√
2)σ ≤ κ∗ ≤ (2ρ +

√
2)σ are

very small, that is, 0 < κ∗ ≤ 0.0134 (note that κ∗ needs to be positive), we change the
parameters with ρ = −0.3 and σ = 0.8 in Figure 2 in order to see the plot clearly, and
the other parameters remain the same as before. From Figure 2, we see that for those
(2ρ −

√
2)σ ≤ κ∗ ≤ (2ρ +

√
2)σ, the strike price obtained from MC simulations is

still a finite real number, which means that for those parameters, the calculated fair
strike price of discretely sampled variance swaps under the mean-reverting Gaussian
volatility model remains financially meaningful, but in those situations our solution
(2.17) is not suitable any more. This is because we assumed the solution with
some particular form when solving the governing PDE system, whereas for those
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Figure 2. The fair strike price against mean-reverting speed parameter κ∗ (weekly sampling).

Table 5. The sensitivity of strike price of variance swap (daily sampling).

Model parameter Value Sensitivity (%)
κ∗ 4 −0.0227
θ∗ 0.2 1.47
σ 0.1 0.0529
v0 0.2 0.48

(2ρ −
√

2) σ ≤ κ∗ ≤ (2ρ +
√

2) σ, the PDE system may have other forms of real
solutions. We postpone this discussion to future works. Indeed, many closed-form
formulae for discretely sampled variance swaps proposed recently (that is, [25, 35, 36])
also have some restrictions in the parameter space. In other words, there is a subspace
in which their solution is valid, and guarantees a nonnegative finite real fair delivery
price, although they do not explicitly mention this issue in their papers.

We also performed some sensitivity tests in this subsection to demonstrate how
sensitive the strike price is to the change of the key parameters in the model. The
results of the percentage change of the strike price are shown in Table 5, when a model
parameter changes by 1% from its base value used in the example presented in this
section. The strike price of a variance swap appears to be the most sensible to the
long-term mean volatility θ∗ for the case studied. The spot volatility v0 also has a
significant influence in terms of the sensitivity of the strike price and the least sensible
parameter is the mean-reverting speed parameter κ∗.
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4. Conclusion

In this paper, a new closed-form pricing formula for the value of discretely sampled
variance swaps is presented under the assumption that the underlying assets can
be described by a mean-reverting Gaussian volatility model. One of the greatest
advantages to use closed-form analytical formulae, rather than any numerical solution
approach, is the computational efficiency when the numerical value of the fair
strike price of a discretely sampled variance swap needs to be computed by market
practitioners. We carried out some numerical tests and demonstrated that not only the
results obtained from our pricing formula match perfectly with those obtained from
MC simulation, it is also far more efficient to compute price as well as all hedging
ratios of a variance swap from the newly derived formula. We also discussed the
connection between the Heston model and ours, the restrictions of parameter space
and showed their influence on the strike price.
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Appendix A

Here we give a brief proof of Proposition 2.1. First, we show that the transformation
Yt = S γ

t is well defined for any γ ∈ R\{0}. From (2.1), for any t ∈ [ti−1, ti] one can obtain
by Itô’s formula that S t = S ti−1 exp(

∫ t
ti−1

(r − 1
2 v2

s) ds +
∫ t

ti−1
vs dB̃S

s ). This implies that if
S ti−1 > 0, then S t > 0 with probability 1; therefore, Yt > 0 is a real-valued stochastic
process for any γ ∈ R\{0}. Next, we show the derivation of Formula (2.7). Applying
Itô’s formula to the above transformation gives

dYt = (γr + 1
2γ(γ − 1)v2

t )Yt dt + γvtYt dB̃S
t .

