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Abstract

In this paper we consider the optimal dividend strategy under the diffusion model with
regime switching. In contrast to the classical risk theory, the dividends can only be paid
at the arrival times of a Poisson process. By solving an auxiliary optimal problem we
show that the optimal strategy is the modulated barrier strategy. The value function can be
obtained by iteration or by solving the system of differential equations. We also provide a
numerical example to illustrate the effects of the restriction on the timing of the payment
of dividends.
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1. Introduction

Since it was proposed by [7], the optimization of dividend strategy has become a classical and
important problem in actuarial science. This problem is usually phrased as the management’s
problem of determining the optimal timing and size of dividend payments in the presence of
bankruptcy risk. There is a vast literature on this topic. In most it is assumed that the insurer
can choose any time to pay the dividends, or the dividends can be paid continuously, and the
ruin (stopping the business) occurs whenever the surplus is negative. However, in practice, it
is more reasonable that the dividends can only be paid at some discrete time points rather than
continuously, and an insurer with a negative surplus may continue his/her business as usual
until bankruptcy takes place. To capture these features, Albrecher et al. [1], [2] assumed that
the surplus process can only be observed at random times. Then ruin can only occur and the
dividends can only be paid at these random discrete observation times. With the assumption
that the surplus process is observed at the arrival times of a Poisson process, Albrecher et al.
[1] showed that the optimal strategy is a band strategy if the surplus process is modeled by
a general Lévy process, and the optimal strategy reduces to the barrier strategy if the surplus
process is a diffusion or the compound Poisson model with exponential claims.

Recently,Albrecher et al. [3] proposed the gamma-omega model, which extends the diffusion
model in two ways. First, if the surplus x is negative, the probability of bankruptcy within dt

time units is ω(x) dt , where ω(x) > 0 is the decreasing bankruptcy rate function defined
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on (−∞, 0]. Second, the dividends can only be paid to the shareholders at the arrival times
of a Poisson process with rate γ > 0. They studied the optimal barrier strategy, and Wei and
Wang [13] proved that the optimal barrier strategy they obtained is indeed the optimal strategy
among all the admissible dividend strategies under the gamma-omega model.

In this paper we consider the diffusion model with regime switching. We mainly consider the
case where the dividends can only be paid at the arrival times of a modulated Poisson process
(a Cox process) as in [3], and ruin is still defined as in the classical risk theory, i.e. the company
is ruined and has to go out of business whenever the surplus is negative. In [3] and our paper,
the surplus processes are observed continuously, but we restrict ourselves to the case where
the dividends can only be paid at some random discrete times. From this point of view, the
problem considered in our paper is similar to [12].

Under the diffusion model with regime switching, the optimal dividend strategy was studied
by Sotomayor and Cadenillas [11] and Jiang and Pistorius [8]. While Sotomayor and Cadenillas
solved this problem with two regimes by the standard method, i.e. guessing a candidate
optimal solution and then verifying its optimality, Jiang and Pistorius solved a general case
by following a different method. They constructed the candidate value function by directly
employing a dynamic programming equation, proved that the value function is the fixed point
of a certain contraction operator which is given with the initial data, and derived an explicit
iterative algorithm to calculate the value function, which decouples the different regimes such
that at any stage one-dimensional control problems are solved. In contrast, to prove that the
value function is the fixed point of a contraction operator, we modify the procedure in [8] by
constructing a sequence of functions that converges to the value function. Then we study the
functions of this sequence by an auxiliary optimal problem which depends on only one regime.
With such a sequence, we do not need to find priori bounds for the value function (or the
initial data of the contraction operator), which is required in [8]. The idea of introducing such
a sequence was motivated by Bayraktar and Ludkovski [5] and Davis [6, pp. 188–204], who
considered the optimal control problem under piecewise-deterministic processes. In fact, by
this method, we reduce the original problem to a Markov decision process (MDP) (we thank
the referee for pointing out this fact, as well as Remarks 3.1 and 3.2), which was also used
in [1]. Similar to [8] and [11], our optimal strategy is still the modulated barrier strategy.

The remainder of the paper is organized as follows. In Section 2 we present the model and
the problem. In Section 3 we introduce a sequence of functions that converges to the value
function, and prove the dynamic programming equation. The original problem is also reduced
to an MDP. In Section 4, in order to study the sequence constructed in Section 3, we study an
auxiliary optimal problem which is the one-stage problem of the MDP. In Section 5 we return to
our original optimal problem. We show two ways to obtain the value function and the optimal
barrier levels.

2. The model

Suppose that {J (t)}t≥0 is a homogeneous, irreducible, continuous-time Markov chain taking
values in a finite set J = {1, 2, . . . , K} with generator Q = (qij )K×K , where −qii = qi > 0
for i ∈ J. Let Xi(t) = µit + σiW(t), where µi, σi > 0 for all i ∈ J, and {W(t)}t≥0 is
a standard Brownian motion which is independent of {J (t)}t≥0. The surplus process of the
insurer is given by

X(t) = x +
K∑

i=1

∫ t

0
1{J (s)=i} dXi(s),

where x > 0 is the initial surplus.
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When the state of the Markov chain is i ∈ J, we assume that the dividends can only be paid
at the arrival times of a Poisson process with rate γi > 0. Considering dividends, the surplus
process (still denoted by {X(t)}t≥0) is given by

X(t) = x +
K∑

i=1

∫ t

0
1{J (s)=i} dXi(s) − D(t),

where D(t) is the cumulative dividends until t . Let {Ni(t)}t≥0 be a Poisson process with
intensity γi which is assumed to be independent of {J (t)}t≥0 and {W(t)}t≥0. Then we can
write

D(t) =
K∑

i=1

∫ t

0
π(s) 1{J (s)=i} dNi(s),

where the process {π(s)}s≥0 determines the amount of dividends paid at the jump times of the
Poisson processes {Ni(t)}t≥0, i ∈ J.

Suppose that all the stochastic processes mentioned above are defined on the filtered
probability space (�, F , P), where F = {Ft , t ≥ 0} is generated by {X(t)}t≥0 and {J (t)}t≥0
and satisfies the usual conditions. Denote by Ex and Ex,i the expectations conditioned on
{X(0) = x} and {X(0) = x, J (0) = i}, respectively.

We say that a dividend strategy {π(s)}s≥0 (for convenience, we also write π for short) is
admissible if it is F -adapted and 0 ≤ π(t) < X(t−) for t ≥ 0. Let � be the set of all
admissible strategies. With a strategy π ∈ �, let τπ := inf{t ≥ 0 : X(t) ≤ 0} be the time
of ruin. Without loss of generality, we assume that X(t) ≡ 0 for t ≥ τπ . Given the initial
surplus x and initial state i, the expected value of the discounted dividends until ruin is given
by

Vπ(x, i) := Ex,i

[ K∑
k=1

∫ τπ

0
e−�(s) 1{J (s)=k} π(s) dNk(s)

]
,

where �(s) = ∑K
i=1

∫ s

0 1{J (t)=i} δi dt , with δi > 0, is the discount rate at state i for i ∈ J. The
objective function is

V (x, i) = sup
π∈�

Vπ(x, i), i = 1, 2, . . . , K. (2.1)

It is easy to see that V (0, i) = 0 for all i ∈ J. The problem of the shareholders is to specify a
dividend strategy π∗ ∈ � such that V (x, i) = Vπ∗(x, i) for all i ∈ J.

