
J. Plasma Phys. (2024), vol. 90, 905900510 © The Author(s), 2024.
Published by Cambridge University Press

1

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.
doi:10.1017/S0022377824001314

Advanced surrogate model for electron-scale
turbulence in tokamak pedestals
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We derive an advanced surrogate model for predicting turbulent transport at the edge
of tokamaks driven by electron temperature gradient (ETG) modes. Our derivation is
based on a recently developed sensitivity-driven sparse grid interpolation approach for
uncertainty quantification and sensitivity analysis at scale, which informs the set of
parameters that define the surrogate model as a scaling law. Our model reveals that
ETG-driven electron heat flux is influenced by the safety factor q, electron beta βe and
normalized electron Debye length λD, in addition to well-established parameters such
as the electron temperature and density gradients. To assess the trustworthiness of our
model’s predictions beyond training, we compute prediction intervals using bootstrapping.
The surrogate model’s predictive power is tested across a wide range of parameter
values, including within-distribution testing parameters (to verify our model) as well as
out-of-bounds and out-of-distribution testing (to validate the proposed model). Overall,
validation efforts show that our model competes well with, or can even outperform,
existing scaling laws in predicting ETG-driven transport.

Keywords: plasma instabilities, fusion plasma, plasma simulation

1. Introduction

Turbulent transport is known to determine the energy confinement time of fusion
devices. Quantifying, predicting and controlling this turbulent transport is a prerequisite
for designing optimized fusion power plants and is therefore considered a key open
problem in fusion research. While high-fidelity numerical simulations based on first
principles are crucial for understanding the complex mechanisms behind turbulent
transport, they are often computationally too expensive for routine use in tasks like
optimization or uncertainty quantification that involve large ensembles of simulations.
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Constructing computationally cheap yet reliable surrogate models is therefore highly
desirable in practice.

In Farcaş, Merlo & Jenko (2022), we proposed a sensitivity-driven dimension-adaptive
sparse grid framework for uncertainty quantification (UQ) and sensitivity analysis (SA) at
scale, which was applied to the problem of turbulent transport in the pedestal region of a
tokamak driven by electron temperature gradient (ETG) modes. The sensitivity-driven
approach intrinsically provides an interpolation-based surrogate model, which turned
out to provide accurate predictions for the scenario studied in Farcaş et al. (2022)
for testing parameters within the interpolation bounds. However, since polynomial
extrapolation is, in general, ill posed and unstable (Trefethen 2012), we will not use
this model for predictions outside the interpolation bounds used for its construction.
In addition, this interpolation model does not incorporate a quantification of prediction
uncertainty, which is crucial for assessing the trustworthiness of surrogate transport
models for any given input parameters. The present paper builds on Farcaş et al. (2022)
and leverages the aforementioned sensitivity-driven approach to derive a generic and
parsimonious surrogate transport model for ETG-driven turbulent fluxes that (i) depends
on physically interpretable parameters, (ii) generalizes beyond training and, importantly,
(iii) incorporates a quantification of prediction uncertainty.

Electron temperature gradient turbulence has been the subject of theoretical and
numerical investigations for more than two decades, from the seminal works by Jenko
et al. (2000), Dorland et al. (2000) and Jenko & Dorland (2002) focused on core plasmas to
more recent studies (Idomura 2006; Told et al. 2008; Jenko et al. 2009; Hatch et al. 2015,
2017; Parisi et al. 2020, 2022; Hassan et al. 2021; Belli, Candy & Sfiligoi 2022, 2024;
Chapman-Oplopoiou et al. 2022; Stimmel et al. 2022; Leppin et al. 2023; Li et al. 2023)
indicating its role in regulating transport in the pedestal. Given its importance, several
recent papers such as Chapman-Oplopoiou et al. (2022), Guttenfelder et al. (2021) and
Hatch et al. (2022, 2024) have formulated surrogate models as well as simple algebraic
expressions for ETG fluxes in the pedestal.

Here, we propose a scaling law for the ETG-driven electron heat flux as a function
of the safety factor q, the electron beta βe and the normalized electron Debye length
λD, in addition to well-established parameters such as electron temperature and density
gradients. The exponents appearing in our scaling law are obtained by performing a simple
regression fit using the existing high-fidelity, nonlinear simulation results from Farcaş et al.
(2022). To the best of our knowledge, the dependence on q and βe is new and describes
the effect of the magnetic geometry on ETG modes. Furthermore, we incorporate a
quantification of uncertainty in the predictions issued by the proposed surrogate model,
a critical requirement in data-driven modelling, essential for evaluating the predictive
performance for arbitrary input parameters. To this end, we compute prediction intervals
via bootstrapping (we refer the reader to Efron & Tibshirani (1986) for a review of
bootstrapping methods), which offers a distribution-free and reliable method to account for
data variability and model uncertainty. We test the prediction capabilities of the proposed
surrogate model across a wide range of parameter values. The model is verified against 32
within-distribution testing parameters and validated against 61 out-of-distribution and 40
out-of-bounds testing parameters. We also compare it with similar scaling laws available
in the literature, obtaining similar or more accurate predictions.

The remainder of this paper is organized as follows. Section 2 summarizes the baseline
simulation parameters used to derive the proposed surrogate model. Section 3 details the
steps used to derive our surrogate model, including how to incorporate a quantification
of uncertainty in its predictions by computing prediction intervals via bootstrapping.
Section 4 presents our results. We assess the prediction capabilities of the proposed model
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and compute prediction intervals via bootstrapping over a wide range of parameter values,
from within-distribution testing data to out-of-bounds and out-of-distribution testing
parameters. Section 5 investigates the origin of the parametric dependencies appearing in
the proposed model, in particular q and βe. Finally, some overall conclusions are presented
in § 6. The code and data to reproduce our results are publicly available at https://github.
com/ionutfarcas/surrogate_model_etg_pedestal.

