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ON INTEGRAL ABEL-TYPE AND LOGARITHMIC 
METHODS OF SUMMABILITY 

BY 

E. C. HEAGY AND B. L. R. SHAWYER* 

1. Introduction. In this paper, we define an integral logarithmic method of 
summability, extending the integral Abel-type methods defined by Jakimovski 
[6]. We examine the behaviour of the product of this method with integral 
Hausdorff methods. A full scale of strict inclusions for integral Abel-type 
methods is obtained and the integral logarithmic method is placed in this scale. 
For the analogous theorems for sequence-to-sequence Abel-type and logarith­
mic methods, see Borwein [1], [2]. 

We use the notation Mi^M 2 to mean that any sequence or function 
summable by the method M2 is also summable by the method Mt to the same 
limit. If Mi 2 M2 and M2 3 Mi, then we write Mi — M2. The notation Mi = M2 

indicates that the methods are equal; that is, their transforms are the same. 
Throughout this paper, we require that / be a real function which is bounded 

and Borel-measurable on every finite interval [0, X]. We shall suppose that a 
is real, that a > 0 , that y>0 , and that j 3 > - l . 

2. Integral Hausdorff methods of summability. Integral (or continuous) 
Hausdorff methods of summability have been defined by Rogosinski [8] (see 
also [6]). 

Let x be a function of bounded variation on [0,1]. We extend x to the entire 
real line by defining x(t) = *(0) for t < 0, and x(t) = *(1) for f > 1. For y > 0, let 
Hx(y) = H/;x(y) = jà/(yf)dx(f), where the integral is the Lebesgue-Stieltjes 
integral over [0,1]. Under our assumptions, Hx(y) exists for all y>0. If 
Hx(y)-*cr as y-»oo, then we say that / is Hx-summable to a, and write 
/(*)-» (r(Hx). 

We may assume that for 0 < f < l , x(0 = i{x( ' -)+ *( ' + )}> and that *(0) = 0. 
Hence each integral Hausdorff method corresponds to a unique x- Such a x 
also generates a sequence-to-sequence Hausdorff method which we denote by 
Hx (see, for example, [5, Ch. XI]). The conditions for the regularity of the 
integral and of the sequence-to-sequence Hausdorff methods are identical ([7], 
[8]; see also [5, Ch. XI]): Hx (or Hx) is regular if and only if x(0 + ) = x(0) and 
X(l)-*(0)=1. 
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Certain other properties of the familiar sequence-to-sequence Hausdorff 
methods are also found in their functional analogues. For example, we have 
([8]; cf. [7] or [5, Thm. 197]) HXH* = H*HX. 

For n = 1 ,2 , . . . , the moments of order n of Hx (or of Hx) are given by 
l*>n - Jo tn dx(t). Rogosinski [8] has proved the following result. 

THEOREM A. If Hx 2 H^ and at most finitely many of the moments of H^ 
vanish, then Hx 2 H^. 

3. Integral Cesàro-type methods. A specific class of integral Hausdorff 
methods is the integral Cesàro-type methods (see, for example, [2]). For y > 0 , 
let 

If Ca,p(y)-»cr as y—»», then we write / (*)-» cr (C, a, ]8). This is a regular 
summability method. The integral Cesàro method (C, a) is defined to be 
(C, a,0) (see, for example, [5, p. 110] or [8]). The sequence-to-sequence 
analogues are well known [4], [5, Ch. V]. It is easy to show (using results in [4] 
and Theorem A) that (C, a, j3) = (C,a) , that (Qa9y)(C9y) = (C,a + y), and 
that (C, a + y)^(C, y), all analogues of results in [4]. 

4. Integral Abel-type summability. Jakimovski [6] has defined an integral 
Abel-type method of summability: for A > ~ 1 and y > 0 , let 

Ax(y) = A / ;A(y) = j ^ j ^ | o e-xxkf(xy) dx. 

If AA(y) exists as a Cauchy-Lebesgue integral for all y > 0 and if AA(y) -> a as 
y-*oo5 then we say that / is AA-summable to a and we write / (JC)-> cr(AA). 

We note that the case À = 0 gives the Laplace transform. The method AA is 
regular. It is the integral analogue of the sequence-to-sequence Abel-type 
method defined by Borwein [2], which generalizes the well-known Abel 
method. 

The following three results are all due to Jakimovski [6]. 

THEOREM B. Let Hx be a regular integral Hausdorff method and let A > - 1 . 
Then A A H X 3A A . 

THEOREM C. Let \>JJL>~1 and y > 0 . If A / ;A(y) exists, then A / ; /x(y) = 
CA_^A / ; A(y) . 

THEOREM D. For A > J L L > - 1 , A ^ A A . 

We now show that the inclusion in Theorem D is strict. 