3. The dynamic programming equation

In the following, we adopt bold letters to denote vector functions of the form

v(x) := (v(x, 1), v(x, 2), . . . , v(x, K)).

When we use ‘≤’ or ‘≥’ between two vectors (or vector functions), it respectively means that
‘≤’ or ‘≥’ holds for each element. Also, we denote by 0 the zero row vector with K elements.

Let ζ0 = 0 and

ζn := inf{t ≥ ζn−1 : J (t) �= J (t−)}, n ∈ N
+,
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i.e. ζn is the nth jump time of the Markov chain {J (t)}t≥0. For a test function v(x), define the
functional operator as

Mv(x) := (Mv(x, 1), Mv(x, 2), . . . , Mv(x, K)),

where

Mv(x, i) := sup
π∈�

Ex,i

[∫ τπ∧ζ1

0
e−δi sπ(s) dNi(s) + e−δi (τπ∧ζ1)v(X(τπ ∧ ζ1), J (τπ ∧ ζ1))

]
.

From the definition of M, we have the following lemmas.

Lemma 3.1. If v1(x) ≥ v2(x) then it holds that Mv1(x) ≥ Mv2(x) for all x ≥ 0.

Lemma 3.2. For all x ≥ 0, let U0(x) ≡ 0 and Un+1(x) = MUn(x) for n ∈ N. Then, for each
i ∈ J, {Un(·, i)}n∈N is an increasing sequence of functions.

Proof. Note that U1(x, i) = supπ∈� Ex,i[
∫ τπ∧ζ1

0 e−δi sπ(s) dNi(s)] ≥ 0 = U0(x, i) for all
x ≥ 0 and i ∈ J. The result follows from Lemma 3.1.

For n ∈ N, define �n = {π ∈ � : π(s) ≡ 0 for s ≥ ζn} to be the set of all the admissible
strategies that pays no dividend after the nth jump of the Markov chain {J (t)}t≥0. Let Vn(x, i) =
supπ∈�n

Vπ(x, i).

Lemma 3.3. For all x ≥ 0, we have Vn(x) = Un(x) for all n ∈ N.

Proof. Obviously, we have V0(x) = U0(x) ≡ 0. Let us assume that Vn(x) = Un(x), and
show that Vn+1(x) = Un+1(x).

First, we will show that Vn+1(x) ≤ Un+1(x). For any ε > 0, there exists a strategy
π ∈ �n+1 such that

Vπ(x, i) ≥ Vn+1(x, i) − ε. (3.1)

Define a strategy π̂ ∈ �n by setting π̂(t) = π(t + τπ ∧ ζ1) for t ≥ 0. By the strong Markov
property we have

Vπ(x, i) = Ex,i

[ K∑
k=1

∫ τπ

0
e−�(s)π(s) 1{J (s)=k} dNk(s)

]

= Ex,i

[∫ τπ∧ζ1

0
e−δi sπ(s) dNi(s) + e−δi (τπ∧ζ1)Vπ̂ (X(τπ ∧ ζ1), J (τπ ∧ ζ1))

]

≤ Ex,i

[∫ τπ∧ζ1

0
e−δi sπ(s) dNi(s) + e−δi (τπ∧ζ1)Vn(X(τπ ∧ ζ1), J (τπ ∧ ζ1))

]

= Ex,i

[∫ τπ∧ζ1

0
e−δi sπ(s) dNi(s) + e−δi (τπ∧ζ1)Un(X(τπ ∧ ζ1), J (τπ ∧ ζ1))

]

≤ Un+1(x, i). (3.2)

It follows, from (3.1), (3.2), and the arbitrariness of ε, that Vn+1(x, i) ≤ Un+1(x, i) for all
x ≥ 0 and i ∈ J.
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Second, we will show that Vn+1(x) ≥ Un+1(x). For any ε > 0, there exists a strategy
π ′ ∈ � such that

Un+1(x, i) ≤ Ex,i

[∫ τπ ′∧ζ1

0
e−δi sπ ′(s) dNi(s) + e−δi (τπ ′∧ζ1)Un(X(τπ ′ ∧ ζ1), J (τπ ′ ∧ ζ1))

]

+ ε,

and there exists a strategy π ′′ ∈ �n such that Vn(x, i) ≤ Vπ2(x, i) for any x ≥ 0 and i ∈ J.
Now we can construct a strategy π̃ ∈ �n+1 by taking the strategy π ′ before τπ ′ ∧ ζ1, and then
following strategy π ′′. Thus, by the strong Markov property we have

Un+1(x, i) ≤ Ex,i

[∫ τπ ′∧ζ1

0
e−δi sπ ′(s) dNi(s) + e−δi (τπ ′∧ζ1)Vn(X(τπ ′ ∧ ζ1), J (τπ ′ ∧ ζ1))

]

+ ε

≤ Ex,i

[∫ τπ ′∧ζ1

0
e−δi sπ ′(s) dNi(s) + e−δi (τπ ′∧ζ1)Vπ ′′(X(τπ ′ ∧ ζ1), J (τπ ′ ∧ ζ1))

]

+ 2ε

= Vπ̃ (x, i) + 2ε

≤ Vn+1(x, i) + 2ε.

Thus, from the arbitrariness of ε, we have Un+1(x, i) ≤ Vn+1(x, i) for all x ≥ 0 and i ∈ J,
which completes our proof.

Remark 3.1. Note that M can be interpreted as an MDP operator of a positive MDP, and
our original problem boils down to solving an MDP. The following results are standard (see,
e.g. [4]).

Lemma 3.4. It holds that limn→∞ Un(x, i) = V (x, i) for any x ≥ 0 and i ∈ J.

Proposition 3.1. The value function V is the smallest solution of the dynamic programming
equation V = MV such that V ≥ 0, i.e.

V (x, i) = sup
π∈�

Ex,i

[∫ τπ∧ζ1

0
e−δi sπ(s) dNi(s)+e−δi (τπ∧ζ1)V (X(τπ ∧ζ1), J (τπ ∧ζ1))

]
(3.3)

for all x ≥ 0 and i ∈ J.

Remark 3.2. In general, for positive MDPs, it is not true that a maximizer of the right-hand
side of (3.3) yields the optimal strategy. Let Ṽ be the value function studied in [8]. Then
there exists a constant c > 0 such that Ṽ (x, i) < x + c for all i ∈ J. Note that the set
of admissible strategies � in this paper is a subset of that considered in [8]. It follows that
V (x, i) ≤ Ṽ (x, i) < x + c for all x ∈ [0, ∞) and i ∈ J. For i ∈ J, define b(x, i) := 1 + x and
the operator

Tov(x, i) := sup
π∈�

Ex,i[e−δi (τπ∧ζ1)v(X(τπ ∧ ζ1), J (τπ ∧ ζ1))].