2. Baseline simulation parameters

The present paper builds on the UQ and SA study performed in Farcaş et al. (2022) and
derives a generic and parsimonious surrogate transport model for ETG turbulence. In the
following, we present the aspects relevant for this work and refer the reader to Farcaş et al.
(2022) for further details.

The scenario under consideration models DIII-D conditions similar to Hassan et al.
(2021) and Walker & Hatch (2023) and is representative of typical pedestal conditions,
where the large gradients can drive a substantial electron heat flux via ETG turbulence;
we refer the reader to Hassan et al. (2021) for a detailed description of the experimental
conditions. We consider that the plasma behaviour is fully specified by the following eight
local parameters: {ne,Te, ωne, ωTe, q, ŝ, τ,Zeff}. Here, ne is the electron density and Te is
the electron temperature, ωne = a/Lne = 1/ne dne/dρtor and ωTe = a/LTe = 1/Te dTe/dρtor
are the respective normalized (with respect to the minor radius a) gradients, where ρ tor
denotes the square root of the normalized toroidal magnetic flux, q is the safety factor, ŝ =
r/q dq/dr is the magnetic shear (r denotes the minor radius defined below), τ = ZeffTe/Ti
and Zeff is the effective ion charge retained in the collisions operator (here, a linearized
Landau–Boltzmann operator). The eight parameters are modelled as independent uniform
random variables with symmetric bounds around their nominal values; for more details,
see Appendix A. Moreover, the ions are assumed to be adiabatic, and electromagnetic
effects, computed consistently with the values of the electron temperature and density, are
retained.

The magnetic geometry is specified according to a generalized Miller parametrization
(Candy 2009). We employed 64 Fourier harmonics to achieve a sufficiently accurate
representation of the flux surface at ρtor = 0.95, near the pedestal top. Using a generalized
Miller parametrization instead of a magnetohydrodynamics (MHD) equilibrium allows us
to vary independently (and self-consistently) q and ŝ. Note that the parametrization of the
magnetic geometry is typically affected by uncertainties as well and should therefore be
incorporated into the underlying set of uncertain inputs. This, however, would increase the
number of uncertain inputs drastically, making the UQ and SA study significantly more
challenging; we leave such an extended analysis for future work.

The simulations in Farcaş et al. (2022) were carried out using the plasma
micro-turbulence simulation code GENE (Jenko et al. 2000) in the flux-tube limit using a
box with nkx × nky × nz × nv‖ × nμ = 256 × 24 × 168 × 32 × 8 degrees of freedom in the
five-dimensional position–velocity space. This grid was shown to be sufficiently fine by
performing convergence tests conducted for several input configurations, including the
four pairs comprising the gradients extrema, corresponding to the highest and lowest
electron heat flow values within the considered parameter range. We note that several
works in the literature (Guttenfelder et al. 2021; Chapman-Oplopoiou et al. 2022; Walker
& Hatch 2023) observed that the computed values of ETG fluxes depend sensitively on
the resolution nz in the parallel direction. A resolution comprising nz = 168 points was
sufficient in our case because we leveraged the input parameter edge_opt in GENE, which
allows use of a lower resolution by redistributing the grid points in the parallel direction.
Subsequent simulations in this paper utilize this grid resolution.
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3. Parsimonious surrogate model with prediction uncertainty quantification

The sensitivity-driven approach in Farcaş et al. (2022) enabled an efficient UQ and SA
in the ETG scenario under consideration at a cost of only 57 nonlinear GENE simulations.
This low number of simulations was due to the fact that this approach is adaptive,
with a refinement indicator based on sensitivity information about the uncertain inputs.
In this way, the adaptive procedure preferentially refines the directions corresponding
to important input parameters and interactions thereof. Our goal here is to derive an
interpretable and predictive surrogate model for ETG turbulent transport with quantified
prediction uncertainty. This will be achieved by leveraging information provided by the
sensitivity-driven approach, the readily available 57 simulation results and bootstrapping
for computing prediction intervals.

A byproduct of the sensitivity-driven approach is that it also intrinsically provides
an interpolation-based polynomial surrogate of the output of interest in terms of the
uncertain inputs (which can be trivially mapped to a spectral projection basis, a
Legendre basis in our case). The sparse interpolation surrogate in Farcaş et al. (2022)
approximated the power crossing the flux surface in MW due to ETG turbulence in
terms of {ne,Te, ωne, ωTe, q, ŝ, τ,Zeff}. As it turns out, this surrogate is accurate for
within-distribution testing points, that is, eight-dimensional input parameters falling
within the considered uncertainty bounds. For example, the work in Farcaş et al. (2022)
showed that the mean-squared approximation error at N = 32 pseudo-random testing
parameters was in O(10−4). The goal of the present paper is to obtain a general surrogate
model that is predictive for parameter values beyond the considered uncertainty bounds
and, importantly, also incorporates a measure of prediction uncertainty. Since it is well
established that polynomial extrapolation is generally ill posed and unstable (Trefethen
2012), we will not exploit the sparse grid surrogate but target a more compact scaling
law that relates the turbulent flux to key plasma parameters. The results provided by the
sensitivity-driven approach will guide us in choosing which plasma parameters should
define the target scaling law.

