
J. Fluid Mech. (2025), vol. 1007, A65, doi:10.1017/jfm.2025.128

Onset of spontaneous beating and whirling
in the follower force model of an active filament

Ory Schnitzer

Department of Mathematics, Imperial College London, London SW7 2AZ, UK
Corresponding author: Ory Schnitzer, o.schnitzer@imperial.ac.uk

(Received 26 June 2024; revised 5 November 2024; accepted 24 January 2025)

We study the onset of spontaneous dynamics in the follower force model of an active
filament, wherein a slender elastic filament in a viscous liquid is clamped normal to a
wall at one end and subjected to a tangential compressive force at the other. Clarke et al.
(Phys. Rev. Fluids, vol. 9, 2024, 073101) recently conducted a thorough investigation of
this model using methods of computational dynamical systems; inter alia, they showed
that the filament first loses stability via a supercritical double-Hopf bifurcation, with
periodic ‘planar-beating’ states (unstable) and ‘whirling’ states (stable) simultaneously
emerging at the critical follower-force value. We complement their numerical study by
carrying out a weakly nonlinear analysis close to this unconventional bifurcation, using
the method of multiple scales. The main outcome is an ‘amplitude equation’ governing the
slow modulation of small-magnitude oscillations of the filament in that regime. Analysis
of this reduced-order model provides insights into the onset of spontaneous dynamics,
including the creation of the nonlinear whirling states from particular superpositions of
linear planar-beating modes as well as the selection of whirling over planar beating in
three-dimensional scenarios.

Key words: nonlinear dynamical systems, low-Reynolds-number flows

1. Introduction
The translocation of molecular motors attached to biological filaments, such as
microtubule or actin filaments, can give rise to rich dynamics and drive flows, as in
ciliary beating or cytoplasmic streaming (Shelley 2016; Lauga 2020; Stein et al. 2021). In
particular, such active filaments may buckle under sufficiently strong compressive forces
exerted by the motors. In that scenario, the tangential nature of the loading suggests an
oscillatory buckling instability leading to spontaneous dynamics. This is in contrast to the
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classical Euler buckling of a passive rod under a fixed load, where a monotonic instability
leads to steady deformation.

De Canio et al. (2017) introduced a fundamental model consisting of a slender elastic
filament clamped normal to a wall at one end and subjected to a tangential (compressive)
‘follower’ force at the other, which is meant to phenomenologically represent the force
exerted on the filament by a motor walking towards its tip. (They also considered a
generalised model purporting to account for the opposite force applied by the motor on the
fluid.) De Canio et al. (2017) modelled the filament as an inertialess Kirchhoff rod (Landau
et al. 2012), assumed that the filament motion is restricted to a plane and approximated the
fluid–structure interaction according to ‘resistive force theory’, a local anisotropic drag law
valid at zero Reynolds number and to leading order in the slender-filament limit (Lauga
2020). By performing a linear stability analysis, De Canio et al. (2017) showed that their
model filament undergoes symmetry breaking via a supercritical Hopf bifurcation; that is,
the undeformed configuration of the filament becomes unstable at a critical follower-force
magnitude, above which small perturbations grow in an oscillatory fashion. In that regime,
De Canio et al. (2017) demonstrated via initial-value simulations the approach to a limit
cycle at late times, corresponding to the filament exhibiting periodic ‘beating’ oscillations.

The planar-motion assumption was subsequently relaxed by Ling et al. (2018), who
considered a similar set-up to that of De Canio et al. (2017) but allowing for three-
dimensional deformations and generalising from a localised follower force at the tip to
arbitrarily distributed axial loads. Revisiting the case of a localised follower force, Ling
et al. (2018) strikingly demonstrated through initial-value simulations that in a follower-
force interval above the stability threshold the filament generally exhibits (at late times)
non-planar ‘whirling’ oscillations – periodic states for which a steadily rotating frame
exists in which the deformed filament appears fixed; in that interval, the beating states
observed by De Canio et al. (2017) could only be attained by choosing the initial conditions
to be precisely planar. At higher values of the follower force, i.e. away from the instability
threshold, the simulations of Ling et al. (2018) uncovered a secondary transition to a
regime where planar beating is, in fact, preferred. Distributing the load was shown to
modify the nature of that secondary transition. Their simulations also uncovered additional
regimes exhibiting yet right dynamics, including chaotic-like phenomena.

To investigate the onset of spontaneous beating and whirling, Ling et al. (2018) carried
out a linear stability analysis allowing for general three-dimensional perturbations from
the undeformed filament configuration. Similarly to De Canio et al. (2017), however,
they found that the neutral modes at the instability threshold describe planar-beating
oscillations of the filament. On that basis, Ling et al. (2018) concluded that‘in the linear
regime near the straight equilibrium, the filament undergoes planar deformations’, thus
leaving unexplained the emergence of whirling and its preference over planar beating.

Partially motivated by this gap in understanding, Clarke et al. (2024) have recently
carried out a thorough computational study of a generalised follower force model –
accounting for Stokes hydrodynamics fully rather than through resistive force theory. Upon
revisiting the linear stability of the undeformed configuration, Clarke et al. (2024) made
the following key observations. While the space of neutral linear modes at the instability
threshold can indeed be spanned by planar-beating modes (similar in nature to those
found by De Canio et al. (2017) and Ling et al. (2018)), their superposition allowing for
differences in phase and the plane of motion generally produces non-planar whirling-like
modes. (The false conclusion of Ling et al. (2018) that the filament is restricted to planar
deformations in the linear regime may accordingly be attributed to a misinterpretation
of their linear analysis.) In light of symmetry, the linear beating modes are identical up
to a rotation about the axis of the undeformed configuration (as well as magnitude and
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phase differences). The onset of instability thus occurs via a degenerate double-Hopf
bifurcation, where two identical pairs of complex-conjugate eigenvalues become unstable
simultaneously.

Employing methods of computational dynamical systems, Clarke et al. (2024) went
beyond a linear stability analysis of the undeformed configuration and initial-value
simulations – by computing and tracing the solution branches of periodic and quasi-
periodic states, as well as determining the stability of periodic states via Floquet analysis.
Their results reveal that two families of periodic states of the nonlinear problem, planar-
beating states and whirling states, simultaneously emerge at the double-Hopf bifurcation.
In an interval of the follower force above the threshold, the whirling states are stable
while the planar-beating states are unstable under out-of-plane perturbations. Richer
dynamical phenomena are uncovered at higher values of the follower force; in particular,
the secondary transition to a regime of stable beating was shown to occur via a branch of
quasi-periodic solutions connecting the whirling and beating solution branches.

Complementary to the primarily numerical studies mentioned above, we here employ
the method of multiple scales to carry out a weakly nonlinear analysis of the follower
force model near its instability threshold. The main outcome is a reduced-order model
in the form of a nonlinear ‘amplitude equation’ governing the slow dynamics of
small-magnitude oscillatory perturbations near the threshold. This amplitude equation
is of higher dimension than the standard Stuart–Landau equation corresponding to a
conventional (non-degenerate) Hopf instability (Drazin & Reid 2004). We analyse and
illustrate our reduced-order model in order to derive new insights into the onset of
spontaneous dynamics in the follower force model. We note that nonlinear amplitude
equations have been employed to study various other scenarios of elastic filaments
buckling in a viscous fluid, such as the onset of planar buckling of a clamped filament in
a stagnation flow (Guglielmini et al. 2012) or the early-time buckling of a highly flexible
filament in a compressional flow (Chakrabarti et al. 2020).

We shall consider the follower force model in its most elementary form, though allowing
for non-planar deformations which is clearly crucial in light of the above discussion.
We accordingly follow De Canio et al. (2017) and Ling et al. (2018) by modelling the
hydrodynamics via resistive force theory; follow De Canio et al. (2017) and Clarke et al.
(2024) by assuming a follower force localised at the tip; and follow Ling et al. (2018)
and Clarke et al. (2024) by disregarding the biologically motivated entrainment flow
included by De Canio et al. (2017). The preceding computational studies suggest that these
modelling choices do not qualitatively influence the dynamics of a single active filament
in the vicinity of the instability threshold.

The paper proceeds as follows. In § 2, we formulate the problem. In § 3, we revisit the
linear stability of the undeformed configuration and the general linear approximation at the
instability threshold. In § 4, we present, analyse and illustrate the reduced-order model, as
well as validate the theory against numerical data provided by Eric E. Keaveny. The details
of the weakly nonlinear analysis leading to the amplitude equation are retrospectively
presented in § 5. We conclude in § 6 by discussing several future directions.

2. Problem formulation

2.1. Elastohydrodynamic model
As shown in figure 1, we consider an inextensible elastic filament of length L∗ and
bending stiffness B∗ clamped normally to a flat wall at one end and subjected to a
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Figure 1. (a) Dimensional schematic. (b) Forces and moments acting on an infinitesimal filament segment.

tangential compressive force of magnitude F∗ at the other. The filament is immersed in
a background liquid of viscosity η∗. We neglect inertia of the fluid and the filament and
model the latter as a homogeneous Kirchhoff rod having a circular cross-section of radius
κL∗ (Landau et al. 2012), further assuming that it is sufficiently slender such that the
hydrodynamics can be described by resistive force theory (Graham 2018). Throughout the
paper, a subscript asterisk indicates a dimensional quantity; a superscript asterisk denotes
complex conjugation; and r and i subscripts indicate the real and imaginary parts of a
complex-valued quantity, respectively.