We now consider a contingent claim U(γ)
i (y, v, t) = EQ[Yt | (Yti−1 = y, vti−1 = v)], whose

payoff at expiry ti is Yti . Following the general asset valuation theory by Garman [13],
U(γ)

i satisfies

∂U(γ)
i

∂t
+

1
2
γ2v2y2 ∂

2U(γ)
i

∂y2 +
1
2
σ2 ∂

2U(γ)
i

∂v2 + ργσvy
∂2U(γ)

i

∂y∂v

+

[
γr +

1
2
γ(γ − 1)v2

]
y
∂U(γ)

i

∂y
+ κ∗(θ∗ − v)

∂U(γ)
i

∂v
= 0, (A.1)

subject to the terminal condition

U(γ)
i (y, v, ti) = y
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for all t ∈ [ti−1, ti) and (y, v) ∈ (0,∞) × (−∞,∞). Let τ = ti − t. We assume the solution
of the above PDE with the form

U(γ)
i (y, v, t) = yeC(γ,ti−t)+D(γ,ti−t)v+E(γ,ti−t)v2

. (A.2)

Substituting (A.2) into the PDE (A.1) yields a set of ordinary differential equations

dE
dτ

= 2σ2E2 + (2ργσ − 2κ∗)E +
1
2
γ(γ − 1), (A.3)

dD
dτ

= 2σ2DE + ργσD + 2κ∗θ∗E − κ∗D, (A.4)

dC
dτ

= σ2E +
1
2
σ2D2 + γr + κ∗θ∗D, (A.5)

subject to the initial conditions

E(γ, 0) = 0, (A.6)
D(γ, 0) = 0, (A.7)
C(γ, 0) = 0. (A.8)

There are three cases in the parameter space, which need to be considered
separately, depending on the values of ĉ(γ) = (2κ∗ − 2ργσ)2 − 4σ2γ(γ − 1) and â(γ) =

2κ∗ − 2ργσ.

Case 1. ĉ(γ) > 0. In this case, the explicit form of E(γ, τ), as a global solution, is given
in (2.7).

Case 2. ĉ(γ) = 0, which needs to be further divided into two subcases: Case 2.1:
ĉ(γ) = 0 and â(γ) ≥ 0 and Case 2.2: ĉ(γ) = 0 and â(γ) < 0. In Case 2.1, a global
solution is found as E1(γ, τ) = (γ(γ − 1)τ)/(2 + â(γ)τ) for all τ ∈ [0,∞). Applying
L’Hôpital’s rule, we can show that limb̂(γ)→0+ E(γ, τ) = limĉ(γ)→0+ E(γ, τ) = E1(γ, τ) for
all τ ∈ [0,∞). This implies that Case 2.1 is a special case of Case 1, in which b̂(γ)
approaches zero from above. In Case 2.2, on the other hand, we get the same E1(γ, τ)
as a local solution only for all τ ∈ [0,−2/â(γ)).

Case 3. ĉ(γ) < 0, which also yields a local solution as

E2(γ, τ) =
1

4σ2

[ √
−ĉ(γ) tan

( √
−ĉ(γ)
2

τ + ϕ(γ)
)

+ â(γ)
]

for all τ ∈ [0, ζ(γ)), where ζ(γ)= (π − 2ϕ(γ))/
√
−ĉ(γ) and ϕ(γ)=arctan(−â(γ)/

√
−ĉ(γ)).

Substituting E(γ, τ) into (A.4), we obtain a first-order linear equation with respect
to D(γ, τ). In Case 1, a global solution can be easily obtained as D(γ, τ) expressed in
(2.7). The two D1(γ, τ) solutions corresponding to E1(γ, τ) for both Case 2.1 and Case
2.2 are of the same form D1(γ, τ) = κ∗θ∗γ(γ − 1)τ2/(â(γ)τ + 2). However, for Case 2.1,
this is a global solution with the domain τ ∈ [0,∞), while it is only a local solution for
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Case 2.2 with the domain τ ∈ [0,−2/â(γ)). In Case 3, a local solution corresponding
to E2(γ, τ) can be found as

D2(γ, τ) =
κ∗θ∗[1 − cos(τ

√
−ĉ(γ)/2)]