Prior to describing how the proposed surrogate model is obtained, we address two
important details. The initial point of clarification pertains to units and normalizations.
A surrogate model in SI units would be preferable because these units are the most
general. However, we cannot construct such a model here without redoing all gyrokinetic
simulations from Farcaş et al. (2022) since the set of uncertain inputs does not include a
macroscopic length Lref nor a magnetic field strength Bref. Even if these two parameters
would turn out to be unimportant, such an assessment cannot be made a priori without
redoing the UQ and SA study. We instead opt for a model for the electron heat
flux in gyroBohm (GB) units, QGB = neT5/2

e m1/2
i /(eBrefLref)

2, which provide a natural
normalization for our set-up. This implies that we must map the original 57 simulation
results in SI units to their associated heat fluxes in GB units, Qe/QGB. Since the
flux-surface area is constant, no particular issue arises from removing it from the existing
57 simulation results. However, the GB units depend on two out of the eight uncertain
inputs, namely ne and Te. Because of this, there is no guarantee that the adaptive procedure
in the sensitivity-driven approach would produce the same 57 simulation results in GB
units as in the original SI units. Nevertheless, the existing simulation results can be reused
irrespective of the units and, as we will show in our results, using GB units does not, in
fact, impact the accuracy of the obtained surrogate model.

The second point of clarification concerns the definition of the normalizing quantities.
It is crucial to precisely define reference quantities like Lref and Bref to prevent inaccurate
model predictions that may not align with experimental measurements, for example. The
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same applies to input parameters such as density and temperature gradients. A quantity
that impacts the values of these parameters is the selection of the radial coordinate. In the
following, we assume that the GB units are defined in terms of the magnetic field on the
axis, B0, and the effective minor radius, a = √

ΦLCFS/B0, where the toroidal flux value at
the last closed flux surface (LCFS), ΦLCFS, represents the length parameter. This implies
that the radial coordinate in the definition of the gradients is ρtor = √

Φ/ΦLCFS, where Φ
denotes the toroidal flux. It is nevertheless important to keep in mind that these choices
directly impact the surrogate model that we will derive next. This implies, for example,
that we cannot rule out the possibility that using different definitions, such as alternative
radial coordinates, may result in a simpler surrogate (Hatch et al. 2024).

Given the choice of normalizing quantities and radial coordinate specified above, we
must decide next which input parameters should specify our surrogate model. We seek a set
of parameters that are both important, in the sense that variations in these parameters lead
to non-negligible variations in the electron heat flux, as well as physically interpretable.
To this end, we leverage the information provided by the sensitivity-driven approach.
More specifically, we use the fact that this approach provides an accurate sparse grid
interpolation surrogate, which, in turn, can be employed to assess the dependence of
the heat flux in terms of subsets of uncertain inputs. Using its representation in the
Legendre basis, this surrogate, in GB units, amounts to a multi-variate polynomial of third
degree comprising 47 terms; its expression is provided in (B1) in Appendix B. Figure 1
plots the one-dimensional dependencies of Qe/QGB in terms of all eight uncertain inputs,
obtained by fixing the seven other parameters to their respective nominal values. We
also perform regression fits that give the rates at which the heat flux varies with each
parameter. We remark that these dependencies do not account for parameter interactions
(such interactions would appear in higher-dimensional dependencies). Moreover, some
rates may change if the remaining seven parameters (e.g. the two gradients) were fixed to
other values, such as their extrema.

Nonetheless, the obtained results indicate that the two gradients lead to the most
significant dependencies, which is in line with what was expected. In contrast, the
dependencies in terms of ŝ and Zeff are clearly negligible, implying that ŝ and Zeff can be
ignored in our surrogate model. We observe small but non-negligible dependencies due to
{τ, q, ne,Te}. Thus, these results suggest a dependence on {ωTe, ωne, q, τ, ne,Te}. Naively
using these input parameters is not desirable since ne and Te are not easily interpretable.
Instead, by examining the gyrokinetic equations, we identify interpretable parameters
depending on ne or Te that may enter our model. These are the collisionality (measured
by an appropriate collision frequency νc), Debye screening (described by the normalized
electron Debye length λD; in the following we will use λD = λDe/ρe normalized with
the electron Larmor radius ρe, the natural microscopic length scale for our problem)
and plasma beta βe = 403 × 10−5neTe/B0 (here, the electron density ne is measured in
1019/m3, Te in keV and B0 in T), which affects the magnetic geometry and causes magnetic
fluctuations. However, since we cannot perform a simple change of variables from {ne,Te}
to {λD, νc, βe}, we instead perform additional simulations to identify which subset of
{λD, νc, βe} should enter our surrogate model. We note that considering {λD, νc, βe} instead
of {ne,Te} allows us to more clearly pinpoint possible physical effects, and leads to a more
interpretable and intuitive surrogate model.

We perform additional scans in which collisions, Debye shielding or electromagnetic
effects are individually switched off. For a comprehensive perspective, we perform
these scans for both left and right uniform bounds of {ωTe, ωne, q, τ, ne,Te} used in the
sensitivity-driven approach (corresponding to their respective smallest and largest values;
see table 1 in Appendix A). Figure 2 plots the results. We observe a clear dependence on
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FIGURE 1. Dependence of the electron heat flux on each of the eight considered parameters
obtained using the sparse grid surrogate model. The remaining seven parameters are fixed to
their respective nominal values. We also estimate via regression the rates at which the flux varies
with the eight inputs.

βe and a weaker but not negligible one on λD. Collisions, in contrast, do not lead to any
significant variations in the heat fluxes, which implies that νc is unimportant. Based on
these results, our surrogate model should depend on {ωTe, ωne, q, τ, βe, λD}. Lastly, since it
is well established that ETG transport is a threshold process with respect to ηe = ωTe/ωne ,
with finite fluxes only when ηe � 1 as shown in Jenko, Dorland & Hammett (2001)
and Jenko et al. (2000), we use ηe instead of ωne . We therefore conclude that the input
parameters that define our surrogate model are {ωTe, ηe, q, τ, βe, λD}.
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FIGURE 2. Dependence of the electron heat flux on various physical effects. Each panel
compares the nominal heat flux with the one obtained when, individually, Debye shielding
(λD), collisions (νc) or electromagnetic effects (βe) are excluded. In each case, all other plasma
parameters except the one indicated in the title are kept to their respective nominal values.