THEOREM 1. (cf. [2]) Let A > - 1 . Then there exists a function which is 
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Ap-summable to 0 for all fi satisfying A > / A > - 1 , but which is not Ak-
summable. 

Proof. For all real JC, we define f(x) = £n=o ^nx2n, where an — 
(-l)nT(A + l)/(2n + l)!r(A + 2n + 2). It is easy to show that A / ;A(y) = sin y. 
Thus / is not AA-summable. 

Suppose now that A > n > - 1 . Using theorem C and the Riemann-Lebesgue 
theorem, it now follows that 

A , M « C , - ^ A / ; A ( y ) = r ( A _ r ( ^ + 1 ) £ (1 - r r " V sin(y0 dt 

-> 0 as y -> oo; 

that is, / (*)-+0(A,J . 

5. The method A_x. We now define an integral logarithmic method of 
summability which may be regarded as an extension of the integral Abel-type 
method AA to the case A = - 1 . Accordingly, we use the notation A_i to denote 
this method. For y > 0, let 

If A_i(y) exists as a Lebesgue integral for all y > 0 and if A_x(y) —» ar as y —> » 
then we write / (*)-» cr(A_i). This is a regular integral method, analogous to a 
sequence-to-function method given by Hardy [5, p. 81] (see also [1]). 

We remark that changing the function / on any finite interval does not affect 
its A_i-summability. 

LEMMA, (cf. [1]) Let 8 be real and let g(x) = f(x)/(x + 8) for J C > | 5 | + 1 and 
zero otherwise. ! / / (* ) -> cr(A_i), then g(x)-*0(A_i). 

Proof- Let M > \ô\ + 1 be constant. Let <t>(t) = fo f(x)e~tix+8)l(x +1) dx. Then 
we have that {log(l + l/f)}-1<M0 -* cr as f -» 0+. Hence there exists a constant K 
such that for all t in (0,1), \<f>(t)\<K |log(l + l/r)|. We also obtain that, as 
f -*0+ , 

Lg;-i(l/f)~ — 
- t ( l - Ô ) poo t ( x + g ) 

e fix) dx 
lM (x + Ô)(x + l ) J 

iog(i4 

- t ( l - S ) foo foo ^ _ Z ( X + S ) i) Çœ /»oo _ Z ( X + S ) ., |»oo 
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Let ee(0,1) be given. Then for 0 < t<e we have that 

i r 
-—-r <j>(z)dz->0 as f ->0+, 
F t . *• \ Je log H) 

and 

, o g ( l + i ) J " | , o 8 ( l + I ) J ' 

Thus, for any e > 0 , we have that limsup,—0+ iAg;_i(l/r)| < Xe, where K is 
independent of e. Thus it follows that g(x)—> 0(A_i). 

LEMMA, (cf. [1]) Let 8 be real Then f(x)-> <r(A_i) if and only i / / (x + 8)-> 

Proof. Let g(x) = /(x + ô). Suppose that f(x) —> o-(A_i). From the previous 
lemma, it follows that 

ô/y Too - ( x + l ) / y / 8 \ 

Ar-iiy)-—- - — 1+ ; — /(x)dx-
8' 1 V" log(l + y)J|a|+i (x + 1) \ x + l-8/n 

a as y • 

that is, f(x + 8) —> CT(A_I). Since S is arbitrary, the result follows. 
To investigate the product of integral Hausdorfï methods and the method 

A_i, we use a result due to Borwein [1]. 

THEOREM E. Let Hx be a regular integral Hausdorff method. For x^O, let 
g(x) be a continuous function. If g(x) -» cr as x —> <», then 

{log(l + y)}_1 \og(l + yt)g(yt)dx(t)-*cr as y-*oo. 
Jo 

THEOREM 2. (cf. [1]) Let Hx be a regular integral Hausdorff method. Then 
A - i H x 2 A - ! . 

Proof. Suppose that /(x) —> o-(A_i). We may further suppose that /(x) = 0 
for x ^ l . Hence we have that 

A_1H,(y)~{log(l + y)}-1 f — duf f(ut) dX(t) 
Jl U Jo 

= 0og(l + y)} - 1 f log(l + yr)g(yr) dx(t), 
Jo 

where 

g(x) = {log(l + x)}-1 f — f{u)du. 
Jl U 
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Using an argument as in [10, p. 181], we can show that g is continuous. The 
desired result now follows from Theorem E. 

6. A scale of inclusions for integral Abel-type methods. We shall now place 
the A_i method in our scale of inclusions for integral Abel-type methods. 
From here on, we assume that AA(y) exists as a Lebesgue integral. 

THEOREM 3. (cf. [1]) For A > - 1 , A_i2 AA, and the inclusion is strict. 

Before proving this theorem, we must develop some machinery. 