σ2 cos(τ
√
−ĉ(γ)/2 + ϕ(γ)) cosϕ(γ)

for all τ ∈ [0, ζ(γ)).
Once E(γ, τ), D(γ, τ) are found, C(γ, τ) is easily obtained by integrating (A.5)

subject to (A.8), that is, C(γ, τ) =
∫ τ

0 (σ2E(γ, s) + 1
2σ

2D2(γ, s) + γr + κ∗θ∗D(γ, s))ds.
In Case 1, a global solution of C(γ, τ) is given in (2.7). For both Case 2.1 and Case 2.2,
the two solutions C1(γ, τ) are of the same form:

C1(γ, τ) = −
1
2

ln
( â(γ)

2
τ + 1

)
+
κ∗

2
θ∗

2
γ(γ − 1)
24

τ3 +
κ∗

2
θ∗

2
â(γ)

16σ2 τ2

+

( â(γ)
4
−
κ∗

2
θ∗

2

8σ2 +
1

4(â(γ)τ + 2)
+ γr

)
τ.

This is a global solution for all τ ∈ [0,∞) in Case 2.1, and only a local solution for all
τ ∈ [0,−2/â(γ)) in Case 2.2, similar to E1(γ, τ) and D1(γ, τ), respectively. We obtain
a local solution

C2(γ, τ) = −
1
2

ln
cos(τ

√
−ĉ(γ)/2 + ϕ(γ))
cosϕ(γ)

+

(1
4

â(γ) + γr +
2κ∗

2
θ∗

2
γ(γ − 1)

ĉ(γ)

)
τ

+
κ∗

2
θ∗

2
â(γ)

σ2ĉ(γ)

+
κ∗

2
θ∗

2
[(2â2(γ) − ĉ(γ)) sin(τ

√
−ĉ(γ)/2 + ϕ(γ)) + 8σ2γ(γ − 1)â(γ)]

σ2(−ĉ(γ))3/2 cos(τ
√
−ĉ(γ)/2 + ϕ(γ))

for all τ ∈ [0, ζ(γ)) in Case 3.

Appendix B

A substitution of (2.15) into (2.12) yields

EQ
0

[(S i − S i−1

S i−1

)2]
=

∫ ∞

−∞

f (vti−1 )p(vti−1 | v0) dvti−1

=

∫ ∞

−∞

1
√

2πσ̂(ti−1)
e(−1/2σ̂2(ti−1))(vti−1−µ̂(ti−1))2+C(2,∆t)+D(2,∆t)vti−1 +E(2,∆t)v2

ti−1 dvti−1 − K(t)

=
1

√
2πσ̂(ti−1)

∫ ∞

−∞

e(E(2,∆t)−1/2σ̂2(ti−1))v2
ti−1

+(D(2,∆t)+µ̂(ti−1)/σ̂2(ti−1))vti−1 +L(t) dvti−1 − K(t)

=
1

√
2πσ̂(ti−1)

∫ ∞

−∞

e−(1/2σ̂2(ti−1)−E(2,∆t))M(t)+N(t)+L(t) dvti−1 − K(t), (B.1)

https://doi.org/10.1017/S144618111400011X Published online by Cambridge University Press

https://doi.org/10.1017/S144618111400011X


[18] Pricing formula for variance swaps 379

where K(t) = 2er∆t − 1, L(t) = C(2,∆t) − µ̂2(ti−1)/2σ̂2(ti−1),

M(t) =

[
vti−1 −

D(2,∆t) + µ̂(ti−1)/σ̂2(ti−1)
2(1/2σ̂2(ti−1) − E(2,∆t))

]2

and

N(t) =
(D(2,∆t) + µ̂(ti−1)/σ̂2(ti−1))2

4(1/2σ̂2(ti−1) − E(2,∆t))
.

To calculate this integration, we claim that for any α > 0, µ ∈ R,∫ ∞

−∞

e−α(x−µ)2
dx =

√
π

α
,

while, for any α ≤ 0, ∫ ∞

−∞

e−α(x−µ)2
dx =∞.