We represent the filament by its centreline r∗(s∗, t∗), where s∗ is the arc length measured
from the clamped end and t∗ denotes the time. Since the filament is inextensible, the
tangent vector t̂ = ∂ r∗/∂s∗ is constrained to be a unit vector. Let F∗(s∗, t∗) and M∗(s∗, t∗)
be the cross-sectionally averaged internal (elastic) force and moment, respectively; with
inertia neglected, they satisfy the equilibrium balances

∂ F∗
∂s∗

+ f H∗ = 0,
∂ M∗
∂s∗

+ t̂ × F∗ = 0, (2.1a,b)

in which

f H∗ = − 4πη∗
ln(1/κ)

(
I − 1

2
t̂ t̂
)

· ∂ r∗
∂t∗

(2.2)

is the hydrodynamic force per unit length acting on the filament (see figure 1b). The
local anisotropic drag law (2.2) constitutes a leading-order asymptotic approximation
of the hydrodynamics in the slender-filament limit κ → 0; under that approximation,
known as resistive force theory, the interaction of the filament with itself and with the
wall is neglected despite the relative error associated with that approximation being only
logarithmically small, scaling as 1/ ln(1/κ) (Graham 2018).

The above governing equations are supplemented by initial conditions (which we do
not specify at this stage), boundary conditions and a constitutive relation for the internal
moment. The boundary conditions at the clamped end of the filament are

r∗ = 0, t̂ = ı̂ at s∗ = 0, (2.3a,b)

where ı̂ is the unit vector normal to the wall pointing into the fluid and we choose
the reference point for the position vector r∗ to coincide with the clamping point. The
boundary conditions at the other end of the filament are

F∗ = −F∗ t̂, M∗ = 0 at s∗ = L∗, (2.4a,b)
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the first prescribing the follower force and the second stating that there is no external
moment acting at the tip. Lastly, the constitutive law for the internal moment can be written
as (Landau et al. 2012)

M∗ = B∗ t̂ × ∂ t̂
∂s∗

, (2.5)

representing the resistance of the filament to bending, which is cross-sectionally isotropic
given the assumption of a circular cross-section. In general, the constitutive relation
includes an additional term representing the resistance of the filament to twisting. In the
present scenario, however, where there are no external moments acting in the tangential
direction and the bending is cross-sectionally isotropic, the twist term in the constitutive
relation vanishes identically; this is verified in Appendix A following Landau et al.
(2012). The absence of twist in this scenario was also remarked on by Ling et al. (2018).
In contrast, Clarke et al. (2024) include twist as their model does not involve a thin-
flament approximation of the hydrodynamics, so that viscous moments act in the tangential
direction.

2.2. Dimensionless formulation
It is convenient to adopt a dimensionless convention where lengths are normalised by L∗,
forces by B∗/L2∗, moments by B∗/L∗ and time by 4πη∗(L4∗/B∗)/ ln(1/κ). Dimensionless
fields are denoted similarly to their dimensional counterparts, only with the subscript
asterisks omitted. The problem thus consists of the partial differential equations

∂ r
∂s

= t̂,
∂ F
∂s

−
(

I − 1
2

t̂ t̂
)

· ∂ r
∂t

= 0,
∂ M
∂s

+ t̂ × F = 0, M = t̂ × ∂ t̂
∂s

; (2.6a-d)

the inextensibility constraint

t̂ · t̂ = 1; (2.7)

and the boundary conditions

r = 0, t̂ = ı̂ at s = 0 (2.8a,b)

and

F = −F t̂, M = 0 at s = 1, (2.9a,b)

wherein the dimensionless parameter

F = F∗L2∗
B∗

(2.10)

measures the magnitude of the follower force. The problem depends on this sole parameter,
aside for the initial conditions which we do not specify at this stage.

For all F , the above problem possesses the steady solution

r = s ı̂, t̂ = ı̂, F = −F ı̂, M = 0, (2.11a-d)

where the filament is undeformed (straight) and under uniform compression by the
follower force. Our aim will be to study the nonlinear dynamics of the filament for F
near the buckling threshold where this steady ‘base state’ first becomes unstable.
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3. Linear theory

3.1. Eigenvalue problem
As a preliminary step, we must characterise the loss of stability of the base state. To this
end, we assume small-magnitude perturbations of the form

r − s ı̂ = eλt r̃ + c.c. t̂ − ı̂ = eλt t̃ + c.c., F + ı̂F = eλt F̃ + c.c., M = eλt M̃ + c.c.,
(3.1a-d)

where λ is a complex growth rate, the tilde-decorated vector fields are complex functions
of s and c.c. stands for complex conjugate. Substituting (3.1) into (2.6) yields, upon
linearisation, the set of ordinary differential equations

r̃ ′ = t̃, F̃
′ − λ

(
I − 1

2
ı̂ ı̂
)

· r̃ = 0, M̃
′ +F ı̂ × t̃ + ı̂ × F̃ = 0, M̃ = ı̂ × t̃ ′,

(3.2a-d)
where henceforth a prime denotes an ordinary derivative with respect to s (e.g. r̃ ′ =
dr̃/ds). Furthermore, linearisation of the constraint (2.7) gives

ı̂ · t̃ = 0; (3.3)

and linearisation of the boundary conditions (2.8) and (2.9) gives

r̃ = 0, t̃ = 0 at s = 0; F̃ = −F t̃, M̃ = 0 at s = 1. (3.4a-d)

It is readily seen that the tilde-decorated perturbations are all perpendicular to ı̂. In
particular, let r̃ = ê1 x̃ + ê2 ỹ, wherein x̃(s) and ỹ(s) are complex-valued functions and ê1
and ê2 are unit vectors such that {ê1, ê2, ı̂} constitutes a right-handed orthogonal system.
Substituting this Cartesian decomposition into (3.2) and (3.4), we find that x̃ and ỹ are
decoupled, separately satisfying the same eigenvalue problem. In terms of x̃ , say, that
problem consists of the ordinary differential equation

x̃ ′′′′ +F x̃ ′′ + λx̃ = 0 (3.5)

and the boundary conditions

x̃ = 0, x̃ ′ = 0 at s = 0; x̃ ′′ = 0, x̃ ′′′ = 0 at s = 1. (3.6a-d)

The eigenvalue problem consisting of (3.5) and (3.6) was first derived and solved by
De Canio et al. (2017) under the assumption of planar deformations. While the general
solution to (3.5) is readily expressed in closed form, calculating the eigenvalues λ as a
function of F must, in general, be done numerically. In agreement with De Canio et al.
(2017), we thereby find that the base state is monotonically stable for F <Fo ≈ 20.051,
oscillatory stable for F0 <F <Fc ≈ 37.695 and oscillatory unstable for F >Fc; at
the instability threshold, F =Fc, the complex-conjugate pair of neutral eigenvalues is
λ= ±iω, wherein ω ≈ 191.26 (see figure 2a). We denote by ϕ(s) = ϕr (s) + iϕi (s) the
eigenfunction normalised to unity at s = 1 that is associated with the threshold eigenvalue
iω (see figure 2b); ϕ∗(s) is accordingly the similarly normalised eigenfunction associated
with the conjugate eigenvalue −iω.

3.2. Double-Hopf bifurcation
The eigenfunctions at the instability threshold describe periodic beating oscillations of
the filament in the plane through the origin and normal to ı̂ × ê1, of arbitrary magnitude
and phase. Since ỹ(s) satisfies the same eigenvalue problem as x̃(s), there is clearly an
independent pair of eigenfunctions representing similar beating oscillations rotated by
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Figure 2. (a) Complex growth rate λ= λr + iλi as a function of F for the most unstable eigenfunctions of
the eigenvalue problem consisting of (3.5) and (3.6). (b) The threshold eigenfunction ϕ(s) = ϕr (s) + iϕi (s)
corresponding to the imaginary growth rate λ= iω.

π/2 about the undeformed configurations, i.e. in the plane through the origin and normal
to ı̂ × ê2. As first pointed out by Clarke et al. (2024), this means that the filament loses
stability via a double-Hopf bifurcation, where two pairs of complex-conjugate eigenvalues
become unstable simultaneously; since the multiplicity here is induced by symmetry, the
pairs are identical and have associated with them a full set of eigenfunctions. A key
observation of Clarke et al. (2024) is that the linear superposition of beating modes
allowing for differences in the phase and plane of motion generally produces non-planar
whirling oscillations of the filament.