Considering a strategy π ∈ �, let

Y (t) = x + Xi(t) −
∫ t

0
π(s) dNi(s) (3.4)
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and let τi be the time of ruin of {Y (t)}t≥0. For any constant θ > 0, denote by η(θ) an
independent exponential random variable with mean 1/θ . It holds that (Y (t), t < τi ∧ η(qi))

is in distribution equal to (X(t), J (0) = i, t < τπ ∧ ζ1). It is easy to see that

Tob(x, i) = sup
π∈�

Ex

[∫ τi

0
e−(δi+qi )s

∑
j �=i

qij b(Y (s), j) ds

]

≤ Ex

[∫ ∞

0
e−(δi+qi )sqi(1 + x + µis + σiW(s)) ds

]

= qi

δi + qi

(
1 + x + µi

δi + µi

)
.

Thus, by iteration we have limn→∞ T n
o b(x, i) = 0, which implies that the maximizer of the

right-hand side of (3.3) always gives the optimal strategy (see, e.g. [1] and [4, p. 209]). From
the last equation we can see that δi > 0 is a crucial assumption.

4. The solution to Un(x)

From Section 3 we know that the value function can be obtained by iteration. However, to
do this, we need to show what Un+1 is when Un is given. This is the problem studied in this
section.

4.1. An auxiliary optimal problem

To solve our problem, we restrict ourselves to a special class of vector functions.

Definition 4.1. We say that a vector function u(x) ∈ D if

(i) u(0) = 0, and u(·, i) ∈ C([0, ∞)) is increasing and concave for each i ∈ J;

(ii) for any θ > 0, limx→∞ e−θxu(x, i) = 0 for each i ∈ J.

For a function u ∈ D, we consider the auxiliary optimal problem

M(x, i) := sup
π∈�

Mπ(x, i), (4.1)

where

Mπ(x, i) = Ex,i

[∫ τπ∧ζ1

0
e−δi sπ(s) dNi(s) + e−δi (τπ∧ζ1)u(X(τπ ∧ ζ1), J (τπ ∧ ζ1))

]
.

From the general theory of stochastic control, we consider the Hamilton–Jacob–Bellman (HJB)
equation

max
0≤a≤x

{
σ 2

i

2
m′′(x, i) + µim

′(x, i) − (δi + qi + γi)m(x, i)

+ γi[m(x − a, i) + a] +
∑
j �=i

qij u(x, j)

}
= 0 (4.2)

for the optimal problem (4.1), where m′ and m′′ are the first- and second-order partial derivatives
with respect to x, respectively.
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Theorem 4.1. For i ∈ J, let m(·, i) ∈ C2([0, ∞)) be a nonnegative function. Assume that
m(x, i) satisfies the HJB equation (4.2) for all x ≥ 0. Then

(i) m(x, i) ≥ M(x, i) for all x ≥ 0;

(ii) if, in addition, m(x, i) = Mπ∗(x, i) for some π∗ ∈ �, π∗ is an optimal dividend strategy
for problem (4.1) and M(x, i) ≡ Mπ∗(x, i).

Proof. (i) Considering a strategy π ∈ � and recalling {Y (t)}t≥0 defined in (3.4), for any
u ∈ D, we have

Mπ(x, i) = sup
π∈�

Ex

[∫ τi

0
1{s<η(qi )} e−δi sπ(s) dNi(s)

+ 1{η(qi )<τi } e−δiη(qi )
∑
j �=i

qij

qi

u(Y (η(qi)), j)

]

= sup
π∈�

Ex

[∫ τi

0
e−(δi+qi )sπ(s) dtNi(s) +

∫ τi

0
e−(δi+qi )s

∑
j �=i

qij u(Y (s), j) ds

]
.

Let a and b be real numbers satisfying 0 < a < Y(0) = x < b < ∞. Define τa := inf{t ≥
0 : Y (t) ≤ a}, τb := inf{t ≥ 0 : Y (t) ≥ b}, and τab = τa ∧ τb. Applying the Itô formula to
e−δi tm(Y (t), i) yields

e−(δi+qi )(t∧τab)m(Y (t ∧ τab), i) − m(Y(0), i)

=
∫ t∧τab

0
e−(δi+qi )s

[
−(δi + qi)m(Y (s), i) + µim

′(Y (s), i) + 1

2
σ 2

i m′′(Y (s), i)

]
ds

+
∫ t∧τab

0
e−(δi+qi )s[m(Y(s−) − π(s), i) − m(Y(s−), i)] dNi(s)

+
∫ t∧τab

0
e−(δi+qi )sσim

′(Y (s), i) dW(s) for all t ≥ 0.

Since m(·, i) satisfies (4.2), we have
∫ t∧τab

0
e−(δi+qi )sπ(s) dNi(s) +

∫ t∧τab

0
e−(δi+qi )s

∑
j �=i

qij u(Y (s), j) ds

≤ −e−(δi+qi )(t∧τab)m(Y (t ∧ τab), i) + m(Y(0), i) + Z1(t ∧ τab) + Z2(t ∧ τab), (4.3)

where {Z1(t)}t≥0 and {Z2(t)}t≥0 are local martingales defined by

Z1(t) =
∫ t

0
e−(δi+qi )sσim

′(Y (s), i) dW(s),

Z2(t) =
∫ t

0
e−(δi+qi )s[m(Y(s−) − π(s), i) + π(s) − m(Y(s−), i)](dNi(s) − γi ds).

However, the stopped processes {Z1(t ∧ τab)}t≥0 and {Z2(t ∧ τab)}t≥0 are martingales. Recall
that m(·, i) is nonnegative. Taking conditional expectations of both sides of (4.3) yields

m(x, i) ≥ Ex

[∫ t∧τab

0
e−(δi+qi )sπ(s) dNi(s) +

∫ t∧τab

0
e−(δi+qi )s

∑
j �=i

qij u(Y (s), j) ds

]
.
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Letting a → 0 and b → ∞, we obtain τa → τi and τb → ∞. Then τab → τi . Also, letting
t → ∞ and applying the dominated convergence theorem, we obtain

m(x, i) ≥ Ex

[∫ τi

0
e−(δi+qi )sπ(s) dNi(s) +

∫ τi

0
e−(δi+qi )s

∑
j �=i

qij u(Y (s), j) ds

]

= Mπ(x, i).

From the arbitrariness of strategy π and the definition of M(·, i), we conclude that m(x, i) ≥
M(x, i).

(ii) The proof of part (ii) is obvious from (i) and the definition of M(·, i).
4.2. The modulated barrier strategy

Motivated by [8] and [13], we consider the modulated barrier strategy. Let {T1, T2, . . .} be
the times at which the dividends can be paid. Given the barrier level b = (b1, b2, . . . , bK), the
modulated barrier strategy {πb(t)}t≥0 is an F -adapted process such that πb(Ti) = (X(Ti) −
bJ(Ti ))

+ for i = 1, 2, . . . .
To ease notation, let Mb(x, i) = Mπb (x, i). We have the following propositions.

