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INTERSECTION PATTERNS OF FAMILIES OF 
CONVEX SETS 

M. KATCHALSKI AND A. LIU 

0. Introduction. In this paper, we study the intersection pattern of 
families of convex sets. Since we only consider finite families, we may 
assume that the sets are also compact. 

As an example, we consider families of 5 convex sets in R2 such that 
every two intersect and no three intersect. One such family that comes 
immediately to mind is that of 5 lines in general position. However, this 
is not the only family which exhibits this intersection pattern. Fig. 1 
shows a family of 3 lines (sides of the large triangle) and 2 triangles 
(inscribed in the large triangle) that has this property. 

FIGURE 1 
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922 M. KAÏCHALSKI AND A. LIU 

More precisely, two families F and G of convex sets of equal size are 
said to have the same intersection pattern if there is a bijection \p : F —> G 
such that Pi < F : F G F') * 0 if and only if C\ |^(F) : F Ç Ff) ^ 0 for all 
subfamilies F ' C ^. 

Given a family of convex sets, we wish to contract each set into a con­
vex polytope in such a way that the total number of vertices of the poly-
topes is minimal. The family of 4 rectangles in Fig. 2 can be contracted 
to a line AB, with Si becoming the single point A, S4 the single point B 
and S2 and S3 the line AB. On the other hand, the family in Fig. 1 cannot 
be contracted. 
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FIGURE 2 

This process will be made more precise in the following sections. It will 
be treated in Section 2 and Section 4. In Section 1 and Section 3, we con­
sider a different way of representing intersection patterns as a preliminary 
approach to the main problem. 
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1. Representation by points. Let F be a family of n convex sets in 
R*. A finite set S of points in \JF is said to be a point representation of F 
if for every subfamily Ff of F with non-empty intersection, 

r\ {F : F e F'\ n s * 0. 
In other words, every subfamily of F with non-empty intersection is 
represented by at least one point in the intersection of the subfamily. 

That point representation is always possible is easy to see. Since the 
number of subfamilies of F is 2n, no more than 2n points are required. 
However, we are interested in representation with minimal size. 

Let 

p(F) = min {|S| : S a point representation of F) and 

p{n, k) = max \p(F) : F in R*, \F\ = n\. 

We first prove a lower bound. 

THEOREM 1. p(n, k) è 

Proof. In R1, take n disjoint intervals. This shows that p(n, 1) is at 
least n. In R2, take n lines in general position, i.e., every two intersect and 

no three intersect. This shows that p(n,2) ^ I I . The construction for 

higher dimensions is analogous and the theorem is proved. 

To obtain an upper bound for p(n, k), we first prove two lemmas which 
are variations of classical results. We begin with a definition. 

Let A be any non-empty compact subset of R*. Define h (A) to be the 
point (ai, a2, . . . , ak) ÇA where 

ai = max {xi : (xi, x2j . . . , xk) G A} 

and for 2 ^ i ^ k, 

at = max {Xi : (au . . . , a^u xu . . . , xk) 6 A}. 

Let(>)be the lexicographical order on Rk, i.e., 

(ai, a2, . . . , a * ) ® (&i, &2, . . . , 6*) 

if ai = &< for 1 ^ i ^ w or if there exists some t ^ k such that a* = b{ for 
i < t and at > bt. 

LEXICOGRAPHICAL LEMMA. Let B be a family of n compact convex sets in 
R* with non-empty intersection, where n è k. Then 

h{C\ B) = min {fe(H 4 ) : A C 5 , | 4 | = k). 

Proof. Let a = min'{fe(n A) : A C B,\A\ = k}. Since H ^ C H i 
for all A CB, A(H 5) (5 )a . Suppose ft(H 5 ) ^ a. Define 

D = {x £ Rk : x(>)a\. 

G) 
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Clearly D is convex. Now D H (H A) s* 0 for ail A C B, \A\ = k while 
DC^{r\B) = 0 . This contradicts Helly's Theorem [1]. Hence h (C\B) = a. 

We point out that the Lexicographical Lemma, which had appeared in 
a slightly different form in an earlier paper [2], also implies Helly's 
Theorem. The next result is a variation of Sperner's Theorem [3]. 

ANTICHAIN LEMMA. Let C be a collection of subfamilies of a family F of n 
sets such that A (J_ B for any A, B £ C and \A\ ^ k for all A Ç C, where 

k ^ (n + l ) /2 . Then\C\ ^ 

Proof. Let C be of maximal size. Let / be the minimal size of a subfamily 
in C. Assume that t < k. Let 

Ci = {A G C: \A\ = t) and 

C2 = {B e F : \B\ = / + 1, B D A for some A G Ci}. 