3.3. Linear approximation at the threshold
It will be convenient for us to employ complex vectors, whose real and imaginary parts
are conventional 3D vectors. Let a = ar + i ai and b = br + i bi be two such vectors.
The dot and cross products are generalised from the case of real vectors as a · b = ar ·
br − ai · bi + i(ar · bi + ai · br ) and a × b = ar × br − ai × bi + i(ar × bi + ai × br ).
An appropriate inner product is 〈a, b〉 = a∗ · b, which differs from the dot product. The
magnitude of a complex vector a is accordingly defined as |a| = √

a∗ · a =√|ar |2 + |ai |2.
Linear whirling oscillations formed by the superposition of planar-beating modes, can

be represented by a complex-vector amplitude Ã parallel to the wall. Indeed, noting
from (3.2) that an eigenfunction r̃ = ê1ϕ is associated with perturbations t̃ = ê1ϕ

′, F̃ =
−ê1(ϕ

′′′ +Fcϕ
′) and M̃ = ı̂ × ê1ϕ

′′, a general linear approximation at the threshold
F =Fc can be expressed as (cf. (3.1))

r − s ı̂ = eiωt Ãϕ + c.c., (3.7a)

t̂ − ı̂ = eiωt Ãϕ′ + c.c., (3.7b)

F + ı̂Fc = −eiωt Ã(ϕ′′′ +Fcϕ
′) + c.c., (3.7c)

M = eiωt ı̂ × Ãϕ′′ + c.c., (3.7d)
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where we have ignored decaying stable modes. Given the normalisation ϕ(1) = 1, the
corresponding tip trajectory is

r(1, t) − ı̂ = Ãeiωt + c.c = 2 Ãr cos ωt − 2 Ãi sin ωt, (3.8)

which traces a general ellipse parallel to the wall and centred about the nominal tip
position, the vector Im( Ã × Ã

∗
) indicating the direction of motion according to the right-

hand rule. It is easy to see that for Ã × Ã
∗ = 0, the ellipse degenerates to a line (parallel to

Ãr and Ãi ), of length 4| Ã|. For Ã · Ã = 0, the ellipse constitutes a circle of radius
√

2| Ã|.
The properties of a general tip ellipse can be derived following Lindell (1983). The

lengths of the semi-major and semi-minor axes can be expressed as√
| Ã|2 + | Ã × Ã

∗| ±
√

| Ã|2 − | Ã × Ã
∗|, (3.9)

respectively, giving the ellipse area as 2π | Ã × Ã
∗|. The above-mentioned condition for

a circular orbit, Ã · Ã = 0, can be inferred from (3.9) by noting the identity | Ã · Ã|2 =
| Ã|4 − | Ã × Ã

∗|2. For non-circular ellipses, the real and imaginary parts of Ã/( Ã · Ã)1/2

point in the directions of the major and minor axes, respectively (both the forward
and backward axis directions, given the multiplicity of the square-root function). These
formulae can alternatively be expressed in terms of the real vectors Ãr and Ãi , using
the identities Ã × Ã

∗ = −2i Ãr × Ãi and Ã · Ã = | Ãr |2 − | Ãi |2 + 2i Ãr · Ãi . Hence, the
ellipse is a line if Ãr × Ãi = 0; it is a circle if both Ãr · Ãi = 0 and | Ãr | = | Ãi |.

The trajectory c Ãeiωt + c.c., wherein c is a complex scalar, is identical to the elliptical
tip trajectory (3.8) up to a dilation |c| and phase ∠c. It thus follows from (3.7a) that,
in fact, all points along the filament centreline carry out geometrically similar elliptical
trajectories, obtained from the tip trajectory by a dilation |ϕ(s)| and phase shift ∠ϕ(s).
From (3.7b–d), the tangent unit vector, force and moment perturbations along the filament
can be analogously constructed by appropriate scale and phase modulations of the
elliptical tip trajectory (as well as a π/2 rotation in the case of the moment perturbation).

It can be confirmed from the above formulae that in the special case of circular whirling,
Ã · Ã = 0, any given point along the filament performs a steady circular motion parallel to
the wall. Furthermore, in that case the geometry of the deformed filament and the force
and moment distributions along it appear fixed in a frame of reference rotating about the
undeformed configuration at a steady angular frequency ω.

4. Weakly nonlinear theory

4.1. Separation of time scales near the instability threshold
According to the linear theory, at the instability threshold the filament approaches periodic
beating/whirling oscillations of the form (3.7), with the complex-vector amplitude Ã,
assumed small in magnitude, fixed by the initial conditions. In fact, the fate of small-
magnitude oscillations at the instability threshold is actually governed by weak nonlinear
effects which become important at late times – invalidating the linear theory! Specifically,
nonlinear terms formed of cubic products of the linear approximation (or its derivatives)
may resonantly excite the neutral linear modes, thereby producing perturbations growing
like t | Ã|3. Over O(1/| Ã|2) times – long compared with the natural period 2π/ω – such
nonlinear perturbations would become comparable to the linear approximation and may
accordingly influence the dynamics.
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On the other hand, the linear theory predicts that small-magnitude perturbations
exponentially decay for F <Fc, or exponentially grow, in general, for F >Fc. As
F →Fc, the growth rate λr of the most unstable linear modes vanishes like F −Fc
(see figure 2a), suggesting that following a transient (during which more stable modes
decay) the filament exhibits oscillations of the form (3.7) – modulated over long O(1/|F −
Fc|) times. We accordingly identify the distinguished scaling | Ã| = ord(|F −Fc|1/2) –
conventional to symmetry-breaking bifurcations – such that linear and nonlinear effects
both have a leading-order effect. For relatively larger amplitudes, or at the threshold,
nonlinear effects dominate the dynamics; for relatively smaller amplitudes, linear growth
or decay is instead dominant.

The time-scale separation at and near the instability threshold can be exploited towards
systematically deriving a reduced-order nonlinear model governing the dynamics of small-
magnitude oscillations in this regime. This is carried out in § 5 by means of a weakly
nonlinear analysis of the governing equations employing the method of multiple scales;
while conceptually standard, the derivation is presented fully so as to highlight some
technical details peculiar to the present set-up and, more importantly, to facilitate future
extensions to the theory as discussed in § 6. In the present section, we simply quote the
reduced-order model and subsequently analyse and illustrate it in various scenarios.

4.2. Amplitude equation
The reduced-order model consists of the linear approximation (3.7), now understood to
hold in a vicinity of the instability threshold and with Ã evolving with time according to
the amplitude equation

d Ã
dt

= α Ã
∗

Ã · Ã + β Ã Ã
∗ · Ã + (F −Fc)γ Ã, (4.1)

in which the complex coefficients α, β and γ are provided in Appendix B as quadratures
involving the eigenfunction ϕ(s), yielding the numerical values

α ≈ −451.038 − i327.599, β ≈ −517.974 + i353.952, γ ≈ 7.34480 + i5.34285.

(4.2a–c)
In accordance with the above scaling remarks, this reduced-order model holds in the

limit of small-magnitude perturbations | Ã| 	 1, with F −Fc = O(| Ã|2). Furthermore,
we note that the first two (nonlinear) terms on the right-hand side of (4.1) imply the long
time scale 1/| Ã|2, whereas the third (linear) term implies the long time scale 1/|F −Fc|.

We prefer to work with rescaled, order-unity quantities. Thus, consistently with the
weakly nonlinear analysis in § 5, we define

F =Fc + εχ, (4.3)

with 0 < ε 	 1 a small positive parameter and χ real, and introduce the rescalings

Ã(t) = ε1/2 A(T ), (4.4)

wherein

T = εt (4.5)

is a slow time coordinate. The amplitude equation (4.1) then reads as

dA
dT

= α A∗ A · A + β AA∗ · A + χγ A. (4.6)
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While only the product εχ is meaningful, the added freedom is convenient for jointly
scaling the cases where the follower-force magnitude is at or near the instability threshold;
in the latter case, the freedom can be removed by setting χ = sgn(F −Fc).

It is useful to note the following three relations:

d
dT

(A∗ × A) = 2(βr |A|2 + χγr )A∗ × A, (4.7a)

d
dT

(A · A) = 2
[
(α + β)|A|2 + χγ

]
A · A, (4.7b)

d
dT

|A|2 = 2(αr + βr )|A|4 − 2αr |A∗ × A|2 + 2χγr |A|2. (4.7c)

They readily follow from (4.6): we obtain (4.7a) by subtracting the cross product of A∗ and
(4.6) from the conjugate of that product; we obtain (4.7b) by considering the dot product
of A and (4.6), noting the identity 2A · dA/dT = d(A · A)/dT ; and we obtain (4.7c) by
adding the dot product of A∗ and (4.6) to the conjugate of that product. Equation (4.7a)
shows that if the fast-scale tip orbit is initially a line (corresponding to planar motion of
the filament), then it remains so at all later slow times. Similarly, (4.7b) shows that if the
fast-scale tip orbit is initially circular then it remains so at all later slow times.

If the filament is confined to a plane (by the initial conditions), the complex-vector
amplitude can be written A(T ) = êA(T ), where A(T ) is a complex-scalar amplitude and
ê a unit vector parallel to the wall; the filament in that case performs planar-beating
oscillations with A(T ) determining their magnitude and phase. In that restricted scenario,
the amplitude equation (4.6) reduces to

dA

dT
= (α + β)|A|2 A + χγ A, (4.8)

which has the form of the Stuart–Landau amplitude equation corresponding to a
conventional (non-degenerate) Hopf instability (Drazin & Reid 2004).

We proceed in § 4.3 to find solutions of the amplitude equation (4.6) representing steady
and periodic states; we also compare these solutions against numerical data provided
by Eric E. Keaveny. In §§ 4.4–4.6, we analyse the stability of these states within the
framework of the weakly nonlinear theory. In § 4.7, we present simulations of (4.6).