We seek a surrogate model as a scaling law of the form

Qe/QGB = c0

√
me

mi
ω

p1
Te
(ηe − 1)p2τ p3

e qp4βp5
e λ

p6
D , (3.1)

where {c0, p1, p2, p3, p4, p5, p6} ∈ R
7. To determine these coefficients, we perform a

data fit using the existing 57 nonlinear GENE simulations from our UQ and SA study
from Farcaş et al. (2022), where we map the original inputs {ωTe, ωne, q, τ, ne,Te} to
{ωTe, ηe, q, τ, βe, λD} and the corresponding outputs in SI units to heat fluxes in GB units.
We note that fitting the power law (3.1) directly is not straightforward as the target function
is nonlinear. Even more, a poor choice of the loss function or minimization approach can
lead to a biased model that overfits and hence generalizes poorly. We take advantage of
the fact that we want to fit a scaling law with strictly positive parameters and perform a
standard regression fit in logarithmic coordinates. We obtain

Qe/QGB = 0.038
√

me

mi
ω1.40

Te
(ηe − 1)1.79τ−0.76

e q−0.51β−0.87
e λ−0.51

D . (3.2)

To assess the validity of the predefined threshold ηe,0 = 1 in the proposed model, we
perform an additional experiment in which ηe,0 is a free parameter. That is, we consider
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the surrogate model

Qe/QGB = c′
0

√
me

mi
ω

p′
1

Te
(ηe − ηe,0)

p′
2τ p′

3
e qp′

4βp′
5

e λ
p′

6
D , (3.3)

where {c′
0, p′

1, ηe,0, p′
2, p′

3, p′
4, p′

5, p′
6} ∈ R

8. We determine these coefficients analogously to
(3.1) and obtain

Qe/QGB = 0.048
√

me

mi
ω1.40

Te
(ηe − 1.03)1.70τ−0.76

e q−0.52β−0.85
e λ−0.41

D . (3.4)

Model (3.4) is similar to the model in (3.2) and in fact both models yield almost identical
predictions for all datasets considered in § 4. This fit therefore reveals that the threshold
ηe,0 = 1 is valid in our context. We note, however, that we cannot disregard the fact that
ηe,0 may have a different value. Assessing this would require performing simulations with
ηe values close to the threshold, which, in our context, would again necessitate redoing the
sparse grid study since the minimum ηe value for the 57 sparse grid points was ηe,min = 1.4.
We leave such an analysis for future research.

In practice, the deterministic predictions from the model in (3.2) are not enough.
Generally, in order to enhance the reliability of surrogate models, particularly those
derived from data fitting, it is important for their predictions to include an element
of prediction uncertainty. To tackle this issue, we calculate prediction intervals using
bootstrapping. Bootstrapping offers a reliable method for establishing prediction intervals
without relying on restrictive assumptions regarding the distribution of data and errors.
To compute prediction intervals, we resample the 57 input–output pairs M ∈ N times with
replacement and fit a model for each of the M resampled pairs via regression, as described
above. We then compute the target predictions for each fitted model, which results in an
ensemble of M predictions. Lastly, this ensemble is used to calculate prediction intervals.

4. Predictions using the novel surrogate model

We now assess the prediction capabilities of the novel surrogate model given in (3.2)
and compute prediction intervals using bootstrapping. For a comprehensive perspective,
we perform three sets of experiments comprising 133 testing points in total across a wide
range of values, including two sets that go beyond the training data.

We will compare our model with the most accurate surrogate proposed in Hatch et al.
(2022), obtained via symbolic regression using a database of N = 61 ETG simulations
comprising discharges from the JET, DIII-D, ASDEX Upgrade and C-MOD tokamaks

Qe/QGB =
√

me

mi
ωTe(1.44 + 0.50η4

e). (4.1)

To the best of our knowledge, this represents the most comprehensive such database
currently available in the literature. The more recent work in Hatch et al. (2024) refined
the formulas from Hatch et al. (2022) and proposed new, richer models that provide more
accurate predictions for the database. We therefore additionally consider the model given
in (1) in Hatch et al. (2024)

Q′
e/QGB = 0.019

√
me

mi
(ω′

Te
)2(ηe − 1)η1.57

e τ−0.5
e (λ′

D)
−0.4, (4.2)

where the quantities marked with a prime symbol are defined differently than in the
present paper. More specifically, ω′

Te
denotes the temperature gradient taken with respect

https://doi.org/10.1017/S0022377824001314 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001314


Advanced surrogate model for electron temperature gradient turbulence 9

to the normalized poloidal flux, ψ , and λ′
D denotes the Debye length normalized to ρs =√

Te/mimi/eB. In addition, the evaluation of the heat flux uses the effective flux-surface
area A = 2πR2πa, where R denotes the major radius and a the minor radius (for our case,
R = 1.68 m and a = 0.77 m) instead of the true flux surface area V ′. As noted in § 3,
the conversion factors between radial coordinates has some dependence on q and βe. We
therefore cannot exclude the possibility that a model formulated for the radial coordinate r
(as in this paper) has different q and βe dependence than a model formulated for the radial
coordinate ψ as in (4.2).