Now every 4̂ £ C\ belongs to exactly n — t B's while every B £ C2 con­
tains at most / + 1 A's. Hence 

ICI ^ —-1 idi ̂  idi. 
However, (C — Ci) U C2 still satisfies the conditions of the problem. 

Repeating this procedure will raise t to k. It follows that \C\ rg 

Combining with Theorem 1, the following result yields the exact value 

><»•*> = © • 
THEOREM 2. p(n, k) S I , ) , n ^ 2k — 1. 

Proof. Let T7 be any family of w convex sets in R*. Let C be the collec­
tion of all subfamilies of F of size at most k with non-empty intersection, 
except for those which are contained in a larger member of C. By the 

Antichain Lemma, \C\ ^ 

L e t S = {h(C\ A) : A £ C\. Now subfamilies of size at most k with non­
empty intersection are clearly represented by S. That subfamilies of size 
exceeding k with non-empty intersection are represented by S follows 
from the Lexicographical Lemma. This completes the proof of the 
theorem. 

2. Representation by convex polytopes. Consider once again the 
construction in R2 used in the proof of Theorem 1. We have n lines in 

general position. For point representation, we need ( 9 1 points. This seems 

somewhat extravagant as two points for each line are adequate represen-

ft)-

(t) 
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tation. Thus we are led to consider a different representation of inter­
secting convex sets. 

Let F be a family of n convex sets in R*. A finite set T of points i n U F 
is said to be a vertex representation of F if for every subfamily Ff of F with 
non-empty intersection, f\ {F* : F Ç F ) ^ 0, where F* is the convex hull 
o f T H F . In other words, {F* : F G F) is a contraction of F into a family 
of convex polytopes, including those degenerated to lower dimensions, 
which has the same intersection pattern as F. 

We point out that every point representation is a vertex representation 
but the converse is false. It is easy to show that for n lines in R2 in general 
position, 2n — 3 points are sufficient for vertex representation, far less 

than the ( 9 I points needed for point representation. 

Let 

v(F) = min {IT| : T a vertex representation of F\ and 

v(n, k) = max {v(F) : Fin Rk, \F\ = n). 

We have v(n, k) ^ p(n, k) but unfortunately no improvement on this, 
even for k = 2. However, we do have a lower bound. 

THEOREM 3. v(n, k) ^ (n/k)k for k\n. 

Proof. In R1, take n disjoint intervals. This shows that v(n, 1) is at least 
n. We now describe a construction in R2. Let P be a convex \n-gon and 
B be the collection of all edges of P. Let A be a family of \n inscribed 
|w-gons in P such that each A G A intersects each B G B at a distinct 
interior point of B. In order to preserve the intersection pattern of 
F = A VJ B, all of these intersection points must be included in the 
representation. Hence v(n, 2) ^ {h^Y-

We next describe a construction in R3. Let P be a convex polyhedron 
with n/3 faces and C be the collections of all faces of P. In the interior of 
each C G C , construct a configuration Ac U Bc as described above, where 
Ac = {Ap : 1 ^ i ^ n/3) are convex w/3-gons and 

Bc = {B,G : 1 S i ^ n/3} 

are segments. For 1 ^ i S n/3, let Az- be the convex hull of VJ {ApiC G C) 
and B , be the convex hull of U {Bp : C G C). Finally let 
^ = {A, : 1 ^ i g n/3) and 5 = {B, : 1 ^ i ^ n/3). Now for A ^ , 
B G £ and C G C , A H B Pi C consists of a single point. In order to 
preserve the intersection pattern of F = A \J B \J C, all of these inter­
section points must be included in the representation. Hence v(n, 3) ^ 

The inductive construction for higher dimensions is analogous and we 
omit the descriptions. 
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The divisibility condition k\n is for convenience and not essential. We 
point out that the correct order of magnitude of v(n, k) is nk and the upper 
and lower bounds differ by a constant dependent only on k. We conjecture 
that our lower bound gives the correct value. 

3. Related problems. Consider once again the construction in R2 

used in the proof of Theorem 3. The family F includes n/2 convex poly­
gons all of which have a common point. Clearly, the larger the size of a 
subfamily with non-empty intersection, the smaller the number of points 
required for either point representation or vertex representation. In the 
extreme case where the entire family has non-empty intersection, a single 
point is sufficient. 

We introduce the parameter i(F) which denotes the maximum number 
of sets in F that contain a common point. Define 

p(n, k, 1) = max \p{F) : F in Rlc, \F\ = n and i(F) = I) and 

v(n, k, I) = max {v(F) : F in RA, \F\ = n and i(F) = I}. 