Indeed, for α > 0, µ ∈ R,∫ ∞

−∞

e−α(x−µ)2
dx =

√
2π

∫ ∞

−∞

1
√

2π
e−1/2[

√
2α(x−µ)]2

dx =

√
π

α

∫ ∞

−∞

1
√

2π
e−y2/2 dy =

√
π

α
,

where we have made the change of dummy variable y =
√

2α(x − µ) and used that the
integral of the standard normal density is equal to one. For α ≤ 0,∫ ∞

−∞

e−α(x−µ)2
dx =

∫ ∞

−∞

e−αy2
dy = 2

∫ ∞

0
e−αy2

dy ≥ 2
∫ ∞

0
1 dy =∞.

Using the fact that the parameters satisfy [1/2σ̂2(ti−1)] − E(2,∆t) > 0, the integration
in equation (B.1) is

EQ
0

[(S i − S i−1

S i−1

)2]
=

1
√

2πσ̂(ti−1)

√
π

[1/2σ̂2(ti−1)] − E(2,∆t)
× eN(t)+L(t) − K(t)

= (1 − 2σ̂2(ti−1)E(2,∆t))−1/2e[(σ̂2(ti−1)D(2,∆t)+µ̂(ti−1))2/2σ̂2(ti−1)(1−2σ̂2(ti−1)E(2,∆t))]+L(t) − K(t)

and, when the parameters satisfy 1/[2σ̂2(ti−1)] − E(2,∆t) ≤ 0, the integral in equation
(B.1) is infinite.

Appendix C

Now, we prove equation (2.21). From the definition of C(γ, τ), D(γ, τ) and E(γ, τ), we
verify that

lim
∆t→0

C(2,∆t) = 0, lim
∆t→0

D(2,∆t) = 0, lim
∆t→0

E(2,∆t) = 0

https://doi.org/10.1017/S144618111400011X Published online by Cambridge University Press

https://doi.org/10.1017/S144618111400011X


380 L.-W. Zhang [19]

and
lim
∆t→0

f (v0) = 0, lim
∆t→0

fi(v0) = 0.

Using L’Hôpital’s rule, we prove that

lim
∆t→0

f (v0)
∆t

= v2
0, lim

∆t→0

fi(v0)
∆t

= σ̂2(ti−1) + µ̂2(ti−1).

Therefore,

K∞ = lim
∆t→0

1
T

[
f (v0) +

N∑
i=2

fi(v0)
]
× 1002

=
1
T

lim
∆t→0

N∑
i=2

∆t
(
v2

0 +
fi(v0)
∆t

)
× 1002

=
1
T

lim
∆t→0

N∑
i=1

∆t[σ̂2(ti−1) + µ̂2(ti−1)] × 1002

=
1
T

∫ T

0

[
σ2

2κ∗
(1 − e−2κ∗t) + {e−κ

∗tv0 + θ∗(1 − e−κ
∗t)}2

]
dt × 1002

=

[
θ∗2 +

σ2

2κ∗
+

2θ∗(v0 − θ
∗)

κ∗T
(1 − e−κ

∗T ) +
(v0 − θ

∗)2 − (σ2/2κ∗)
2κ∗T

(1− e−2κ∗T )
]
× 1002.

Appendix D
The fair strike price formula obtained by Rujivan and Zhu [25] is

Kvar =
er∆t

T

[
f h(v0) +

N∑
i=2

f h
i (v0)

]
× 1002

with
f h(v0) = eC̃(∆t)+D̃(∆t)v0 + e−r∆t − 2,

f h
i (v0) = eC̃(∆t)+[cie−κhti−1]/[ci−D̃(∆t)]D̃(∆t)v0

[ ci

ci − D̃(∆t)