Proposition 4.1. Given b, it holds that

Mb(x, i) = γiW
(θi )
i (x)

[∫ bi

0
Mb(y, i)e−riy dy + e−ribi

ri

(
Mb(bi, i) + 1

ri

)]

− γi

∫ x

0
Mb(y, i)W

(θi )
i (x − y) dy + W

(θi)
i (x)

∫ ∞

0
e−riy

∑
j �=i

qij u(y, j) dy

−
∫ x

0
W

(θi)
i (x − y)

∑
j �=i

qij u(y, j) dy, 0 ≤ x < bi, (4.4)

and

Mb(x, i) = γiW
(θi )
i (x)

[∫ bi

0
Mb(y, i)e−riy dy + e−ribi

ri

(
Mb(bi, i) + 1

ri

)]

− γi

[∫ bi

0
Mb(y, i)W

(θi )
i (x − y) dy +

∫ x

bi

(y − b + Mb(bi, i))W
(θi )
i (x − y) dy

]

+ W
(θi)
i (x)

∫ ∞

0
e−riy

∑
j �=i

qij u(y, j) dy

−
∫ x

0
W

(θi)
i (x − y)

∑
j �=i

qij u(y, j) dy, x ≥ bi, (4.5)

where θi = δi + qi + γi

W
(θi )
i (x) = 2

σ 2
i

erix − esix

ri − si
,

and ri > 0 and si < 0 are the solutions of the equation 1
2σ 2

i r2 + µir − θi = 0.

Proof. Denote by {Yb(t)}t≥0 and τb process (3.4) and the time of ruin corresponding to
the modulated barrier strategy b, respectively. Let Y ′(t) = x + Xi(t), and let τ be the time
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of ruin of {Y ′(t)}t≥0. Let T1 be the first time at which the dividend is paid. Then (Y ′(t),
t < τ ∧ η(γi)) is in distribution equal to (Yb(t), t < τb ∧ T1). To simplify the notation, let
f (x, i) = ∑

j �=i qij u(x, j) and g(y) = y − (y − bi)
+. Noting that Mb(0, i) = 0, we have

Mb(x, i) = Ex

[∫ τb∧T1

0
e−(δi+qi )sf (Yb(s), i) ds

]
+ Ex[1{T1≤τb} e−(δi+qi )T1(Yb(T1−) − bi)

+]
+ Ex[1{T1≤τb} e−(δi+qi )T1Mb(g(Yb(T1−)), i)]

= Ex

[∫ τ∧η(γi )

0
e−(δi+qi )sf (Y ′(s), i) ds

]

+ Ex[1{η(γi )≤τ } e−(δi+qi )η(γi )(Y ′(η(γi)) − bi)
+]

+ Ex[1{η(γi )≤τ } e−(δi+qi )η(γi )Mb(g(Y ′(η(γi))), i)]
= Ex

[∫ ∞

0
1{s≤τ } e−θi sf (Y ′(s), i) ds

]
+ γi Ex

[∫ ∞

0
1{s≤τ } e−θi s(Y ′(s) − bi)

+ ds

]

+ γi Ex

[∫ ∞

0
1{s≤τ } e−θi sMb(g(Y ′(s)), i) ds

]

=
∫ ∞

0
[f (y, i) + γi(y − bi)

+ + γiMb(g(y), i)] dy

×
∫ ∞

0
e−θi s Px(Y

′(s) ∈ dy, s < τ) ds. (4.6)

From Corollary 8.8 of [9] (or let b → ∞ in Equation (4.4) of [8], noting that the left-hand side
of their Equation (4.4) should be divided by θi), we have

∫ ∞

0
e−θi s Px(Y

′(s) ∈ dy, s < τ) ds = [W(θi)
i (x)e−riy − 1{x≥y} W

(θi)
i (x − y)] dy. (4.7)

Inserting (4.7) into (4.6) yields (4.4) and (4.5).

Proposition 4.2. The function Mb(x, i) ∈ C2([0, ∞)) and satisfies

σ 2
i

2
M ′′

b (x, i) + µiM
′
b(x, i) − (δi + qi)Mb(x, i) +

∑
j �=i

qij u(x, j) = 0 (4.8)

for 0 ≤ x < bi and

σ 2
i

2
M ′′

b (x, i)+µiM
′
b(x, i)− θiMb(x, i)+ γi[Mb(bi, i)+ x − bi]+

∑
j �=i

qij u(x, j) = 0 (4.9)

for x ≥ bi .

Proof. Noting that W
(θi)
i (x) ∈ C2([0, ∞)), we know that Mb(x, i) ∈ C2([0, bi)) and

Mb(x, i) ∈ C2([bi, ∞)). Taking first- and second-order derivatives of (4.4) and (4.5), it is
easy to check that M ′′

b (x, i) is continuous at bi . Furthermore, using

σ 2
i

2
W

(θi)
′′

i (x) + µiW
(θi)

′
i (x) − θiW

(θi )
i (x) = 0,

it is easy to show (4.8) and (4.9) (for simplicity, we omit the calculation details).
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From Proposition 4.2, if u(x) ∈ D then we have Mb(x, i) ∈ C2([0, ∞)) for all i ∈ J. Since
later we will start with U0 ≡ 0 ∈ D, we can work with u ∈ D ∩ C2([0, ∞)) in the following.

For x ≥ bi , it is easy to rewrite (4.5) as

Mb(x, i) = 2γiesix

σ 2
i (ri − si)

×
[∫ bi

0
Mb(y, i)(e−siy − e−riy) dy +

(
1

si
e−sibi − 1

ri
e−ribi

)
Mb(bi, i)

]

+ 2γiesix

σ 2
i (ri − si)

(
1

s2
i

e−sibi − 1

r2
i

e−ribi

)
+ ai

(
x + Mb(bi, i) − bi + µi

θi

)

+ �i(x), (4.10)

where ai = γi/θi and

�i(x) = 2esix

σ 2
i (ri − si)

∫ x

0
(e−siy − e−riy)

∑
j �=i

qij u(y, j) dy

+ 2(erix − esix)

σ 2
i (ri − si)

∫ ∞

x

e−riy
∑
j �=i

qij u(y, j) dy.

Corollary 4.1. For any u ∈ D, we have

(i) for any θ > 0, e−θxMb(x, i) → 0 as x → ∞;

(ii) M ′
b(x, i) → ai + (1/θi)

∑
j �=i qij u

′(∞, j) and M ′′
b (x, i) → 0 as x → ∞.

Proof. (i) Since �i(x) ≥ 0, it follows from (4.10) that Mb(x, i) → ∞ as x → ∞. Recall
that if u ∈ D then, for any θ > 0 and i ∈ J, e−θxu(x, i) → 0 as x → ∞. It holds that

�i(x) = 2esix

σ 2
i (ri − si)si

∫ x

0
e−siy

∑
j �=i

qij u
′(y, j) dy

+ 2erix

σ 2
i (ri − si)ri

∫ ∞

x

e−riy
∑
j �=i

qij u
′(y, j) dy

− 2esix

σ 2
i (ri − si)ri

∫ ∞

0
e−riy

∑
j �=i

qij u
′(y, j) dy + 1

θi

∑
j �=i

qij u(x, j).

Note that∫ x

0
e−siy

∑
j �=i

qij u
′(y, j) dy → ∞ and

∫ ∞

x

e−riy
∑
j �=i

qij u
′(y, j) dy → 0 as x → ∞.

Hence, by l’Hôpital’s rule,

�i(x) → µi

θ2
i

∑
j �=i

qij u
′(∞, j) + 1

θi

∑
j �=i

qij u(∞, j) as x → ∞.