As before, we have v(n, k, I) = p(n, k, I). Also, 

p(n,k) = maxi p(n, ky I) and v(n, k) = max^(w, k, I). 

For p (n, k, I), we have the exact value for most values of /. 

THEOREM 4. p(n, k, I) ^ (f\ - (l J + I for I ^ k. 

Proof. In R l , take / copies of one interval and n — I intervals that are 
disjoint from one another and from the / intervals. We need n — I + 1 
points for representation. In R2, take / concurrent lines and add n — I 
lines in general position with respect to one another and to the / lines. 

Thus we need ( J H~ /(n — /) + l = f^ ) — ( i + 1 points. The 

construction for higher dimensions is analogous and the theorem is proved. 

* (i) - (0 THEOREM 5. p(n, k, I) ^ , - \ ) + 1 for I ^ 2k 

0 - (0 Proof. We shall use induction on n. For w = /, I , ) — 1,1 + 1 = 1 

point is all we need, and we can choose this point to be h(C\ F). Suppose 
now that Ff is a family of n — 1 convex sets in R* with i(F') = /. Let C 
be the collection of subfamilies of F' of size at most k. Eliminate from C 
members that are contained in larger members of C. As in Theorem 2, 
the set S ; = [h{^\ H) : H G C] is a point representation of F'. Our in­
duction hypothesis is that 

i s . i * ( - ï i ) - ( i ) + i -
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Now let F be a family of n convex sets in R* with i(F) = / where n > I. 
There is a set F £ F such that i(F — {¥}) = /. Let C be the collection of 
subfamilies of F of size at most k. Eliminate from C members that are 
contained in larger members of C. As in Theorem 2, the set 
S = {h{C\ H) : H £ C) is a point representation of F. It remains to show 
that 

(r)-(i) 
Let S = S' U S" where S' = {A(H if) 6 5 : F (? if} and S" = S - S'. 

By induction hypothesis, 

Mv)-G) + 1. 

Now {H - {¥} : h(T\ iY) G S , F ^ i Y ) i s a collection of subfamilies of 
F — {F} of size at most k — 1 such that no one contains another. By the 
Antichain Lemma, 

*G':i) | S " | 

Hence 

SI = IS'I + |S " | *("r)-(i)+'+(::0 
(:)-0) \ / ? / \ f l / 

For / ^ ^, clearly p(n, k, I) = f , I . For k < I < 2k — 2, the induction 

argument in Theorem 5 breaks down at the early stages, when n < 2k — 1. 

However, we believe that l , J — I , 1 H - I i s still the correct value for 

p(n, k, I) in that range. 

4. A case study. For v(n, k, /), we have 

\n2 S v(n, 2, \n) g 3w2/8 

from Theorems 3 and 5. We shall consider only one other case. The 
example of n lines in general position in R2 shows that 

2n - 3 g v(«, 2, 2) 

while 

v(n,2,2) ^ p(n,2,2) 
- ( ; ) • 

We shall improve on these bounds, giving an instance where the function 
£ is strictly greater than the function v. 

THEOREM 6.v(n, 2,2) > en for any c>0 provided that n is sufficiently large. 
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Proof. We shall construct a sequence of families as follows. Consider 
an r X r lattice where r is sufficiently large. Describe with the lattice 
points as centre circles of equal radius which is sufficiently small. For 
each line passing through a subset of the lattice points, we define its 
cover as the two exterior common tangents to the circles with centres on 
the line. 

There are r horizontal lines each with r lattice points on it, and simi­
larly there are r such vertical lines. Replacing these lines by their covers 
generates a family of 4r lines defining r2 squares circumscribing the circles. 
Let F be a family consisting of the 4r lines and r2 squares inscribed in the 
squares mentioned above, one in each. All 4 vertices of each of the in­
scribed squares are required for a vertex representation of F. Hence we 
have 

v(r2 + 4r, 2, 2) ^ 4r2. 

Consider now in addition the lines of slope 1 or — 1 that pass through 
the lattice points. There are 4r — 2 of them. Replacing these lines by their 
covers yields octagons circumscribing the circles. Consideration of the 
family of the 4r + 2(4r — 2) lines and r2 inscribed octagons yields 

v(r2 + 12r - 4, 2, 2) ^ Sr2. 

A portion of this configuration is illustrated in Fig. 3. 
The general construction consists of adding in stages covers of families 

of lines through the lattice points. The most efficient way is to use lines 
of slope p/q where p and q are relatively prime integers and max {p, q\ 
is as small as possible. 