]2κhθh/σ
2
h

+ e−r∆t − 2,

C̃(∆t) = r∆t +
κhθh

σ2
h

[
(ã + b̃)∆t − 2 ln

(1 − g̃eb̃∆t

1 − g̃

)]
,

D̃(∆t) =
ã + b̃
σ2

h

( 1 − eb̃∆t

1 − g̃eb̃∆t

)
,

ci =
2κh

σ2
h(1 − e−κhti−1 )

,

ã = κh − 2ρσh, b̃ =

√
ã2 − 2σ2

h, g̃ =
ã + b̃
ã − b̃

,

(D.1)

where we rewrite f (v0), fi(v0), κ∗, θ∗ and σv in Rujivan and Zhu [25] as f h(v0), f h
i (v0),

κh, θh and σh, respectively, to resolve the ambiguity. On the other hand, for the case

https://doi.org/10.1017/S144618111400011X Published online by Cambridge University Press

https://doi.org/10.1017/S144618111400011X


[20] Pricing formula for variance swaps 381

θ∗ = 0, our formula (2.17) becomes

K =
1
T

[
f (v0) +

N∑
i=2

fi(v0)
]
× 1002

with

f (v0) = eC(2,∆t)+E(2,∆t)v2
0 − 2er∆t + 1,

fi(v0) = [1 − 2σ̂2(ti−1)E(2,∆t)]−1/2e[E(2,∆t)µ̂2(ti−1)]/[1−2σ̂2(ti−1)E(2,∆t)]+C(2,∆t) − 2er∆t + 1,

C(2,∆t) = −
1
2

ln
[ (â(2) + b̂(2))eb̂(2)∆t − â(2) + b̂(2)

2b̂(2)

]
+

[ â(2) + b̂(2)
4

+ 2r
]
∆t,

E(2,∆t) =
2(eb̂(2)∆t − 1)

(â(2) + b̂(2))eb̂(2)∆t − â(2) + b̂(2)
.

It is verified that with the parameters κh = 2κ∗, θh = σ2/2κ∗ and σh = 2σ, the functions
C̃(∆t), D̃(∆t) and ci in (D.1) are equal to C(2,∆t) − r∆t, E(2,∆t) and 1/[2σ̂2(ti−1)],
respectively. Hence, er∆t f h(v2

0) = f (v0), and

er∆t f h
i (v2

0) = [1 − 2σ̂2(ti−1)E(2,∆t)]−1/2e[E(2,∆t)e−2κ∗ ti−1 v2
0]/[1−2σ̂2(ti−1)E(2,∆t)]+C(2,∆t)

− 2er∆t + 1 = fi(v0), (D.2)

where we used the fact that µ̂(ti−1) = e−κ
∗ti−1 v0 in the last step of (D.2). That is, the two

formulae are the same in this special case.

References
[1] K. Aonuma and H. Nakagawa, “Valuation of credit default swap and parameter estimation for

Vasicek-type hazard rate model”, Working Paper, University of Tokyo, 1998.
[2] D. S. Bates, “Jumps and stochastic volatility: exchange rate processes implicit in deutsche mark

options”, Rev. Financ. Stud. 9 (1996) 69–107; doi:10.1093/rfs/9.1.69.
[3] F. Black and M. Scholes, “The pricing of options and corporate liabilities”, J. Polit. Econ. 81

(1973) 637–654.
[4] M. Brenner, E. Y. Ou and J. E. Zhang, “Hedging volatility risk”, J. Banking Finance 30 (2006)

811–821; doi:10.1016/j.jbankfin.2005.07.015.
[5] M. Broadie and A. Jain, “The effect of jumps and discrete sampling on volatility and variance

swaps”, Int. J. Theor. Appl. Finance 11 (2008) 761–797; doi:10.1142/S0219024908005032.
[6] P. Carr and A. Corso, “Commodity covariance contracting”, Energy Risk–April (2001) 42–45.
[7] P. Carr and R. Lee, “Volatility derivatives”, Annu. Rev. Financ. Econom. 1 (2009) 319–339;

doi:10.1146/annurev.financial.050808.114304.
[8] P. Carr and D. Madan, “Towards a theory of volatility trading”, in: Volatility: new estimation

techniques for pricing derivatives (Risk Publications, London, 1998), 417–427.
[9] K. Demeterfi, E. Derman, M. Kamal and J. Zou, “More than you ever wanted to know about

volatility swaps”, Technical Report, Goldman Sachs Quantitative Strategies Research Notes,
1999.