To use the model in (4.2) in our context, we must (i) convert our temperature gradient
and Debye length to be compatible with the units used in (4.2) and (ii) convert the ensuing
heat flux predictions to be compatible with our definition by accounting for the different
flux-surface area. The conversion of the Debye length is straightforward, namely λ′

D =
λD

√
me/mi. The conversion for the temperature gradient and heat flux is explained in detail

in Appendix D. As noted there, a full conversion of the temperature gradient is not possible
because it requires knowledge of a global MHD equilibrium. Nonetheless, we employ the
model in (4.2) in our experiments both for a more comprehensive perspective and also
because this model is richer than the model in (4.1). For more details about model (4.2),
we refer the reader to Hatch et al. (2024). We furthermore note that other works such as
Chapman-Oplopoiou et al. (2022) and Guttenfelder et al. (2021) provide algebraic trends
of ETG fluxes, which, however, do not represent general surrogate ETG models as their
expressions depend on undetermined constants. The work in Hatch et al. (2024) showed
that the models proposed therein, including (4.2), yield more accurate predictions than
the aforementioned algebraic expressions with constants fitted using the database in Hatch
et al. (2022).

In all our experiments, we use M = 1000 bootstrapping samples and compute 95 %
prediction intervals. Furthermore, to assess the prediction accuracy of the deterministic
predictions issued by our model (i.e. without taking into account the prediction intervals)
in a manner consistent with common practice in the literature, we will utilize the following
error metric that compares a set of N reference electron heat fluxes (hereby denoted by
Qe,ref/QGB) and corresponding (deterministic) approximations obtained via a surrogate
model (denoted by Qe,approx/QGB), {Qe,ref;i/QGB,Qe,approx;i/QGB}N

i=1:

ε(Qe,ref/QGB,Qe,approx/QGB) =
√√√√ 1

N

N∑
i=1

(Qe,ref;i/QGB − Qe,approx;i/QGB)2

(Qe,ref;i/QGB + Qe,approx;i/QGB)2
. (4.3)

This error metric was also adopted in Hatch et al. (2022, 2024) and it equally penalizes
extreme cases, that is, Qe,approx � Qe,ref and Qe,approx � Qe,ref.

4.1. Within-distribution testing parameters
We initially investigate whether the proposed regression-based scaling law (3.2) exhibits
any significant decrease in accuracy compared with the sensitivity-driven sparse grid
surrogate model obtained from Farcaş et al. (2022), which was shown to be accurate for
within-distribution testing data. For this purpose, we utilize the N = 32 testing samples
from Farcaş et al. (2022). We map the original input parameters {ωTe, ωne, q, τ, ne,Te} to
{ωTe, ηe, q, τ, βe, λD} and the corresponding outputs to heat fluxes in GB units. In addition,
we also assess the predictions provided by models (4.1) and (4.2).

Figure 3 shows the results. To simplify visualization, we reordered the results in
ascending order relative to the reference results. Panel (a) shows the predictions obtained
using our surrogate model and the sparse grid model based on the work in Farcaş et al.
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(a) (b)

FIGURE 3. (a) Comparison between the proposed surrogate model (with 95 % prediction
intervals) and the more complex sparse grid surrogate model depending on all eight uncertain
inputs from Farcaş et al. (2022) in GB units using N = 32 within-distribution testing data points.
(b) The corresponding predictions using models (4.1) and (4.2). To simplify visualization, we
reordered the fluxes in ascending order relative to the reference values.

(2022). Both surrogate models provide accurate predictions that are close to each other.
In addition, the 95 % prediction intervals, shown for each heat flux predicted by our
model, are small. The corresponding deterministic errors are ε = 0.0145 for the sparse
grid model and ε = 0.0292 for the proposed surrogate model. We can therefore conclude
that the proposed regression-based scaling law (3.2) provides accurate predictions with
small prediction intervals that do not deteriorate the accuracy of the more complex sparse
grid surrogate for within-distribution testing data. Panel (b) shows the predictions obtained
with models (4.1) and (4.2). The model in (4.1) slightly underpredicts the reference
fluxes, but nevertheless yields an error ε = 0.2248. The richer model (4.2) improves these
predictions, decreasing the error to ε = 0.1561.

4.2. Testing the model using data beyond training
Next, we evaluate the predictive performance of the proposed model on data that fall
outside the input distribution. We examine two datasets with parameters that exceed the
training boundaries. The first dataset consists of 61 out-of-distribution testing points from
the database in Hatch et al. (2022), while the second dataset includes 40 out-of-bounds
testing points. These experiments serve as validation tests for our model.

4.2.1. Out-of-distribution testing parameters
We test the proposed model using the database of N = 61 ETG simulations from Hatch

et al. (2022). Given that the 61 entries pertain to four distinct machines and different
configurations, and none of the input pairs {ωTe, ωne, τ, βe, λD} from the database fall
within the uniform bounds of our inputs, it is reasonable to consider these 61 data points
as out-of-distribution.

Figure 4 plots the results. This experiment highlights the benefits of including prediction
intervals: these intervals not only indicate the level of uncertainty in our predictions but
also enhance our understanding of the predictive capabilities of our model. Specifically, 17
reference fluxes are within the 95 % prediction intervals of our model forecasts, and most
of the other reference fluxes are close to our prediction intervals, with the exception of a
handful of outliers. There are five outliers for which the respective relative error exceeds
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FIGURE 4. Comparison between the proposed surrogate model (with 95 % prediction intervals)
and the surrogate model (4.1) at the N = 61 data points from the database in Hatch et al. (2022).
These points represent out-of-distribution testing data for our model. The refined surrogate
model (4.2) provides more accurate predictions with error ε = 0.15. To simplify visualization,
we reordered the fluxes in ascending order relative to the reference values.