Thus, by (4.10), for any θ > 0, e−θxMb(x, i) → 0 as x → ∞.
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(ii) Similarly, for any u ∈ D, by l’Hôpital’s rule,

�′
i (x) = 2esix

σ 2
i (ri − si)

∫ x

0
e−siy

∑
j �=i

qij u
′(y, j) dy

+ 2erix

σ 2
i (ri − si)

∫ ∞

x

e−riy
∑
j �=i

qij u
′(y, j) dy

− 2siesix

σ 2
i (ri − si)ri

∫ ∞

0
e−riy

∑
j �=i

qij u
′(y, j) dy

→ 1

θi

∑
j �=i

qij u
′(∞, j) as x → ∞.

Thus, by (4.10), it is easy to see that M ′
b(x, i) → ai + (1/θi)

∑
j �=i qij u

′(∞, j) as x → ∞.
Also,

�′′
i (x) = 2siesix

σ 2
i (ri − si)

∫ x

0
e−siy

∑
j �=i

qij u
′(y, j) dy

+ 2rierix

σ 2
i (ri − si)

∫ ∞

x

e−riy
∑
j �=i

qij u
′(y, j) dy

− 2s2
i esix

σ 2
i (ri − si)ri

∫ ∞

0
e−riy

∑
j �=i

qij u
′(y, j) dy

→ 0 as x → ∞.

From Section 2.1.1 of [10], the solution of (4.8) is given by

Mb(x, i) = Aie
αix + Bie

βix −
∫ x

0

2(eαi(x−y) − eβi(x−y))

σ 2
i (αi − βi)

∑
j �=i

qij u(y, j) dy, (4.11)

where Ai and Bi are constants to be determined, and αi > 0 and βi < 0 are the solutions of
the equation

1
2σ 2

i r2 + µir − (δi + qi) = 0.

The solution of (4.9) is given by

Mb(x, i) = Cie
ri (x−bi ) + Die

si (x−bi ) −
∫ x

bi

2(eri (x−y) − esi (x−y))

σ 2
i (ri − si)

∑
j �=i

qij u(y, j) dy

+ aix + ci, (4.12)

where Ci and Di are constants to be determined, and

ci = µiai + γi[m(bi−, i) − bi]
δi + qi + γi

.
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From (4.12) we have

M ′′
b (x, i) = Cir

2
i eri (x−bi ) + Dis

2
i esi (x−bi ) − 2

σ 2
i

∑
j �=i

qij u(x, j)

−
∫ x

bi

2(r2
i eri (x−y) − s2

i esi (x−y))

σ 2
i (ri − si)

∑
j �=i

qij u(y, j) dy

=
[
Cir

2
i − 2ri

σ 2
i (ri − si)

�i(bi)

]
eri (x−bi )

+
[
Dis

2
i + 2si

σ 2
i (ri − si)

∑
j �=i

qij u(bi, j)

]
esi (x−bi )

+ 2

σ 2
i (ri − si)

[
sie

six

∫ x

0
e−siy

∑
j �=i

qij u
′(y, j) dy

+ rie
rix

∫ ∞

x

e−riy
∑
j �=i

qij u
′(y, j) dy

]
,

where

�i(bi) =
∑
j �=i

qij u(bi, j) +
∫ ∞

bi

eri (bi−y)
∑
j �=i

qij u
′(y, j) dy.

Since

sie
six

∫ x

0
e−siy

∑
j �=i

qij u
′(y, j) dy + rie

rix

∫ ∞

x

e−riy
∑
j �=i

qij u
′(y, j) dy → 0 as x → ∞,

it follows from Corollary 4.1(ii) that

Ci = 2

σ 2
i (ri − si)ri

�i(bi).

Since Mb(0, i) = 0, from (4.11) we know that Bi = −Ai . From the smooth-fit conditions,

Mb(bi−, i) = Mb(bi+, i) and M ′
b(bi−, i) = M ′

b(bi+, i),

we have

Ai =
[
si

δi + qi

θi

hi(bi) − h′
i (bi)

]−1[
�i(bi) − 2

σ 2
i ri

�i(bi) + si
µiai

θi

− ai

]
,

Di = δi + qi

θi

[
Aihi(bi) −

∫ bi

0
W

(δi+qi )
i (bi − y)

∑
j �=i

qij u(y, j) dy

]
− Ci − µiai

θi

,

where hi(bi) = eαibi − eβibi and

�i(bi) = si
δi + qi

θi

∫ bi

0
W

(δi+qi )
i (bi − y)

∑
j �=i

qij u(y, j) dy

−
∫ bi

0
W

(δi+qi )
′

i (bi − y)
∑
j �=i

qij u(y, j) dy.
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Now we consider the optimal modulated barrier strategy, i.e. we want to find the bi that
maximizes Ai . For convenience, we define the function

Ai(b) =
[
si

δi + qi

θi

hi(b) − h′
i (b)

]−1

�i(b),

where

�i(b) = �i(b) − 2

σ 2
i ri

�i(b) + si
µiai

θi

− ai.

Then the first-order condition A′
i (b) = 0 implies that

�′
i (b)

[
si

δi + qi

θi

hi(b) − h′
i (b)

]
= �i(b)

[
si

δi + qi

θi

h′
i (b) − h′′

i (b)

]
. (4.13)

In Appendix A we show that (4.13) admits a root in (0, ∞). Note that, for any x ≥ 0,

σ 2
i

2
h

′′
i (x) + µih

′
i (x) − (δi + qi)hi(x) = 0. (4.14)

It follows from (4.13) and (4.14) that[
(δi + qi) + σ 2

i

2
si

δi + qi

θi

�′
i (b)

�i(b)

]
hi(b) =

[
σ 2

i

2
si

δi + qi

θi

+ µi + σ 2
i

2

�′
i (b)

�i(b)

]
h′

i (b). (4.15)

Proposition 4.3. Let b∗
i > 0 be a solution of (4.13). Then M ′

b∗(b∗
i , i) = 1 and M ′′

b∗(b∗
i , i) ≤ 0,

where the ith element of b∗ is b∗
i .

Proof. From (4.11) we know that

M ′
b∗(b∗

i , i) = Ai(b
∗
i )h

′
i (b

∗
i ) −

∫ b∗
i

0
W

(δi+qi )
′

i (b∗
i − y)

∑
j �=i

qij u(y, j) dy

= h′
i (b

∗
i )

[
si

δi + qi

θi

hi(b
∗
i ) − h′

i (b
∗
i )

]−1

�i(b
∗
i )

−
∫ b∗

i

0
W

(δi+qi )
′

i (b∗
i − y)

∑
j �=i

qij u(y, j) dy.

It follows from (4.15) that

h′
i (b

∗
i )

[
si

δi + qi

θi

hi(b
∗
i ) − h′

i (b
∗
i )

]−1

= θi�i(b
∗
i ) + σ 2

i si�
′
i (b

∗
i )/2

�i(b
∗
i )(siµi − θi)ai

.