4.3. Periodic states
We consider ‘quasi-steady’ solutions of the amplitude equation (4.6) in the form

A = eiνT Ā, (4.9)

wherein Ā is a time-independent complex vector parallel to the wall and ν a real scalar.
Such solutions represent periodic states of the filament at a corrected angular frequency
ω + νχ−1(F −Fc). From (4.6), the reduced amplitude Ā satisfies

α Ā
∗

Ā · Ā + β Ā Ā
∗ · Ā + (χγ − iν) Ā = 0. (4.10)

The trivial solution Ā = 0 corresponds to the undeformed state of the filament. By
crossing (4.10) with Ā, we find that non-trivial quasi-steady solutions must satisfy either
Ā × Ā

∗ = 0, corresponding to planar beating, or Ā · Ā = 0, corresponding to circular
whirling.
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4.3.1. Planar-beating states
In the planar-beating case, we can write

Ā = Āê, (4.11)

wherein ê is a unit vector parallel to the wall and Ā is a non-vanishing complex scalar.
Representing the latter in polar form,

Ā = eiϑ | Ā|, (4.12)

wherein ϑ represents a real phase, we find from (4.10) that the magnitude | Ā| satisfies

(α + β)| Ā|2 + χγ − iν = 0, (4.13)

whereas the direction ê and phase ϑ are arbitrary. Considering the real and imaginary parts
of (4.13), we readily find

| Ā|2 = − χγr

αr + βr
, ν = χγi − χγr

αi + βi

αr + βr
. (4.14a,b)

Given the coefficient values provided by (4.2), the right-hand side of (4.14a) implies
that the planar-beating states exist only in the case χ > 0, namely when the follower-force
magnitude is above the instability threshold. Setting χ = 1, without loss of generality, the
corresponding tip trajectories follow from (3.8), using (4.4), (4.9), (4.11) and (4.12), as

r(1, t) − ı̂ = 2| Ā|(F −Fc)
1/2 cos[(ω + |F −Fc|ν)t + ϑ]ê, (4.15)

where the rescaled tip displacement 2| Ā| .= 0.17412 and angular-frequency correction ν
.=

5.5426 are calculated using (4.2) and (4.14).

4.3.2. Circular-whirling states
In the circular-whirling case, Ā · Ā = 0, the real vectors Ar and Ai are orthogonal and of
equal magnitude. We accordingly write

Ā = 1√
2
| Ā|(ê ± i ı̂ × ê), (4.16)

where the magnitude | Ā| 
= 0; the plus (minus) sign indicates clockwise (counter
clockwise) motion (viewed from above the wall); and ê is a unit vector parallel to the
wall which represents a phase. From (4.10), the magnitude | Ā| 
= 0 satisfies

β| Ā|2 + γχ − iν = 0, (4.17)

whereas the direction of motion and the phase unit vector ê are arbitrary. Considering the
real and imaginary parts of (4.17), we readily find

| Ā|2 = −χγr

βr
, ν = χγi − χγr

βi

βr
. (4.18a,b)

Similarly to the planar-beating states, we see from the right-hand side of (4.18a) and the
coefficient values provided by (4.2) that the circular-whirling states exist only in the case
χ > 0, similarly to the planar-beating states. Setting χ = 1, without loss of generality, the
corresponding tip trajectories follow from (3.8), using (4.4), (4.9) and (4.16), as

r(1, t) − ı̂ = √
2| Ā|(F −Fc)

1/2 {ê cos [(ω + |F −Fc|ν)t]

∓ı̂ × ê sin [(ω + |F −Fc|ν)t]
}

, (4.19)
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Figure 3. (a) Bifurcation diagram showing maximal dip displacement (normalised by filament length) against
the dimensionless follower-force magnitude F , for the (i) undeformed steady state; (ii) planar-beating periodic
states; and (iii) circular-whirling periodic states. The curves depict the predictions of the weakly nonlinear
theory (see § 4): the undeformed state is stable preceding the bifurcation (solid black line) and unstable
following it (dashed black line); the planar-beating states are longitudinally stable, up to phase shifts, but
transversally unstable (dash-dotted red curve); and the circular-whirling states are stable up to phase shifts
(solid blue curve). The symbols depict numerical data provided by Eric E. Keaveny (see § 4.3.3). (b) Zoomed-in
comparison between the theory and numerical data depicted on a log–log scale.

where the rescaled tip radius
√

2| Ā| .= 0.16840 and angular-frequency correction
ν

.= 10.362 are calculated using (4.2) and (4.18).

4.3.3. Bifurcation diagram and comparison with numerical solutions of the full problem
In figure 3, we plot maximal tip displacement versus dimensionless follower force for
the steady and periodic states predicted by the weakly nonlinear theory. As evident in
(4.15) and (4.19), the maximal tip displacement ∝ √F −Fc for both the planar-beating
and circular-whirling periodic states, the constant of proportionality being slightly larger
for the planar-beating states. (We note that this square-root scaling near the threshold
was hypothesised as well as numerically demonstrated by Clarke et al. (2024).) The
stability characteristics indicated in the bifurcation diagram are derived and discussed in
the following subsections.

With the purpose of validating the present weakly nonlinear theory, Eric E. Keaveny
has conducted simulations based on the numerical methodology of Schoeller et al.
(2021), adopting the same formulation as Clarke et al. (2024) only with the full Stokes
hydrodynamics included in their study simplified to resistive force theory – consistently
with the present formulation (cf. (2.2)). Figure 3 shows remarkable agreement, in terms of
the maximal tip displacements, between these simulations and the theoretical predictions.

4.4. Linear stability of the undeformed state
The stability characteristics of the undeformed state, as well as the planar-beating
and circular-whirling periodic states, are readily determined within the framework of
the weakly nonlinear theory. We begin by revisiting the stability of the undeformed
state, which has already been analysed exactly in § 3. To this end, we consider small
perturbations of the complex-vector amplitude:

A(T ) = a(T ), |a| 	 1. (4.20)
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Linearisation of the amplitude equation (4.6) in the case Ā = 0 gives
da
dT

= χγ a, (4.21)

which possesses the general solution

a(T ) = eχγ T a(0). (4.22)

In this linear approximation, the elliptical tip orbit at slow time T is obtained from
the initial orbit defined by a(0) via a dilation by exp(χγr T ). Since γr > 0, perturbations
grow for χ > 0 and decay for χ < 0. The case χ = 0, where nonlinear terms determine the
stability of the undeformed state, will be considered in § 4.6.

It is instructive to repeat the above stability analysis, this time starting from the real
dynamical system implied by the linearised amplitude equation (4.21):

d
dT

(
ar
ai

)
= χ

(
γr −γi
γi γr

)(
ar
ai

)
. (4.23)

As ar and ai are real vectors parallel to the wall, this system is four-dimensional. By
substituting into (4.23) the modal ansatz(

ar
ai

)
= eσ T

(
ãr
ãi

)
+ c.c., (4.24)

wherein σ represents a rescaled growth rate, we find the homogeneous system(
χγr − σ −χγi

χγi χγr − σ

)(
ãr
ãi

)
=
(

0
0

)
. (4.25)

The solution space is spanned by the eigenvectors(
ãr
ãi

)(1,2)

=
(

ê1
∓i ê1

)
,

(
ãr
ãi

)(3,4)

=
(

ê2
∓ê2

)
, (4.26a,b)

ê1 and ê2 being a pair of orthogonal unit vectors parallel to the wall, with corresponding
growth-rate eigenvalues

σ (1,3) = χγ, σ (2,4) = χγ ∗. (4.27a,b)

In accordance with the stability analysis in § 3, we find two identical pairs of complex-
conjugate growth rates whose real part is positive for χ > 0 and negative for χ < 0.
The eigenvector pairs (4.27a) and (4.27b) correspond to planar beating along the ê1 and
ê2 directions, respectively. The linearised whirling motion (4.22) is readily retrieved by
general superposition of solutions in the form (4.24).

4.5. Linear stability of the periodic states
We next consider the stability of the planar-beating and circular-whirling states. In these
cases, it is convenient to write the perturbation as

e−iνT A(T ) = Ā + a(T ), |a| 	 1, (4.28)

wherein the steady complex-vector amplitude Ā and angular-frequency correction ν are
defined as in (4.9). Since these states exist only in the case χ > 0, we set χ = 1, without
loss of generality, for the remainder of this subsection. Linearisation of the amplitude
equation (4.6) then gives, upon eliminating the quasi-steady relation (4.10),

da
dT

= 2α Ā
∗

Ā · a + αa∗ Ā · Ā + β Ā Ā · a∗ + β Āa · Ā
∗ + (γ − iν + β| Ā|2)a. (4.29)
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4.5.1. Linear stability of the planar-beating states
For the planar-beating states (§ 4.3.1), the form of Ā is given by (4.11) and (4.12), which
feature the unit vector ê (indicating the plane of beating) and phase ϑ . Decomposing the
perturbation into components parallel and perpendicular to the beating, a = a‖ ê + a⊥ ı̂ ×
ê, the linearised amplitude equation (4.29) yields, upon eliminating ν using the steady
relation (4.13), the uncoupled pair of equations

da‖
dT

= (α + β)| Ā|2
(

a‖ + e2iϑa∗‖
)

,
da⊥
dT

= α| Ā|2
(

e2iϑa∗⊥ − a⊥
)