It is necessary to ensure that i{F) = 2 for the family F we construct. 
The inscribed polygons are clearly disjoint and intersect the covers at 
distinct points. The only thing that needs to be checked is that no three 
covers intersect. Since the circles used in the construction are sufficiently 
small, this will not happen if the lines which they cover do not intersect. 
When the lines do intersect, they describe a circle of the same size with 
the point of intersection as centre. The covers will then be tangent to this 
circle and it is impossible to drawr three distinct tangents to a circle from 
the same point. 

The number of inscribed polygons, which increase in their number of 
sides, remains r2 while the number of lines will be a linear function of r. 
Hence v(n, 2, 2) > en for every c > 0 provided that n is sufficiently large. 

THEOREM 7. v(n, 2, 2) ^ 3n2/8. 

Proof. Let F be a family of n convex sets. We may assume that no one 
contains another or is disjoint from all others. For F* C\ F j 9e 0, choose 
a point hij on their common boundary and let T be the collection of these 
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FIGURE 3 

points. Clearly T is a vertex representation, in fact a point representation, 
of F. 

We shall reduce the size of T as much as possible. In the following, the 
set T may change, but we shall use the symbol T throughout to denote 
the vertex representation. 

Let Ff* be the convex hull of T H F*. We point out that as T changes, 
F** may change too. All of the points in T P\ F z are on the boundary of 
F* and not in the interior of any other F / \ However, some of these 
points may not be vertices of F t*. In particular, if F* is a line, only the 
two end points are considered to be vertices. 

For Fj* P\ Fj* 7e 0, we shall use the following steps to either eliminate 
the point htj from T or ensure that F* r\F* = {hij}. 

(1) If hij is neither a vertex of F** nor of F / \ we can remove it from T 
without affecting the intersection pattern. 
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(2) If hais a vertex of F{* but not of F / , let at and bt be the two points 
still in T that are adjacent to h^ along the boundary of F f*. Note that 
if F f* is a line, then at and bt are identical. Let ay and bj be defined in 
analogous manner. We consider three subcases: 

(a) Let dihij and bfhij be on opposite sides of ajbj. Now ajbi must 
intersect afij as otherwise one of a,j and bj will be inside F*. Hence we 
may remove htj from T, thereby reducing F^* by the triangle ajbihij. 
We point out that the line a fit is still in F*. The situation is illustrated 
in Fig. 4. 

It remains to show that the intersection pattern is unchanged. The 
set F/" remains the same. It is therefore only necessary to show that if 
some F,* intersect F** only in the triangle a})^iiiy then F** intersects 
ciibi. Note that F** must intersect two edges of the triangle afiihij or 

FIGURE 4 
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one of its vertices will be inside F*. However, if it intersects both a^hij 
and bihij, then F** H F/* Pi F,* ^ 0, a contradiction. Hence intersection 
pattern is indeed preserved. 

(b) Let ciihij and bihtj be on the same side of afij interior to F *. Now 
both at and bt are outside F / \ If a fit intersects F / \ htj can be eliminated. 
If not, let x be the point in F* on the line athij closest to at. We may 
replace hi} by x in T and rename x as h{j. F/* will be reduced but it is 
easy to verify that the intersection pattern is unchanged. 

(c) Let cijiij and bjifj be on the same side of afij exterior to F/". No 
reduction is possible or necessary here. 

(3) If htj is a vertex of both F ** and F/*, there are three subcases which 
are analogous to those under case (2). 

The above process will terminate since there are finitely many pairs 
F* and Fj* with non-empty intersection. At the end of this process, for 
each such pair, either hfj is eliminated or F* C\ F* is reduced to the 
single point htj. 

Now define a graph G on n vertices as follows. The vertex vt corresponds 
to the reduced polygon F*. Join vt to Vj if and only if htj is still in T. 
While G in general is not a planar graph, we claim that it contains no 
complete subgraph on 5 vertices. 

Suppose there is a complete subgraph on vi, v2, v%, v± and v». For 
1 ^ i S 5, assume that F^* is at least a triangle. We may consider the 
point Vf to be chosen in the interior of F** and the edges vtVj a continuous 
path from vt through htj to Vj so that no two paths intersect. This con­
tradicts the well-known fact that a complete graph on 5 vertices is 
non-planar. 

The cases where some F* is a single point or a line can be handled in 
similar fashion. It follows from Turan's Theorem on Extremal Graphs [4] 
that G has no more than 3w2/8 edges. Since the number of edges in G is 
equal to the final size of T, v(n, 2, 2) ^ 3w2/8. 
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