The above equation yields

M ′
b∗(b∗

i , i) = θi�i(b
∗
i ) + σ 2

i si�
′
i (b

∗
i )/2

(siµi − θi)ai

−
∫ b∗

i

0
W

(δi+qi )
′

i (b∗
i − y)

∑
j �=i

qij u(y, j) dy

= 1 − 2θi

σ 2
i s2

i ai

[
�i(b

∗
i ) − 2

σ 2
i ri

�i(b
∗
i )

]
− 1

siai

[
�′

i (b
∗
i ) − 2

σ 2
i ri

�′
i (b

∗
i )

]

−
∫ b∗

i

0
W

(δi+qi )
′

i (b∗
i − y)

∑
j �=i

qij u(y, j) dy

= 1,
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where the last equality follows from

σ 2
i

2
W

(δi+qi )
′′

i (x) + µiW
(δi+qi )

′
i (x) − (δi + qi)W

(δi+qi )
i (x) = 0 for x ≥ 0. (4.16)

Thus, it is easy to see that

Ai(b
∗
i ) = 1

h′
i (b

∗
i )

[
1 +

∫ b∗
i

0
W

(δi+qi )
′

i (b∗
i − y)

∑
j �=i

qij u(y, j) dy

]
.

Consequently, from (4.11) we have

M ′′
b∗(b∗

i , i) = Ai(b
∗
i )h

′′
i (b

∗
i ) −

∫ b∗
i

0
W

(δi+qi )
′′

i (b∗
i − y)

∑
j �=i

qij u(y, j) dy

− 2

σ 2
i

∑
j �=i

qij u(b∗
i , j )

= h′′
i (b

∗
i )

h′
i (b

∗
i )

[
1 +

∫ b∗
i

0
W

(δi+qi )
′

i (b∗
i − y)

∑
j �=i

qij u(y, j) dy

]

−
∫ b∗

i

0
W

(δi+qi )
′

i (b∗
i − y)

∑
j �=i

qij u
′(y, j) dy.

Noting that h′
i (b

∗
i ) ≥ 0,

∫ b∗
i

0
W

(δi+qi )
′

i (b∗
i − y)

∑
j �=i

qij u(y, j) dy ≥ 0,

and ∫ b∗
i

0
W

(δi+qi )
′

i (b∗
i − y)

∑
j �=i

qij u
′(y, j) dy ≥ 0,

it is sufficient to show that h′′
i (b

∗
i ) ≤ 0. From (4.14) and (4.15), we have

h′′
i (b

∗
i ) = h′

i (b
∗
i )

{[
si

δi + qi

θi

+ 2

σ 2
i

µi + �′
i (b

∗
i )

�i(b
∗
i )

][
1 + σ 2

i

2

si

θi

�′
i (b

∗
i )

�i(b
∗
i )

]−1

− 2

σ 2
i

µi

}

= h′
i (b

∗
i )

[
si

δi + qi

θi

�i(b
∗
i ) − σ 2

i

2

s2
i

θi

�′
i (b

∗
i )

][
�i(b

∗
i ) + σ 2

i

2

si

θi

�′
i (b

∗
i )

]−1

.

Noting that �i(b
∗
i ) ≤ 0, �′

i (b
∗
i ) ≤ 0, and

�i(b
∗
i ) + σ 2

i

2

si

θi

�′
i (b

∗
i ) = si

δi + qi

θi

∫ b∗
i

0
W

(δi+qi )
i (b∗

i − y)
∑
j �=i

qij u(y, j) dy

−
∫ b∗

i

0
W

(δi+qi )
′

i (b∗
i − y)

∑
j �=i

qij u(y, j) dy

+ σ 2
i

2
s2
i

δi + qi

θ2
i

∫ b∗
i

0
W

(δi+qi )
′

i (b∗
i − y)

∑
j �=i

qij u(y, j) dy
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− σ 2
i

2

si

θi

∫ b∗
i

0
W

(δi+qi )
′′

i (b∗
i − y)

∑
j �=i

qij u(y, j) dy

−
(

2

σ 2
i ri

+ si

θi

)
�i(b

∗
i ) + ai

θi

(µisi − θi)

= −ai

θi

σ 2
i

2
s2
i

[∫ b∗
i

0
W

(δi+qi )
′

i (b∗
i − y)

∑
j �=i

qij u(y, j) dy + 1

]

< 0,

where the second equality follows from (4.16) and µisi − θi = −σ 2
i s2

i /2, we have h′′
i (b

∗
i ) ≤ 0,

which completes the proof.

Proposition 4.4. The function Mb∗(x, i) is increasing and concave on [0, ∞).

Proof. Define
ξ(x, i) = M ′′

b∗(x, i).

Note that ξ(x, i) ∈ C1([0, ∞)), ξ(x, i) ∈ C2([0, ∞)\{b∗
i }), and satisfies

σ 2
i

2
ξ ′′(x, i) + µiξ

′(x, i) − (δi + qi)ξ(x, i) +
∑
j �=i

qij u
′′(x, j) = 0, 0 ≤ x ≤ b∗

i ,

σ 2
i

2
ξ ′′(x, i) + µiξ

′(x, i) − (δi + qi + γi)ξ(x, i) +
∑
j �=i

qij u
′′(x, j) = 0, x ≥ b∗

i .

Recall that Y ′(t) = x + Xi(t). If Y ′(0) = x ∈ (0, b∗
i ) then define τ0,b∗

i
:= inf{t ≥ 0 :

Y ′(t) /∈ (0, b∗
i )}. From (4.8), we know that M ′′

b∗(0, i) ≤ 0. Thus, from Proposition 4.3 we have
ξ(Y ′(τ0,b∗

i
), i) ≤ 0. Applying Itô’s formula to e−(δi+qi )t ξ(Y ′(t), i) yields

ξ(x, i) = Ex

[
e
−(δi+qi )τ0,b∗

i ξ(Y ′(τ0,b∗
i
), i) +

∫ τ0,b∗
i

0

∑
j �=i

qij u
′′(Y ′(s), j) dy

]
≤ 0.

If Y ′(0) = x ∈ (b∗
i , ∞), define τb∗

i
:= inf{t ≥ 0 : Y ′(t) /∈ (b∗

i , ∞)}. Since µi > 0, we know
that Y ′(∞) = ∞. From Corollary 4.1(ii) and Proposition 4.3, we have ξ(Y ′(τb∗

i
), i) ≤ 0.

Similarly, applying Itô’s formula to e−(δi+qi+γi )t ξ(Y ′(t), i) yields ξ(x, i) ≤ 0. Hence, we have
proved the concavity of Mb∗(x, i).

It follows from Corollary 4.1(ii) that M ′
b∗(∞, i) > 0. Therefore, the concavity of Mb∗(x, i)

implies that M ′
b∗(x, i) > 0 for all x ≥ 0, i.e. Mb∗(x, i) is increasing on [0, ∞).