, (4.30a,b)

wherein | Ā| is provided by (4.14a).
We first consider parallel perturbations. Separating (4.30a) into its real and imaginary

parts, we find the two-dimensional real system

d
dT

(
a‖r
a‖i

)
= | Ā|2

(
ζr (1 + cos 2ϑ) − ζi sin 2ϑ ζr sin 2ϑ − ζi (1 − cos 2ϑ)

ζr sin 2ϑ + ζi (1 + cos 2ϑ) ζr (1 − cos 2ϑ) + ζi sin 2ϑ

)(
a‖r
a‖i

)
,

(4.31)
wherein ζ = α + β. Seeking solutions in the form {a‖r , a‖i } = {ã‖r , ã‖i } exp(σ‖T ) + c.c.,
we find the growth-rate eigenvalues

σ
(1)
‖ = 0, σ

(2)
‖ = −2γr , (4.32a,b)

where we have used (4.14a) for | Ā|. The zero eigenvalue σ
(1)
‖ reflects the arbitrariness of

the phase ϑ . Since γr > 0, the eigenvalue σ
(2)
‖ has a negative real part. Thus, planar beating

is stable to parallel perturbations apart from the expected neutrality with respect to phase.
We next consider perpendicular perturbations. Separating (4.30b) into its real and

imaginary parts, we find the two-dimensional real system

d
dT

(
a⊥r
a⊥i

)

= | Ā|2
(

αr (cos 2ϑ − 1) − αi sin 2ϑ αr sin 2ϑ + αi (1 + cos 2ϑ)

αr sin 2ϑ + αi (cos 2ϑ − 1) −αr (1 + cos 2ϑ) + αi sin 2ϑ

)(
a⊥r
a⊥i

)
. (4.33)

Seeking solutions in the form {a⊥r , a⊥i } = {ã⊥r , ã⊥i } exp(σ⊥T ) + c.c., we readily find
the growth-rate eigenvalues

σ
(1)
⊥ = 0, σ

(2)
⊥ = 2αrγr

αr + βr
, (4.34a,b)

where we have used (4.14a) for | Ā|. The zero eigenvalue σ
(1)
⊥ reflects the arbitrariness of

the direction ê. Since γr > 0, whereas αr , βr < 0, the eigenvalue σ
(2)
⊥ has a positive real

part. Thus, planar beating is unstable under perpendicular perturbations – and therefore
unstable under general perturbations.

4.5.2. Stability of the circling-whirling states
For the circular-whirling states (§ 4.3.2), the form of Ā is given by (4.16), with the
plus/minus sign determining the direction of motion and the unit vector ê representing a
phase; without loss of generality, we only consider the stability of circular whirling in the
clockwise direction, corresponding to choosing the plus sign. Writing a = a1 ê + a2 ı̂ × ê,
the linearised amplitude equation (4.29) gives, upon eliminating ν using the steady relation
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(4.17), the coupled pair of equations
da1

dT
= α| Ā|2(a1 + ia2) + 1

2
β| Ā|2(a1 + a∗

1 + ia∗
2 − ia2), (4.35a)

da2

dT
= α| Ā|2(a2 − ia1) + 1

2
β| Ā|2(a2 − a∗

2 + ia1 + ia∗
1), (4.35b)

wherein |A| is provided by (4.18a). Decomposing (4.35) into their real and imaginary
parts, we find the four-dimensional real system

d
dT

⎛
⎜⎝

a1r
a1i
a2r
a2i

⎞
⎟⎠= | Ā|2

⎛
⎜⎝

αr + βr −αi −αi βr − αr
αi + βi αr αr βi − αi
αi − βi αr αr −(αi + βi )

βr − αr αi αi αr + βr

⎞
⎟⎠
⎛
⎜⎝

a1r
a1i
a2r
a2i

⎞
⎟⎠ . (4.36)

Seeking solutions in the form {a1r , a1i , a2r , a2i } = {ã1r , ã1i , ã2r , ã2i } exp(σ T ) + c.c.,
we find the dispersion relation

σ(σ − 2| Ā|2βr )
(
σ 2 − 4αr | Ā|2σ + 4| Ā|4|α|2

)
= 0, (4.37)

whose solutions yield the growth-rate eigenvalues

σ (1) = 0, σ (2) = −2γr , σ (3) = −2
γr

βr
α, σ (4) = −2

γr

βr
α∗, (4.38a-d)

where we have used (4.18a) for | Ā|. The zero eigenvalue σ (1) reflects the arbitrariness of
the phase unit vector ê. Since γr > 0, whereas αr , βr < 0, the remaining eigenvalues have
negative real parts. Thus, the circular-whirling states are stable apart from the expected
neutrality with respect to phase.

The predicted stability characteristics of the different states are indicated in the
bifurcation diagram (figure 3a). The stability of the circular-whirling states and the
instability of the planar-beating states (under general three-dimensional perturbations) are
in accordance with the Floquet analyses numerically performed by Clarke et al. (2024). As
first established by Clarke et al. (2024), these stability characteristics serve to rationalise
the selection of whirling over beating in initial-value simulations not restricted to planar
deformations (Ling et al. 2018).

4.6. Nonlinear stability of the undeformed state
It remains to determine the nonlinear stability of the undeformed state at the linear-
instability threshold. Setting χ = 0, the amplitude equation (4.6) reduces to

dA
dT

= α A∗ A · A + β AA∗ · A. (4.39)

(In this case, the small parameter ε simply measures the magnitude of the perturbation,
which scales with the 1/2 power of that parameter.) We wish to determine whether |A|
decays or grows as T → ∞. To this end, we set χ = 0 in (4.7a,c) to find the pair of
equations

d
dT

|A| = (αr + βr )|A|3 − αr |B|2|A|−1,
d

dT
|B| = 2βr |A|2|B|, (4.40a,b)

where we denote B = A∗ × A.
In the special case of planar perturbations, where B vanishes, (4.40a) reduces to

d|A|
dT

= (αr + βr )|A|3. (4.41)
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Since αr , βr < 0, planar perturbations decay. Explicitly, integration of (4.41) gives

|A(T )| = |A(0)|√
1 − 2|A(0)|2(αr + βr )T

∼ 1√−2(αr + βr )T
as T → ∞, (4.42)

revealing algebraic decay with the −1/2 power of time.
For initially non-planar perturbations we consider the pair of equations (4.40) as a

nonlinear dynamical system for the magnitudes |A| and |B|. This system has no fixed
points, and consideration of the phase space shows that all orbits in the first quadrant
(|A|, |B| > 0) approach the origin. Positing a power-law behaviour for |A| and |B|, we
readily identify the late-time behaviours

|A(T )| ∼ 1√−2βr T
, |B(T )| ∼ − 1

2βr T
at T → ∞. (4.43a,b)

Given these asymptotes, we further find using (3.9) that the semi-major and semi-minor
axes of the fast-scale tip orbit behave as (up to an ε1/2 scaling)√

|A|2 + |B| ±
√

|A|2 − |B| = 1√−βr T
+ o(T −1/2) as T → ∞. (4.44)

Thus, at late times the filament exhibits circular whirling on the fast scale, with the tip
radius decaying algebraically with the −1/2 power of time.

4.7. Numerical illustrations
The amplitude equation (4.6) is straightforward to integrate numerically starting from
some initial amplitude A(0). Given a solution A(T ), a function of the slow time T , the
corresponding motion of the filament in three dimensions as well as the internal force
and moment distributions can be calculated at any time t by making the substitution
Ã ⇒ ε1/2 A(T ) in (3.7) (cf. (4.4)). For the purpose of illustrating the theory, we present
in figures 4–6 sample solutions for several values of F −Fc = εχ and initial conditions.

In figure 4, we consider the case where the initial fast-time oscillation is planar. In
light of (4.7a), the motion of the filament remains planar at all times. We observe
the multiple-scales evolution of the dynamics towards the periodic planar-beating states
(see §§ 4.3.1 and 4.5.1), for F >Fc, or the undeformed configuration, for F <Fc, with
faster transients for larger |F −Fc|. In figure 5, we consider an example where the initial
fast-time oscillation is nearly planar and F >Fc. We observe the slow-time expansion
and rotation of the fast-scale elliptical orbit of the tip as it approaches the circular orbit
corresponding to the periodic circular-whirling states (see §§ 4.3.2 and 4.5.2). Lastly, in
figure 6, we demonstrate the algebraic decay of both planar and non-planar perturbations
at the instability threshold, F =Fc (see § 4.6).

5. Weakly nonlinear analysis

5.1. Multiple-scale expansions near the instability threshold
In this section, we derive the amplitude equation (4.6), which together with the general
representation (3.7) for the linear approximation at the instability threshold constitutes
the weakly nonlinear theory that we have presented, analysed and illustrated in § 4. The
derivation consists of a weakly nonlinear analysis in the multiple-scales near-threshold
regime identified in § 4.1.
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Figure 4. Planar multiple-scale dynamics for the initial condition A(0) = 0.02êx and indicated values of
F −Fc, where êx is a unit vector parallel to the wall. The plot depicts the tip displacement in the êx direction
(solid curves), scaled by |F −Fc|1/2, as a function of time, scaled by the natural filament period 2π/ω. The
dashed curves depict the slow-time envelopes 2|A(T )|. The dash-dotted line marks the peak displacement
corresponding to the planar-beating state.