[10] B. Dupire, “Exploring volatility derivatives: new advances in modelling”, Presentation at New
York University, 2005.

[11] R. Elliott, T. Siu and L. Chan, “Pricing volatility swaps under Heston’s stochastic volatility model
with regime switching”, Appl. Math. Finance 14 (2007) 41–62; doi:10.1080/13504860600659222.

https://doi.org/10.1017/S144618111400011X Published online by Cambridge University Press

http://dx.doi.org/10.1093/rfs/9.1.69
http://dx.doi.org/10.1016/j.jbankfin.2005.07.015
http://dx.doi.org/10.1142/S0219024908005032
http://dx.doi.org/10.1146/annurev.financial.050808.114304
http://dx.doi.org/10.1080/13504860600659222
https://doi.org/10.1017/S144618111400011X


382 L.-W. Zhang [21]

[12] R. J. Elliott, J. Van Der Hoek and W. P. Malcolm, “Pairs trading”, Quant. Finance 5 (2005)
271–276; doi:10.1080/14697680500149370.

[13] M. B. Garman, “A general theory of asset valuation under diffusion state processes”, Technical
Report, University of California at Berkeley, 1976.

[14] V. Gorovoi and V. Linetsky, “Black’s model of interest rates as options, eigenfunction expansions
and Japanese interest rates”, Math. Finance 14 (2004) 49–78;
doi:10.1111/j.0960-1627.2004.00181.x.

[15] A. Grunbichler and F. Longstaff, “Valuing futures and options on volatility”, J. Banking Finance
20 (1996) 985–1001; doi:10.1016/0378-4266(95)00034-8.

[16] S. L. Heston, “A closed-form solution for options with stochastic volatility with applications to
bond and currency options”, Rev. Financ. Stud. 6 (1993) 327–343; doi:10.1093/rfs/6.2.327.

[17] S. L. Heston and S. Nandi, “A closed-form GARCH option valuation model”, Rev. Financ. Stud.
13 (2000) 585–625; doi:10.1093/rfs/13.3.585.

[18] S. L. Heston and S. Nandi, “Derivatives on volatility: some simple solutions based on
observables”, Federal Reserve Bank of Atlanta, 2000.

[19] S. Howison, A. Rafailidis and H. Rasmussen, “On the pricing and hedging of volatility
derivatives”, Appl. Math. Finance 11 (2004) 317–346; doi:10.1080/1350486042000254024.

[20] T. Little and V. Pant, “A finite-difference method for the valuation of variance swaps”, Quantitative
Analysis in Financial Markets: Collected Papers of the New York University Mathematical
Finance Seminar, 2001.

[21] J. J. Lucia and E. S. Schwartz, “Electricity prices and power derivatives: evidence from the Nordic
power exchange”, Rev. Deriv. Res. 5 (2002) 5–50; doi:10.1023/A:1013846631785.

[22] R. Merton, “The theory of rational option pricing”, Bell J. Econom. Manage. Sci. 1 (1973)
141–183; doi:10.2307/3003143.

[23] D. B. Nelson, “ARCH models as diffusion approximations”, J. Econom. 45 (1990) 7–38;
doi:10.1016/0304-4076(90)90092-8.

[24] B. Øksendal, Stochastic differential equations (Springer, Berlin Heidelberg, 2003).
[25] S. Rujivan and S. P. Zhu, “A simplified analytical approach for pricing discretely

sampled variance swaps with stochastic volatility”, Appl. Math. Lett. 25 (2012) 1644–1650;
doi:10.1016/j.aml.2012.01.029.
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