4.3. Verification of Mb∗(x, i)

In this subsection we verify that the modulated barrier strategy πb∗
is optimal for the auxiliary

problem (4.1).
From Proposition 4.1, it is easy to see that Mb∗(0, i) = 0. It follows from Propositions 4.2

and 4.4 that Mb∗(x, i) ∈ C2([0, ∞)) and is nonnegative.
From Proposition 4.3 and the concavity of Mb∗(x, i) (see Proposition 4.4), it is easy to see

that M ′
b∗(x, i) ≥ 1 for x ∈ [0, b∗

i ) and M ′
b∗(x, i) ≤ 1 for x ∈ [b∗

i , ∞). Thus, the maximum

max
0≤y≤x

{Mb∗(x − y, i) + y}
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is attained at y = 0 if x ∈ [0, b∗
i ) and at y = x − b∗

i if x ∈ [b∗
i , ∞). Now, it follows from

Proposition 4.2 that Mb∗(x, i) satisfies the HJB equation (4.2).
We have shown that Mb∗(x, i) satisfies the conditions of Theorem 4.1. Therefore, Mb∗(x, i)

is the value function of the auxiliary optimal problem (4.1), and the modulated barrier strategy
πb∗

is the optimal strategy.
We can now answer the question raised at the beginning of this section, i.e. what Un+1

is when Un is given. From Corollary 4.1 and Proposition 4.4, we know that if u(x) ∈ D

then Mb∗(x) ∈ D, where Mb∗(x) = (Mb∗(x, 1), Mb∗(x, 2), . . . , Mb∗(x, K)) and b∗ =
(b∗

1, b∗
2, . . . , b∗

K). Obviously, 0 ∈ D. Thus, from the definition of Un(x, i), it is easy to
see that Un(x) ∈ D for n = 0, 1, 2, . . . . Furthermore, when Un(x) is given, Un+1(x, i) is given
by (4.11) and (4.12) with u replaced by Un.

5. Back to the original problem

5.1. The general cases

We now consider the original problem (2.1). Since Un(x) ∈ D for n = 0, 1, 2, . . . , we know
that V (x) ∈ D as it is the pointwise limit of Un(x). From the results given in Section 4 we
know that a modulated barrier strategy πb at some barrier level b = (b1, b2, . . . , bK) will be
a maximizer of the right-hand side of (3.3). Recalling Remark 3.2, such a modulated barrier
strategy is also the optimal strategy of the original problem (2.1).

There are two ways to obtain the value function and the optimal barrier levels. The first
method is to implement the following iteration.

Step 1. Set U0(x) ≡ 0.

Step 2. Find bn+1 by (4.13), and find Un+1(x) by (4.11) and (4.12).

Step 3. Stop when supx≥0,i∈J |Un+1(x, i) − Un(x, i)| < ε; otherwise, return to step 2, where
ε > 0 is the desirable level of accuracy.

The second method is to solve the system of differential equations. From (4.8) and (4.9),
the value function V (x) and the optimal barrier levels b = (b1, b2, . . . , bK) satisfy

σ 2
i

2
V ′′(x, i) + µiV

′(x, i) − (δi + qi)V (x, i) +
∑
j �=i

qijV (x, j)

= 0 for 0 ≤ x < bi, (5.1a)

σ 2
i

2
V ′′(x, i) + µiV

′(x, i) − θiV (x, i) + γi[V (bi, i) + x − bi] +
∑
j �=i

qijV (x, j)

= 0 for x ≥ bi, (5.1b)

for all i ∈ J. System (5.1) can be solved with the conditions

V (0, i) = 0, (5.2a)

V (bi−, j) = V (bi+, j), (5.2b)

V ′(bi−, j) = V ′(bi+, j), (5.2c)

V ′(bi−, i) = 1, (5.2d)

V ′′(∞, i) = 0, (5.2e)

for all i, j ∈ J.
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5.2. The special case with two regimes

In the special case with two regimes, the first method, i.e. iteration, is less efficient than
solving the system of differential equations. So we consider the second method in this
subsection.

Without loss of generality, let 0 ≤ b1 ≤ b2. To solve system (5.1), we have to consider the
cases x ∈ [0, b1), x ∈ [b1, b2), and x ∈ [b2, ∞). Also, we need the following lemma. The
proof is similar to Lemma 3.1 of [11] (see also [14]).

Lemma 5.1. Let c1 and c2 be two strictly positive constants. The system of equations

0 = σ 2
1

2
r2 + µ1r − (c1 + q1) + q1s, 0 = σ 2

2

2
r2 + µ2r − (c2 + q2) + q2

s
(5.3)

on (r, s) has four real roots (ri, si), i = 1, 2, 3, 4, and r1 < r2 < 0 < r3 < r4.

In the following, when we mention the roots of system (5.3), we assume that the ri,

i = 1, 2, 3, 4, are arranged as r1 < r2 < 0 < r3 < r4.
If x ∈ [0, b1), system (5.1) yields

0 = σ 2
1

2
V ′′(x, 1) + µ1V

′(x, 1) − (δ1 + q1)V (x, 1) + q1V (x, 2),

0 = σ 2
2

2
V ′′(x, 2) + µ2V

′(x, 2) − (δ2 + q2)V (x, 2) + q2V (x, 1).

The solution of the above system of differential equation is given by

V (x, 1) = A1er1x + A2er2x + A3er3x + A4er4x,

V (x, 2) = A1s1er1x + A2s2er2x + A3s3er3x + A4s4er4x,

where (ri, si), i = 1, 2, 3, 4, are the four roots of system (5.3) with ci = δi, i = 1, 2, and the
Ai, i = 1, 2, 3, 4, are constants to be determined.

If x ∈ [b1, b2), system (5.1) yields

0 = σ 2
1

2
V ′′(x, 1) + µ1V

′(x, 1) − (δ1 + γ1 + q1)V (x, 1) + q1V (x, 2)

+ γ1[x − b1 + V (b1, 1)],

0 = σ 2
2

2
V ′′(x, 2) + µ2V

′(x, 2) − (δ2 + q2)V (x, 2) + q2V (x, 1).

The solution of the above system is given by

V (x, 1) = B1er̂1(x−b1) + B2er̂2(x−b1) + B3er̂3(x−b1) + B4er̂4(x−b1) + k1x + l1,

V (x, 2) = B1ŝ1er̂1(x−b1) + B2ŝ2er̂2(x−b1) + B3ŝ3er̂3(x−b1) + B4ŝ4er̂4(x−b1) + k2x + l2,

where (r̂i , ŝi ), i = 1, 2, 3, 4, are the four roots of system (5.3) with c1 = δ1 + γ1 and c2 = δ2,
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the Bi, i = 1, 2, 3, 4, are constants to be determined, and

k1 = (q2 + δ2)γ1

(γ1 + q1 + δ1)(q2 + δ2) − q1q2
,

k2 = q2γ1

(γ1 + q1 + δ1)(q2 + δ2) − q1q2
,

l1 = k1

γ1

[
k1µ1 + γ1 + q1 + δ1

q2
µ2k2 + γ1(V (b1, 1) − b1)

]
− µ2

q2
k2,

l2 = k2

γ1

[
k1µ1 + γ1 + q1 + δ1

q2
µ2k2 + γ1(V (b1, 1) − b1)

]
.