We write F =Fc + εχ for the dimensionless follower force, as in (4.3), and consider
the long-time dynamics of small-magnitude oscillations for 0 < ε 	 1, holding χ fixed.
Following the method of multiple scales (Hinch 1991), we introduce the two-scale
extension r(s, τ, T ) of the centreline position vector r(s, t), wherein the ‘fast time’ τ

and ‘slow time’ T are treated as independent coordinates, such that r(s, τ, T ) = r(s, t) on
the ‘physical diagonal’:

τ = t and T = εt; (5.1)

we also introduce analogous extensions t̂(s, τ, T ), F(s, τ, T ) and M(s, τ, T ) for
the tangent unit vector t̂(s, t), internal force F(s, t) and internal moment M(s, t),
respectively. The extended fields satisfy the same problem as formulated in § 2, only with
the time derivative in (2.6b) transformed according to

∂

∂t
⇒ ∂

∂τ
+ ε

∂

∂T
. (5.2)

We posit the ‘weakly nonlinear expansion’

r(s, τ, T ) = r0(s) + ε1/2r1/2(s, τ, T ) + εr1(s, τ, T ) + ε3/2r3/2(s, τ, T ) + · · · , (5.3)

with analogous expansions defined for t̂(s, τ, T ), F(s, τ, T ) and M(s, τ, T ), the zeroth-
order fields being the base state (2.11) evaluated at the threshold:

r0 = s ı̂, t̂0 = ı̂, F0 = −Fc ı̂, M0 = 0. (5.4)

A key idea underlying the method is to exploit the added freedom associated with the
extension to two time scales in order to ensure that the weakly nonlinear expansions remain
asymptotically ordered. We note that the scaling of time by 1/ε and the expansion in
half-powers of ε are suggested by the scaling arguments given in § 4.1.
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Figure 5. Non-planar multiple-scale dynamics for the initial condition A(0) = 0.03êx + i0.005êy and
F −Fc = 0.5, where {êx , êy, ı̂} is a right-handed system of unit vectors. The panels depict a top view (looking
towards the wall, with êx pointing to the right) showing the tip position (filled circle) and filament projection
(thick solid line) at the indicated times, along with the instantaneous fast-scale tip orbit (dashed ellipse),
tip trajectory starting from the previous time stamp (fading thin curves) and the radius corresponding to the
circular-whirling states (dash-dotted circle); distances are scaled by

√F −Fc.

5.2. The O(ε1/2) problem
At O(ε1/2), the governing partial differential equations (2.6), together with the time-
derivative transformation (5.2), give

∂ r1/2

∂s
− t1/2 = 0, (5.5a)

∂ F1/2

∂s
−
(

I − 1
2

ı̂ ı̂
)

· ∂ r1/2

∂τ
= 0, (5.5b)

∂ M1/2

∂s
+Fc ı̂ × t1/2 + ı̂ × F1/2 = 0, (5.5c)

M1/2 − ı̂ × ∂ t1/2

∂s
= 0; (5.5d)
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Figure 6. Algebraic decay of perturbations at the linear-instability threshold F =Fc (see § 4.6). The plot
compares |A(T )| in the planar scenario A(0) = êx (thick solid curve) and non-planar scenario A(0) = (êx +
i
√

3êy)/2 (thick dash-dotted curve) with the power-law asymptotes (4.42) and (4.43a), where {êx , êy, ı̂} is a
right-handed system of unit vectors. For the non-planar scenario, we also depict the magnitude |B| = |A∗ × A|
(thick dashed curve) and its power-law asymptote (4.43b), and in the inset a top view (looking towards the wall,
with êx pointing to the right) of the tip trajectory scaled by ε1/2, with ε = 0.5.

the inextensibility constraint (2.7) gives

ı̂ · t1/2 = 0; (5.6)

while the boundary conditions (2.8) and (2.9) give

r1/2 = 0, t1/2 = 0 at s = 0 (5.7a,b)

and

F1/2 +Fc t1/2 = 0, M1/2 = 0 at s = 1. (5.8a,b)

The above problem is nothing but the full problem at the instability threshold linearised
for small deformations (scaled by ε1/2). We may accordingly deduce the appropriate
general solution from the linear theory of § 3:

r1/2 = A(T )ϕ(s)eiωτ + c.c., (5.9a)

t1/2 = A(T )ϕ′(s)eiωτ + c.c., (5.9b)

F1/2 = −A(T )[ϕ′′′(s) +Fcϕ
′(s)]eiωτ + c.c., (5.9c)

M1/2 = ı̂ × A(T )ϕ′′(s)eiωτ + c.c., (5.9d)

wherein A(T ) is a complex-vector amplitude parallel to the wall evolving on the slow time
scale. As detailed in § 3, this solution form represents an arbitrary superposition of linearly
neutral planar-beating modes, which generally gives rise to a three-dimensional whirling
motion. We have not included in the general solution (5.9) potential contributions of any
stable linear modes as these would exponentially decay on the fast time scale with no effect
on the slow-time dynamics. We must proceed to higher order in ε to derive an evolution
equation for A(T ).
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5.3. The O(ε) problem
At O(ε), the governing partial differential equations (2.6), together with the time-
derivative transformation (5.2), give

∂ r1

∂s
− t1 = 0, (5.10a)

∂ F1

∂s
−
(

I − 1
2

ı̂ ı̂
)

· ∂ r1

∂τ
= −1

2

(
t1/2 ı̂ + ı̂ t1/2

) · ∂ r1/2

∂τ
(5.10b){

= −ı̂
iω

2

(
A · Aϕ′ϕe2iωτ − |A|2ϕ′ϕ∗)+ c.c.

}
, (5.10b)

∂ M1

∂s
+Fc ı̂ × t1 + ı̂ × F1 = −t1/2 × F1/2

{= A × A∗ϕ′ϕ∗′′′ + c.c.
}

, (5.10c)

M1 − ı̂ × ∂ t1

∂s
= t1/2 × ∂ t1/2

∂s

{= A × A∗ϕ′ϕ∗′′ + c.c.
} ; (5.10d)

the inextensibility constraint (2.7) gives

ı̂ · t1 = −1
2

t1/2 · t1/2

{
= −1

2
A · Aϕ′2e2iωτ − 1

2
|A|2|ϕ′|2 + c.c.

}
; (5.11)

while the boundary conditions (2.8) and (2.9) give

r1 = 0, t1 = 0 at s = 0 (5.12a,b)

and

F1 +Fc t1 = −χ ı̂
{
= −1

2
χ ı̂ + c.c.

}
, M1 = 0 at s = 1. (5.13a,b)

The homogeneous part of the above linear problem is the same as for the O(ε1/2)
problem. The inhomogeneous terms, calculated by substituting (5.9), are provided
explicitly inside the curly brackets; they are normal to the wall and composed of
contributions that are harmonic in the fast time τ with angular frequencies 0 or 2ω.
Accordingly, these forcing terms cannot resonantly excite homogeneous beating/whirling
solutions of the form (5.9), which are parallel to the wall and harmonic in the fast time τ

with angular frequency ω. Indeed, it is straightforward to derive the solutions

r1 = −ı̂
1
2

A · Ae2iωτ

∫ s

0
{ϕ′(p)}2 d p − ı̂

1
2
|A|2

∫ s

0
|ϕ′(p)|2 d p + c.c., (5.14a)

t1 = −ı̂
1
2

A · Aϕ′2e2iωτ − ı̂
1
2
|A|2|ϕ′|2 + c.c., (5.14b)

F1 = 1
2

ı̂ A · Ae2iωτ

[
Fc{ϕ′(1)}2 + iω

2
ϕ2(1) − iω

2
ϕ2(s) + iω

∫ 1

s
d p

∫ p

0
dq {ϕ′(q)}2

]

− ı̂
χ

2
+ ı̂

Fc

2
|A|2|ϕ′(1)|2 − ı̂

iω

2
|A|2

∫ 1

s
ϕ′(p)ϕ∗(p) d p + c.c. (5.14c)

M1 = A × A∗ϕ′ϕ∗′′ + c.c., (5.14d)

whose periodicity in τ confirms the regularity of the weakly nonlinear expansions to
O(ε) (cf. (5.3)). In (5.14), we have discarded all homogeneous solutions, including
beating/whirling solutions of the form (5.9) as well as solutions decaying on the fast time
scale – these do not effect the slow-time dynamics of the leading-order amplitude A(T ).
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5.4. The O(ε3/2) problem
At O(ε3/2), the governing partial differential equations (2.6), together with the time-
derivative transformation (5.2), give

∂ r3/2

∂s
− t3/2 = 0, (5.15a)

∂ F3/2

∂s
−
(

I − 1
2

ı̂ ı̂
)

· ∂ r3/2

∂τ
=
(

I − 1
2

ı̂ ı̂
)

· ∂ r1/2

∂T
− 1

2

(
t1/2 ı̂ + ı̂ t1/2

) · ∂ r1

∂τ

− 1
2

(
t1 ı̂ + ı̂ t1 + t1/2 t1/2

) · ∂ r1/2

∂τ

{
= eiωτ f (2)(s) + c.c. + n.s.t.