100 % (corresponding to indices 16, 17, 19, 20 and 46 in the database in Hatch et al. 2022).
Correspondingly, the model in (4.1) yields 10 such outliers. The value of the deterministic
error (4.3) for our model is ε = 0.2604, which is slightly smaller than the error of the
surrogate model given by (4.1), ε = 0.2860, which was trained using the entire database.
We note, however, that model (4.2) (the corresponding results are not plotted in figure 4
because the necessary conversion factors are not available in the database in Hatch et al.
2022) provides more accurate predictions (in the units used in Hatch et al. 2024), reducing
the error by nearly 50 % to ε = 0.15.

4.2.2. Out-of-bounds testing parameters
Lastly, for a more comprehensive assessment of our proposed surrogate model, we test

its prediction accuracy using out-of-bounds testing data. For this experiment, we generate
N = 40 uniform testing samples that fall outside of the training bounds given in table 1 in
Appendix A. The values of the N = 40 input parameters as well as the corresponding heat
fluxes in GB units are listed in table 2 in Appendix C.

Figure 5 plots the results. Our surrogate model closely matches the reference results. In
fact, 35 out of the 40 reference flux values are within or very close to our prediction
intervals. The corresponding deterministic error amounts to ε = 0.2074. In contrast,
the surrogate given in (4.1) produces fairly inaccurate predictions that overestimate the
reference heat fluxes, resulting in a large error ε = 0.5451. We attribute these results to
the fact that the model (4.1) is not rich enough for these testing points as it depends on
only two parameters, ωTe and ηe. In contrast, the refined surrogate model (4.2) produces
more accurate predictions that decrease the error down to ε = 0.3280.

5. On the scaling parameter dependencies

We examine in more detail the dependence of the new scaling law on the parameters
{τ, λD, βe, q}. With this aim, we conduct supplemental simulations in which each of the
four parameters is varied individually, with all others held constant at their nominal values.
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FIGURE 5. Comparison between the predictions obtained using the proposed surrogate model
(plus their corresponding 95 % prediction intervals) and surrogates (4.1) and (4.2) at N = 40
out-of-bounds testing points. To simplify visualization, we reordered the fluxes in ascending
order relative to the reference values.

Figure 6 shows the dependence of the electron heat flux on τ . We explore a substantially
broader spectrum of values for this parameter than those used for the construction of the
surrogate model, while ensuring these values are realistic and accounting for a possible
large impurity content. Our results indicate a reduction in the heat flux, which is consistent
with previous findings. For instance, the study by Jenko et al. (2001) found that the
linear dynamics of ETG modes shares similarities with ion temperature gradient modes,
albeit with the electrons and ions being interchanged. Consequently, an increase in the
electron-to-ion temperature ratio, τ , is likely to exert a stabilizing influence on ETG-driven
fluxes. We compare the reference GENE data with the predictions obtained using our
surrogate model in (3.2) (plus their corresponding 95 % prediction intervals) by fixing all
parameters except for τ to their respective nominal values in our surrogate. Our predictions
in figure 6 not only reflect this relationship but do so with high accuracy. In fact, all
reference GENE values fall within the 95 % prediction intervals.

We proceed with examining the impact of varying the normalized electron Debye length
λD. The corresponding results are plotted in figure 7. Panel (a) compares the reference
GENE data with the predictions obtained via our surrogate model (plus their corresponding
95 % prediction intervals) for λD > 0 by setting all parameters except for λD to their
respective nominal values. As λD exceeds unity, we observe a decrease in the electron
heat flux, corroborating our expectations. For instance, this is consistent with the observed
stabilization of the high-ky modes with increasing Debye length, as illustrated in panel (b)
of figure 7. The nominal value λD = 0.93 lies within the range where Debye shielding
starts to exert a significant influence on transport. We remark that the deviation between
GENE and the surrogate predictions for large values of λD was expected since the surrogate
model was constructed without exploring this region. This, however, does not limit the
scope of our model since typical plasma parameters of current and future pedestals do not
fall within this region.

Investigating the effects of the remaining two parameters, βe and q, presents a
more considerable challenge due to their multifaceted role in the gyrokinetic equations.
Specifically, βe influences not only the field equations but also the particle dynamics
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FIGURE 6. Dependence of the electron heat flux on τ values that exceed the training bounds.
We compare the reference GENE data with the predictions obtained using our surrogate model
(plus their corresponding 95 % prediction intervals).

(a) (b)

FIGURE 7. (a) Dependence of the electron heat flux on λD ≥ 0 values that exceed the training
bounds. The reference GENE data are compared with the predictions obtained via our surrogate
(plus their 95 % prediction intervals) for λD > 0. (b) Flux spectra for different values of λD.

through the pressure gradient ∇p, which contributes to the drift velocity. Additionally,
within the context of magnetic geometry, βe plays a critical in determining the Shafranov
shift, again via the pressure gradient. When working with normalized parameters, we
obtain

∇p = −βe

∑
j

nj

ne

Tj

Te
(ωT,j + ωn,j), (5.1)

where the sum runs over all plasma species. Consequently, we conduct parameter scans
in which we vary βe and simultaneously compute all the affected terms. We then compare
the results with those from scenarios in which we maintain a constant pressure gradient
to isolate and evaluate the impact of the magnetic geometry on its own, as well as in
conjunction with the curvature drift effects. The results of this comprehensive analysis
are presented in figure 8. This reveals that the behaviour of the turbulent fluxes differs
depending on the role played by βe. With a consistently varying βe (the black line

https://doi.org/10.1017/S0022377824001314 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001314
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FIGURE 8. Dependence of the electron heat flux on βe. The black line plots the simulation
results where all terms in the gyrokinetic equations are modified consistently. The orange line
shows the results in which the pressure gradient ∇p is held constant when evaluating particle
drifts and the magnetic equilibrium. The purple line plots the simulation results where ∇p is
only kept constant when determining the magnetic equilibrium.