If x ∈ [b2, ∞), system (5.1) yields

0 = σ 2
1

2
V ′′(x, 1) + µ1V

′(x, 1) − (δ1 + γ 1 + q1)V (x, 1) + q1V (x, 2)

+ γ1[x − b1 + V (b1, 1)],

0 = σ 2
2

2
V ′′(x, 2) + µ2V

′(x, 2) − (δ2 + γ 2 + q2)V (x, 2) + q2V (x, 1)

+ γ2[x − b2 + V (b2, 2)].
The solution of the above system is given by

V (x, 1) = C1er̃1(x−b2) + C2er̃2(x−b2) + C3er̃3(x−b2) + C4er̃4(x−b2) + k̃1x + l̃1,

V (x, 2) = C1s̃1er̃1(x−b2) + C2s̃2er̃2(x−b2) + C3s̃3er̃3(x−b2) + C4s̃4er̃4(x−b2) + k̃2x + l̃2,

where (r̃i , s̃i ), i = 1, 2, 3, 4, are the four roots of system (5.3) with ci = γi + δi, i = 1, 2, the
Ci, i = 1, 2, 3, 4, are constants to be determined, and

k̃1 = q1γ2 + γ1(γ2 + q2 + δ2)

(γ1 + q1 + δ1)(γ2 + q2 + δ2) − q1q2
,

k̃2 = q2γ1 + γ2(γ1 + q1 + δ1)

(γ1 + q1 + δ1)(γ2 + q2 + δ2) − q1q2
,

l̃1 = q1µ2k̃2+(γ2+q2+δ2)µ1k̃1+q1γ2(V (b2,2)−b2)+γ1(γ2+q2+δ2)(V (b1,1)−b1)
(γ1+q1+δ1)(γ2+q2+δ2)−q1q2

,

l̃2 = q2µ1k̃1+(γ1+q1+δ1)µ2k̃2+q2γ1(V (b1,1)−b1)+γ2(γ1+q1+δ1)(V (b2,2)−b2)
(γ1+q1+δ1)(γ2+q2+δ2)−q1q2

.

The constants Ai, Bi, Ci, i = 1, 2, 3, 4, and the barrier levels b1 and b2 can be obtained
from the conditions in (5.2).

Example 5.1. We choose all the parameters except γi as in [8], namely,

µ1 = 0.06, σ1 = 0.24, q1 = 2, δ1 = 0.04,

µ2 = 0.08, σ2 = 0.30, q2 = 3, δ2 = 0.05.

Using the FindRoot function in MATHEMATICA®, we calculated the optimal barrier levels
for different γi, i = 1, 2. The results are given in Table 1. (When γ2 = 10 and γ1 =
50, . . . , 500, the results show that b1 > b2, so we do not list them here.) The value (1.050,

1.070) for γ1 = γ2 = ∞ is taken from [8]. We can see that both the optimal barrier levels
monotonically increase when the γi, i = 1, 2, increase, and they convergence to the case with
γ1 = γ2 = ∞. This is consistent with the arguments of [3, p. 50].
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Table 1: The optimal (b1, b2) for different γi, i = 1, 2.

γ1
γ2

10 50 100 200 500 ∞
10 (0.9959, 1.0059) — — — — —
50 (1.0062, 1.0338) (1.0264, 1.0405) (1.0323, 1.0417) (1.0367, 1.0422) (1.0408, 1.0426) —

100 (1.0081, 1.0418) (1.0274, 1.0480) (1.0333, 1.0490) (1.0376, 1.0496) (1.0417,1.0499) —
200 (1.0090, 1.0477) (1.0279, 1.0535) (1.0337, 1.0545) (1.0381, 1.0551) (1.0421, 1.0554) —
500 (1.0096, 1.0532) (1.0282, 1.0586) (1.0340, 1.0600) (1.0383, 1.0602) (1.0424, 1.0605) —
∞ — — — — — (1.050, 1.070)

Appendix A

In this appendix we show that (4.13) admits a root in (0, ∞). Since h′(x) > 0, (4.13) is
equivalent to

�′
i (b)

[
si

δi + qi

θi

hi(b)

h′
i (b)

− 1

]
= �i(b)

[
si

δi + qi

θi

− h′′
i (b)

h′
i (b)

]
. (A.1)

Let

f (b) = �′
i (b)

[
si

δi + qi

θi

hi(b)

h′
i (b)

− 1

]
− �i(b)

[
si

δi + qi

θi

− h′′
i (b)

h′
i (b)

]
.

Obviously, f (b) is continuous. From Sections 7 and 8 of [3], we know that

h′′
i (b0)

h′
i (b0)

= si
δi + qi

θi

,

where

b0 = 1

αi − βi

ln
β2

i

α2
i

+ 1

αi − βi

ln
ri − αi

ri − βi

> 0.

Noting that the left-hand side of (A.1) is positive, h′′
i (b)/h′

i (b) is increasing and �i(b) < 0,
we have f (0) > 0. To estimate f (∞), we can write

f (b) = F1(b) − F2(b) − F3(b) − F4(b),

where

F1(b) = 2(si(δi + qi)/θi − αi)

σ 2
i (αi − βi)

eαib

[(
si

δi + qi

θi

hi(b)

h′
i (b)

− 1

)
− 1

αi

(
si

δi + qi

θi

− h′′
i (b)

h′
i (b)

)]

×
∫ b

0
e−αiy

∑
j �=i

qij u
′(y, j) dy,

F2(b) = 2(si(δi + qi)/θi − βi)

σ 2
i (αi − βi)

eβib

[(
si

δi + qi

θi

hi(b)

h′
i (b)

− 1

)
− 1

βi

(
si

δi + qi

θi

− h′′
i (b)

h′
i (b)

)]

×
∫ b

0
e−βiy

∑
j �=i

qij u
′(y, j) dy,
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F3(b) = 2

σ 2
i

[(
si

δi + qi

θi

hi(b)

h′
i (b)

− 1

)
− 1

ri

(
si

δi + qi

θi

− h′′
i (b)

h′
i (b)

)]

×
∫ ∞

b

eri (b−y)
∑
j �=i

qij u
′(y, j) dy,

F4(b) =
(

si
µiai

θi

− ai

)(
si

δi + qi

θi

− h′′
i (b)

h′
i (b)

)
.

Note that hi(b)/h′
i (b) → 1/αi and h′′

i (b)/h′
i (b) → αi as b → ∞. Since

∫ b

0
e−αiy

∑
j �=i

qij u
′(y, j) dy ≤ 1

αi

∑
j �=i

qij u
′(0, j),

by l’Hôpital’s rule,

eαib

[(
si

δi + qi

θi

hi(b)

h′
i (b)

− 1

)
− 1

αi

(
si

δi + qi

θi

− h′′
i (b)

h′
i (b)

)]
→ 0,

so we have F1(b) → 0 as b → ∞. Recalling that u ∈ D, we have

eβib

∫ b

0
e−βiy

∑
j �=i

qij u
′(y, j) dy ≤ eβib

(∑
j �=i

qij u(b, j) −
∑
j �=i

qij u(0, j)

)

→ 0 as b → ∞.

Thus, F2(b) → 0 as b → ∞. Recalling that∫ ∞

b

eri (b−y)
∑
j �=i

qij u
′(y, j) dy → 0 as b → ∞,

we have F3(b) → 0 as b → ∞. Since h′′
i (b)/h′

i (b) is increasing and siµi−θi = −σ 2
i s2

i /2 < 0,
we have

F4(b) →
(

si
µiai

θi

− ai

)(
si

δi + qi

θi

− αi

)
> 0 as b → ∞.

Thus, we have

f (b) → −
(

si
µiai

θi

− ai

)(
si

δi + qi

θi

− αi

)
< 0 as b → ∞.

Then, by the continuity of f (b), (4.13) has a root in (0, ∞).
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