}
, (5.15b)

∂ M3/2

∂s
+Fc ı̂ × t3/2 + ı̂ × F3/2 = −t1/2 × F1 − t1 × F1/2{

= eiωτ f (3)(s) + c.c. + n.s.t.
}

, (5.15c)

M3/2 − ı̂ × ∂ t3/2

∂s
= t1/2 × ∂ t1

∂s
+ t1 × ∂ t1/2

∂s

{
= eiωτ f (4)(s) + c.c. + n.s.t.

}
;

(5.15d)

the inextensibility constraint (2.7) gives

t3/2 · ı̂ = −t1 · t1/2, (5.16)

where the right-hand side vanishes since t1 and t1/2 are perpendicular; and the boundary
conditions (2.8) and (2.9) give

r3/2 = 0, t3/2 = 0 at s = 0 (5.17)

and

F3/2 +Fc t3/2 = −χ t1/2

{
= eiωτ h(1) + c.c. + n.s.t.

}
, M3/2 = 0 at s = 1.

(5.18)
The above linear problem has the same form as the problems encountered in the

preceding orders, except that at the present order the inhomogeneous forcing terms include
potentially resonant contributions – parallel to the wall and harmonic in the fast time τ with
the natural angular frequency ω. To focus attention on these contributions, we express the
forcing terms as shown inside the curly brackets. Therein, ‘n.s.t.’ stands for non-secular
terms and represents all other contributions, while f (2), f (3) and f (4) are the ‘reduced
forcing terms’

f (2) = dA
dT

ϕ + iω

2
A∗(A · A)ϕ∗′

∫ s

0
{ϕ′(p)}2 dp

− iω

2

[
A|A|2ϕ′(ϕ∗′ϕ − ϕ′ϕ∗) + A∗(A · A)ϕ|ϕ′|2

]
, (5.19a)

f (3) = −ı̂ × Aϕ′χ + ı̂

× A|A|2
{
Fcϕ

′(|ϕ′(1)|2 − |ϕ′|2) − |ϕ′|2ϕ′′′ + ωϕ′Im
∫ 1

s
ϕ′(p)ϕ∗(p) dp

}
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+ 1
2

ı̂ × A∗(A · A)

[
−ϕ′2(ϕ′′′ +Fcϕ

′)∗ +Fcϕ
∗′{ϕ′(1)}2 + iω

2
ϕ∗′ϕ2(1)

− iω

2
ϕ∗′ϕ2 + iωϕ∗′

∫ 1

s
dp

∫ p

0
dq {ϕ′(q)}2

]
, (5.19b)

f (4) = ı̂ × A|A|2ϕ′2ϕ∗′′ + ı̂ × A∗(A · A)

(
ϕ′′|ϕ′|2 − 1

2
ϕ′2ϕ∗′′

)
, (5.19c)

h(1) = −χ Aϕ′(1), (5.19d)

obtained by substituting (5.9) and (5.14); their numbering will become meaningful in the
following subsection.

5.5. Solvability condition

5.5.1. Restricted linear problem
The exp(iωτ) Fourier component of the O(ε3/2) problem, projected parallel to the wall,
furnishes a ‘restricted’ linear problem in the form

Lψ = f , Sψ(0) = g, Tψ(1) = h, (5.20a,b,c)

where ψ(s) = [ŕ(s), t́(s), F́(s), Ḿ(s)]T denotes the unknown column-array field,
whose elements are complex vector fields parallel to the wall; L, S and T are the
matrix-differential operators

L =

⎛
⎜⎜⎜⎝

d
ds −1 0 0

−iω 0 d
ds 0

0 Fc ı̂× ı̂× d
ds

0 −ı̂ × d
ds 0 1

⎞
⎟⎟⎟⎠ , S =

(
1 0 0 0
0 1 0 0

)
, T =

(
0 Fc 1 0
0 0 0 1

)
;

(5.21a,b,c)
and f (s) = [ f (1)(s), f (2)(s) f (3)(s), f (4)(s)]T , g = [g(1), g(2)]T and h = [h(1), h(2)]T

are column-array forcing terms, whose elements are vectors parallel to the wall (fields
for f (s), constants for g and h). In the present scenario, we find from (5.15)–(5.18) that
f (1)(s), h(2), g(1) and g(2) vanish, whereas f (2)(s), f (3)(s), f (4)(s) and h(1) are provided
by (5.19). We know from the linear theory of § 3 that the restricted problem possesses non-
trivial homogeneous solutions in the form ψ = [aϕ, aϕ′, −a(ϕ′′′ +Fcϕ

′), ı̂ × aϕ′′]T ,
with a an arbitrary complex vector parallel to the wall. We therefore expect that solutions
to the inhomogeneous restricted problem exist – whereby resonance is avoided in the
O(ε3/2) problem of § 5.4 – only under certain ‘solvability’ conditions on the forcing terms.

Below, we derive a necessary condition for existence of solutions to the restricted
problem. (By alluding to the Fredholm alternative theorem for differential operators
(Keener 2018), it could be shown that the condition is also sufficient.) In deriving this
solvability condition, we shall allow for the full form of the forcing terms in (5.20) in
order to facilitate future generalisations of the theory as discussed in § 6.
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5.5.2. Adjoint operators and homogeneous solutions

For any pair of column-vector fields ψ (1)(s) = [ŕ(1)
(s), t́

(1)
(s), F́

(1)
(s), Ḿ

(1)
(s)]T and

ψ (2)(s) = [ŕ(2)
(s), t́

(2)
(s), F́

(2)
(s), Ḿ

(2)
(s)]T , we define the inner product

〈ψ (1),ψ (2)〉 =
∫ 1

0

{
r∗(1) · r(2) + t∗(1) · t(2) + F∗(1) · F(2) + M∗(1) · M(2)

}
ds. (5.22)

Following Keener (2018), we seek adjoint operators L†, S† and T† such that the factor

J (ψ (1),ψ (2)) = 〈Lψ (1),ψ (2)〉 − 〈ψ (1), L†ψ (2)〉 (5.23)

vanishes for any ψ (1) satisfying the ‘direct boundary conditions’ Sψ (1)(0) = 0 and
Tψ (1)(1) = 0, and ψ (2) satisfying the ‘adjoint boundary conditions’ S†ψ (2)(0) = 0 and
T†ψ (2)(1) = 0. To this end, we integrate by parts the product

〈Lψ (1),ψ (2)〉 =
∫ 1

0

{(
d ŕ(1)∗

ds
− t́

(1)∗
)

· ŕ(2) +
(

iω ŕ(1)∗ + d F́
(1)∗

ds

)
· t́

(2)

+
(
Fc ı̂ × t́

(1)∗ + ı̂ × F́
(1)∗ + d Ḿ

(1)∗

ds

)
· F́

(2) +
(

−ı̂ × d t́
(1)∗

ds
+ Ḿ

(1)∗
)

· Ḿ
(2)

}
ds

(5.24)

and use the vector triple product to find

〈Lψ (1),ψ (2)〉 =
[

ŕ(2) · ŕ(1)∗ + ı̂ × Ḿ
(2) · t́

(1)∗ + t́
(2) · F́

(1)∗ + F́
(2) · Ḿ

(1)∗]1

0

+
∫ 1

0

{
ŕ(1)∗ ·

(
−d ŕ(2)

ds
+ iω t́

(2)

)
+ t́

(1)∗ ·
(

−ŕ(2) −Fc ı̂ × F́
(2) − ı̂ × d Ḿ

(2)

ds

)

+F́
(1)∗ ·

(
−d t́

(2)

ds
− ı̂ × F́

(2)

)
+ Ḿ

(1)∗ ·
(

−d F́
(2)

ds
+ Ḿ

(2)

)}
ds. (5.25)

Thus, by inspection, the adjoint operators are

L† =

⎛
⎜⎜⎝

− d
ds iω 0 0

−1 0 −Fc ı̂× −ı̂ × d
ds

0 − d
ds −ı̂× 0

0 0 − d
ds 1

⎞
⎟⎟⎠ , S† =

(
0 1 0 0
0 0 1 0

)
,

T† =
(

1 0 0 0
0 −Fc 0 ı̂×

)
. (5.26a,b,c)

Associated with the adjoint operators is the adjoint homogeneous problem,

L†ζ = 0, S†ζ (0) = 0, T†ζ (1) = 0. (5.27a,b,c)

It is readily found to possess the non-trivial solutions

ζ =
[

bφ, b
1

iω
φ′, ı̂ × b

1
iω

φ′′, ı̂ × b
1

iω
φ′′′

]T

, (5.28)
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where b is an arbitrary complex vector parallel to the wall and the adjoint eigenfunction
φ(s) satisfies the ordinary differential equation

φ′′′′ +Fcφ
′′ − iωφ = 0 (5.29)

and the boundary conditions

φ′ = 0, φ′′ = 0 at s = 0; φ = 0, φ′′′ +Fcφ
′ = 0 at s = 1. (5.30a,b,c,d)

The unidimensional problem (5.29)–(5.30) defines the adjoint eigenfunction φ(s) up to
an arbitrary complex prefactor, which we conveniently choose such that φ(0) = 1; the
eigenfunction can be readily expressed analytically in terms of the numerical values Fc
and ω, or calculated numerically.