in figure 8), there is a noticeable stabilizing impact on the fluxes. However, when the
pressure gradient is held constant (orange line), the influence of βe appears to be minimal.
Additionally, we note an escalation in transport (purple line) when drift velocities are
proportionally increased with βe, indicating that ETG modes are not significantly impacted
by dynamical changes stemming from electromagnetic fluctuations. The βe scaling in
our surrogate model, as described by (3.2), should therefore primarily be interpreted
as reflective of a pressure gradient scaling. This scaling corresponds to the effect of
the Shafranov shift, for which βe serves as an effective substitute at fixed logarithmic
gradients. This interpretation is further corroborated by our finding that the electron
heat flux is predominantly electrostatic. The electromagnetic contribution to the heat flux
remains consistently minor and exhibits no discernible variation with changes in βe across
the various scenarios we investigated.

In our final analysis, we examine the impact of varying the safety factor q beyond the
range considered for training. It is important to note that, while q does not directly appear
in the gyrokinetic equations, it is integral to the characterization of the magnetic geometry
and therefore indirectly affects all related metric elements. The most significant influence
arises from varying the magnetic curvature, as shown in figure 9. Upon increasing the
value of q, we observe a reduction of the turbulent fluxes, which eventually plateaus for
q ≥ 6. To better understand this pattern, we compare these results with instances where we
purposefully set both the radial (Kx) and binormal (Ky) curvatures to zero. This particular
case (orange line in figure 9) reveals a flux dependence similar to that in simulations
preserving the complete geometry, although the levels of transport are marginally lower.
Such a correlation upholds our hypothesis that the ETG modes in question tend to exhibit
slab-like characteristics. The influence of curvature on our system’s behaviour is evident
in the results where only Ky is considered (purple line in figure 9). Here, the fluxes
decrease more rapidly with q, indicating that a higher safety factor causes a stabilizing
modification of Ky. This is confirmed in figure 10: for our specific case, the binormal
curvature turns positive at all parallel positions once q > 4, balancing the destabilizing
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FIGURE 9. Dependence of electron heat flux on q. The black line plots the results achieved
when all geometric elements are calculated consistently. The orange line plots the results
obtained when both Kx and Ky are artificially set to zero, and the purple line plots the results
when only Kx is set to zero.

(a) (b)

FIGURE 10. Binormal Ky (a) and radial Kx (b) components of the magnetic curvature as a
function of the parallel coordinate z for different values of the safety factor q. The inset in the left
plot provides a detailed view of the range −0.3 < z/π < 0.3, demonstrating that, at sufficiently
large values of q, the curvature becomes strictly positive.

influence typically associated with Kx. Throughout all examined scenarios, including those
where curvatures were artificially nullified, turbulence remains predominantly clustered
around the outboard mid-plane. This consistency points to the prevalent role of finite
Larmor radius effects in determining the parallel structure of the ETG modes, irrespective
of curvature considerations.

6. Conclusions

In the present work, we employed our recently developed sensitivity-driven
dimension-adaptive sparse grid approximation method in the context of ETG turbulence
in a tokamak pedestal, characterized by eight uncertain input parameters. This technique
enabled us to determine an advanced surrogate model, which takes the form of the
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following scaling law:

Qe/QGB = 0.038
√

me

mi
ω1.40

Te
(ηe − 1)1.79τ−0.76

e q−0.51β−0.87
e λ−0.51

D , (6.1)

where QGB = neT5/2
e m1/2

i /(eB0a)2. To our knowledge, the identified dependencies on the
safety factor q and plasma beta βe are novel contributions, elucidating the influence of
magnetic geometry on ETG modes. We further enhanced the robustness of our surrogate
model by integrating a quantification of uncertainty in its predictions, which is of
paramount importance in surrogate modelling. This was achieved through the computation
of prediction intervals using the bootstrapping technique. Such measures are essential
for evaluating the out-of-sample predictive accuracy of these models, extending their
reliability beyond the scope of the training data. We underpinned our approach with
extensive numerical evidence, utilizing a total of 133 test points – including data points
beyond the training set – to demonstrate that our surrogate model delivers predictions with
an acceptable level of precision. The inclusion of prediction intervals not only adds rigour
to our model’s predictive capabilities but also affords a more profound understanding
of its performance. Within the wider framework of turbulent transport simulations in
fusion devices, our work implies that sensitivity-driven sparse grid approximations can
be effectively harnessed to construct surrogate transport models directly from nonlinear,
high-fidelity simulations, presenting a significant advancement in the field.

One application of the proposed surrogate model is profile reconstruction, which can be
done similarly to Hatch et al. (2024). Starting from an imposed boundary condition at the
edge and an initial guess, the surrogate model can be used to provide an approximation
of the heat flux that can be then fed to a transport solver evolving the electron profile
iteratively until convergence. Such an application is beyond our scope and is therefore left
for future work. In addition, further refinement of the surrogate model considering, for
example, the value of the critical gradients as well as the impact of toroidal ETG is also
left for our future research.
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Appendix A. Set-up for the eight input plasma parameters

The set-up for the eight parameters describing the base ETG scenario is listed in table 1.
This includes their respective nominal values (second column) and the corresponding left
and right uniform bounds considered in the UQ and SA analysis in Farcaş et al. (2022). We
note that, in Farcaş et al. (2022), the temperature and density gradients were normalized
with respect to the major radius, R, and the output of interest was the electron heat flow
computed in SI units (MW).