THEOREM F. ([7], [3]) Let c0 be a real constant If F(s) is an analytic function 
of s = p + ir in the region p>c0, and if there is a constant K such that 
£oo |F(c + it)\2 dt<K for all c > c0, then F(s) = Jj t'<f>(t) dt for p > c0, where f<f>(t) 
is Lebesgue integrable on [0,1] for all c > c0. 

LEMMA, (cf. [3]) For A > 1, (x/(x + 1))A - 1 = JJ tx<j>(t) dt, where tc<t>(t) is Lebes­
gue integrable on [0,1] for all c>0. 

Proof. Setting F(s) = (s/(s + l ) ) A - l , it is easy to show that, for c>0, 
\F(c + «01 * A/{(c +1)2 +12}112, and further that £ . \F(c + it)\2 dt < A2 poodt/l +t2. 
The result now follows from Theorem F. 

By adapting a method defined by Watson [9, p. 41], we define a method JA 

as follows. For y>0 and A > - 1 , let 

J^ - J^)=7^7) £(y " x)Ke'VXx~lf{x) dx-
If JA(y) exists for all y >0 and if JA(y)-» cr as y ->», then we say that / is 
Jx-summable to <r, and write /(*)-» o-(Jk). 

LEMMA, (cf. [9, §4.6]) Suppose that A > - 1 . For x>0 , let g(x) = 
(x/(x + l))x/(x). If AA can be applied to f, then JAAf;A = Ag;_!. 

Proof. For y > 0, we have that 

1 fy (v-x\ke~1,x f00 

By letting f(x) = 1 in the above, we see that JA is regular, and further that the 
following result is true. 

LEMMA. Let A > - 1 . I//(x)-> cr(AA), then (x/(x + l))x/(*) -» cKA^). 

The next two lemmas extend this result. 

LEMMA, (cf. [3]) Let A>1. 1//(x)-> o-(A_1), then (x/(x + l))x/(x) ^ cr(A_x). 
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Proof. Write g(x)^(x/(x + l))A/(x). Without loss of generality, assume that 
f(x) = 0 for x < 1 and that a = 0. By an earlier lemma, we have that (x/(x + 1))A -
1 = Jo tx(j>(t) du where tc<f>(t) is Lebesgue integrable on [0,1] for all c>0. Thus 
(z/(x + 1))À - 1 = JS e~x/zil/(z) dz, where iff(z) = z"2<Me~1/2). We note that $(z) is 
Lebesgue integrable on [e, °°) for any e>0. In particular we have that 
JT |^(z)| dz <oo. It now follows that 

i r -i 
log(l + y)Ji 

e~u/yf(u) du. 

The second integral is A/;_i(y), which, by assumption, tends to zero as 
y —» oo# 

Let Y be a constant greater than one, and which will be specified later. Then 
for y > Y, we have that 

A-w~i^(r+D*w<i2f""v""" ""'mdu 

= Ii + J2, say. 

It is easy to show that Jx -» 0 as y —> <». Further, since y > yz/(y + z) > Y/2, we 
obtain 

1J2[< f" j * ( Z ) | dz 1 f V V ^ ' +'-f>/(u) du 
JY log(l + yz/(y + z)) I Ja 

= sup 
xs=Y/2 iiog(1

LMr^'^"*/(")''"i-r |*(2,|'iz 
/• oo 

< sup |A / ;_I(JC)| • | |<Kz)| <*z. 
x s Y / 2 J l = Y/2 J\ 

Since Y can be chosen sufficiently large, the result now follows. 

LEMMA. Suppose that A > - 1 . Then f(x)-> cr(A-i) if and only if 

(*/(* +l))V(*)-><r(A-i). 

Proot. 
(i) Necessity. Suppose that / (*)-» cr(A-x). For A > 1 , the preceding lemma 

gives the result. For 0 < A < 1, we observe that 

c-f-j/w-mc-fir^ i^DM^r-f-^ 
since A + 1 > 1. The result for - 1 < A < 0 follows in a similar manner. 
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(ii) Sufficiency. Suppose that (*/(* +l))A/(*)-* cr{A_ù- F o r - 1 < A < 1 , we 
note that f(x) = (x/(x + 1))"A • (x/(x + l)ff(x) -» <r(A_ù> b v t h e necessity part of 
this lemma, since - A > - 1 . Suppose now that A>1. Then we have that 
À = À0 + Ai, where A0 is a positive integer and - l < A i < 0 . It now follows that 

= (1+7+-+À)'(^ï)^-<A->-
By the first part of the sufficiency, we obtain that f(x) -» o-(A_i), since 

-1<À!<0 . 

By combining the results of this section with Theorem D and Theorem 1, we 
can now obtain a full scale of strict inclusions for integral Abel-type methods of 
summability. 
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