5.5.3. Solvability condition
In the definition (5.23) of the factor J (ψ (1),ψ (2)), let ψ (1) =ψ be a solution to the
inhomogeneous problem (5.20) and ψ (2) = ζ any solution to the homogeneous adjoint
problem (cf. (5.28)). Using (5.20a) and (5.27a), we find from (5.23) the relation

J (ψ, ζ ) = 〈 f , ζ 〉. (5.31)

Since ψ satisfies inhomogeneous conditions, the factor J (ψ, ζ ) does not necessarily
vanish; rather, the boundary terms in (5.25) give, upon substituting (5.20b,c) and
(5.28)–(5.30),

J (ψ, ζ ) = b ·
(

φ′(1)

iω
h∗

(1) + φ′′(1)

iω
h∗

(2) × ı̂ − φ(0)g∗
(1) + φ′′′(0)

iω
g∗

(2)

)
. (5.32)

From (5.20a) we find, using the triple-vector-product identity,

〈 f , ζ 〉 = b ·
∫ 1

0

(
f ∗

(1)φ + f ∗
(2)

φ′

iω
+ f ∗

(3) × ı̂
φ′′

iω
+ f ∗

(4) × ı̂
φ′′′

iω

)
ds. (5.33)

Substituting (5.32) and (5.33) into (5.31), we find, given that b is arbitrary,∫ 1

0

(
f ∗

(1)φ + f ∗
(2)

φ′

iω
+ f ∗

(3) × ı̂
φ′′

iω
+ f ∗

(4) × ı̂
φ′′′

iω

)
ds

= φ′(1)

iω
h∗

(1) + φ′′(1)

iω
h∗

(2) × ı̂ − φ(0)g∗
(1) + φ′′′(0)

iω
g∗

(2). (5.34)

This result constitutes a general solvability condition that could be applied to any
inhomogeneous linear problem in the form (5.20). In the present scenario, where f (1)(s),
h(2), g(1) and g(2) vanish, (5.34) reduces to∫ 1

0

(
f (2)φ

∗′ − ı̂ × f (3)ϕ
∗′′ − ı̂ × f (4)φ

∗′′′) ds = h(1)φ
∗′(1), (5.35a–c)

where we have also taken the complex conjugate. Substituting (5.19) for f (2)(s), f (3)(s),
f (4)(s) and h(1), we arrive at the amplitude equation (4.6) with the coefficients α, β and
γ defined by the quadratures presented in Appendix B.

6. Concluding remarks
We have developed a weakly nonlinear theory illuminating the onset of spontaneous
beating and whirling in the follower force model. The biological inspiration for the follower
force model suggests several extensions to the modelling, including cross-sectionally

1007 A65-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

12
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.128


Journal of Fluid Mechanics

anisotropic bending; preferred curvature; axially distributed compressive forces; applied
moments; non-local hydrodynamic corrections and entrainment of the flow by molecular
motors; and interactions with ambient flows and neighbouring filaments. Sufficiently near
the threshold, even weak perturbations such as the above may significantly influence
the leading-order dynamics through resonant interactions with the linear beating modes.
It would be relatively straightforward to generalise our weakly nonlinear analysis to
such perturbative scenarios: as long as the homogeneous linearised operator remains
unaffected, a generalised weakly nonlinear analysis could directly utilise the linear
approximation at the threshold and the solvability condition developed herein. For non-
weak perturbations that appreciably alter the near-threshold linearised problem, our
approach remains applicable, though most steps of the analysis would need to be revisited.

Besides studying the onset of spontaneous dynamics under variations to the modelling,
the present work could be extended in several other interesting directions. One is to
carry out weakly nonlinear analyses near other critical points of the dynamics, e.g. near
the bifurcations discovered by Clarke et al. (2024) where the quasi-periodic branch of
solutions termed ‘QP1’ merges with the planar-beating and whirling states, modifying
their stability. Another direction is to consider weak perturbation and interaction effects
away from critical points; such perturbations can again have a leading-order influence
over long times, e.g. manifested in slow phase variations or slow reorientation of the
beating plane. Lastly, it may be of interest to consider the onset of spontaneous dynamics
in the inertial version of the follower force model, where a finite-mass filament deforms
in the absence of viscous effects. The inertial problem was widely considered in the
elasticity literature (Beck 1952; Langthjem & Sugiyama 2000), although mostly assuming
planar deformations. A three-dimensional nonlinear analysis in the spirit of this work may
accordingly prove illuminating.

Supplementary material. A supplementary material is available at https://doi.org/10.1017/jfm.2025.128.
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introducing him to this problem and providing the numerical results presented in § 4.3.3.

Funding. The author acknowledges the support of the Leverhulme Trust through Research Project Grant
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Appendix A. Absence of twist
When including resistance to twist, the constitutive equation (2.5) generalises to

M∗ = B∗ t̂ × ∂ t̂
∂s∗

+ T∗
(
ν̂ · ∂μ̂

∂s∗

)
t̂, (A1)

where T∗ is the twist stiffness and the unit-vector triplet {μ̂, ν̂, t̂} is a right-handed
orthogonal material frame (Schoeller et al. 2021). Following Landau et al. (2012), we
confirm below that the twist term in (A1) vanishes identically for the scenario considered
in this paper. We also show how that condition could be used to calculate the material
frame along the filament given its centreline, the latter independently determined by the
bending problem formulated in § 2.

The dot product of the equilibrium relation (2.1b) and t̂ gives

t̂ · ∂ M∗
∂s∗

= 0. (A2)
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Similarly, the dot product of the generalised constitutive relation (A1) and ∂ t̂/∂s∗ gives

∂ t̂
∂s∗

· M∗ = 0, (A3)

since ∂ t̂/∂s∗ is perpendicular to t̂ . Combining (A2) and (A3), we find

∂

∂s∗
( t̂ · M∗) = 0, (A4)

whereby integration together with the tip boundary condition (2.4b) yields

t̂ · M∗ = 0. (A5)

It follows that the twist term in (A1) vanishes.
The last result implies the orthogonality relation

ν̂ · ∂μ̂

∂s∗
= 0. (A6)

The remaining components of ∂μ̂/∂s∗ can be found as follows. First, the constraint that μ̂
is a unit vector implies

μ̂ · ∂μ̂

∂s∗
= 0. (A7)

Second, since t̂ and μ̂ are orthogonal,

t̂ · ∂μ̂

∂s∗
= −μ̂ · ∂ t̂

∂s∗
. (A8)

Combining (A6)–(A8), we find the equation

∂μ̂

∂s∗
= −

(
μ̂ · ∂ t̂

∂s∗

)
t̂, (A9)

which is supplemented by the boundary condition

μ̂= ê at s∗ = 0, (A10)

wherein ê is an arbitrarily chosen unit vector parallel to the wall; since the filament
is clamped at the wall, ê is time-independent and can accordingly be identified with
μ̂ in its undeformed configuration. Given t̂(s∗, t∗) from the solution to the bending
problem formulated in § 2, (A9) and (A10) could, in principle, be solved for μ̂(s∗, t∗).
The remaining unit vector ν̂(s∗, t∗) could then be obtained from ν̂ = t̂ × μ̂.
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Appendix B. Coefficients appearing in the amplitude equation
The coefficients appearing in the amplitude equation (4.1), or (4.6), are defined as

α = iω

2ξ

{∫ 1

0
ds φ∗′(s)ϕ∗′(s)

∫ s

0
dp {ϕ′(p)}2 −

∫ 1

0
φ∗′ϕ|ϕ′|2 ds

}

+ 1
2ξ

∫ 1

0
ds φ∗′′

{
−ϕ′2(ϕ′′′ +Fcϕ

′)∗ + {ϕ′(1)}2Fcϕ
∗′ + iω

2
ϕ2(1)ϕ∗′

− iω

2
ϕ∗′ϕ2 + iωϕ∗′

∫ 1

s
dp

∫ p

0
dq {ϕ′(q)}2

}
+ 1

ξ

∫ 1

0
φ∗′′′(ϕ′′|ϕ′|2 − 1

2
ϕ′2ϕ∗′′) ds,

(B1a)

β = − iω

2ξ

∫ 1

0
φ∗′ϕ′(ϕ∗′ϕ − ϕ′ϕ∗) ds + 1

ξ

∫ 1

0
ds φ∗′′{−|ϕ′|2(ϕ′′′ +Fcϕ

′) +Fc|ϕ′(1)|2ϕ′+
iω

2
ϕ′
[
|ϕ(1)|2 − |ϕ|2 − 2

∫ 1

s
dp ϕ′(p)ϕ∗(p)

]}
+ 1

ξ

∫ 1

0
φ∗′′′ϕ′2ϕ∗′′ ds, (B1b)

γ = 1
ξ

∫ 1

0
φ∗′ϕ′′ ds, (B1c)

wherein ξ = − ∫ 1
0 φ∗′ϕ ds. Recall that ϕ(s) is the eigenfunction defined in § 3, along with

the threshold follower-force and angular-frequency values Fc and � ; and φ(s) is the
adjoint eigenfunction defined in § 5.5. Since all of these quantities are parameter-free,
so are the coefficients α, β and γ . See the supplementary material for a Mathematica
notebook (Wolfram Research 2020) that calculates the eigenfunctions ϕ(s) and φ(s), and
the critical values Fc and ω, and uses these to evaluate the above integrals giving the
numerical values of the coefficients quoted in (4.2).
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