Appendix B. Eight-dimensional sparse grid surrogate model

The sparse grid polynomial surrogate in GB units with QGB = neT5/2
e m1/2

i /(eB0a)2,
depending on all eight uncertain inputs listed in table 1, obtained from our UQ and SA
study in Farcaş et al. (2022), expressed using a Legendre basis, reads

Qe/QGB = 0.19866664868934378τωneωTe − 1.1413477734069242τ 2ωne

+ 1.1300923036977033τ 2ωTe + 0.012387562637082726ω2
ne
ωTe

− 0.08487445688736855τω2
Te

+ 0.009721433191939952qω2
Te

− 0.005966686182384836ωneω
2
Te

+ 0.0014173787745147169ω3
Te

− 0.010912805921383906ω3
ne

− 0.14098572222663125τω2
ne

+ 0.0878050918300935q2ωTe − 0.4779566243839404ω2
ne

Te

+ 0.40612708864138414ωneωTe Te − 0.10152212813990472ω2
Te

Te

− 0.09610059439413138q3 − 6.565071206471347τ 3

− 0.007095934720313662ω2
Te

ne + 0.10660808146140052qωne

+ 0.7209441445034814ω2
ne

+ 2.3708835567864472τωne

− 1.5507824853701202q2 − 0.6219694465716796τq

− 1.5881501546239818τωTe + 11.292418391099027τ 2

− 1.6038679243023qωTe + 0.37186341930335004n2
e

− 0.6593622299176898ωneωTe + 0.16335509513250532ω2
Te

+ 0.369546253431427ωTe ne + 5.968742046874542τTe

+ 3.3170053895934304qTe + 7.075768404578394ωne Te

− 2.5422978283907813ωTe Te + 64.48667130778047T2
e

+ 1.3682599362541525Tene + 0.2294389248146788ωne ne

− 0.06963000365198978τne + 0.3511888827695439qne

+ 31.28952697970901q − 10.12874179297306τ

+ 0.16860715589513Zeff − 9.035737970505384ωne

− 14.949102090605091ne + 0.19518454179911435ŝ

− 113.39196370792155Te + 7.000425385025428ωTe

− 11.083912068866233. (B1)
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Uncertain input parameter Nominal value Left uniform bound Right uniform bound

Electron temperature Te [keV] 0.3970 0.3573 0.4367
Electron density ne [1019m−3] 4.4923 4.0428 4.9412
Temperature gradient ωTe = a/LTe 39.9347 31.9477 47.9216
Density gradient ωne = a/Lne 18.3928 15.1150 22.6726
Temperature ratio τ 1.4400 1.1520 1.7280
Effective ion charge Zeff 1.9900 1.5920 2.3880
Safety factor q 4.5362 3.6289 5.4434
Magnetic shear ŝ 5.0212 4.0169 6.0254

TABLE 1. Summary of the eight uniform uncertain parameters considered in Farcaş et al. (2022).
The second column shows their nominal (mean) value. The corresponding left and right uniform
bounds are listed, respectively, in the third and fourth columns. The density and temperature
gradients are normalized with respect to the minor radius, a.

It amounts to a multi-variate polynomial of third degree, comprising 47 terms.

Appendix C. Out-of-bounds testing data

Table 2 shows the values of the GENE parameters {ωTe, ηe, q, τ, βe, λD, ŝ,Zeff} (columns
two to nine) as well as the corresponding electron heat fluxes in GB units (last column) for
the 40 out-of-bounds testing parameters used in § 4.2.2.

Index ωTe ηe τ q βe λD = λDe/ρe ŝ Zeff Qe/QGB

1 33.0 3.0 0.55 4.0 0.0124 1.25707748 2.0 1.65 9.123
2 31.0 2.0 0.775 3.5 0.01128 1.10252989 4.0 0.975 2.731
3 26.0 4.0 0.325 4.5 0.01128 1.50249497 0.2 2.325 11.56
4 10.62 2.5 0.6625 3.25 0.02606 1.04394603 1.0 1.988 0.4035
5 30.62 3.5 0.8875 4.75 0.00784 1.1722308 −1.0 1.312 10.0
6 26.62 1.5 0.4375 3.75 0.00784 1.69504293 3.0 2.663 0.51
7 17.28 1.75 0.6062 4.375 0.008979 1.82395972 4.5 1.819 0.4808
8 25.53 4.75 0.8313 3.875 0.006004 1.42794407 2.5 1.144 17.4
9 17.16 2.25 0.2688 4.125 0.008979 1.01795159 3.5 0.8063 2.869
10 10.16 3.25 0.4938 3.625 0.02088 1.13577944 5.5 2.831 1.35
11 30.35 2.625 0.3531 3.938 0.01428 1.46377777 −0.25 0.3844 6.132
12 11.85 4.625 0.8031 4.938 0.01596 1.08695585 3.75 1.734 0.825
13 11.48 1.625 0.5781 3.438 0.01624 1.23413824 5.75 1.059 0.2112
14 15.04 3.125 0.4656 4.688 0.008102 1.64002595 4.75 0.7219 3.852
15 19.79 2.125 0.2406 3.188 0.008939 1.33435987 2.75 2.747 2.585
16 45.66 4.375 0.4094 3.562 0.01817 1.05772043 1.25 0.5531 41.14
17 46.16 2.375 0.8594 4.562 0.004406 1.39461942 5.25 1.903 13.07
18 50.41 3.375 0.6344 3.062 0.008497 1.75599626 3.25 1.228 21.78
19 31.73 3.875 0.9719 3.812 0.007288 1.54445643 −1.75 2.241 10.76
20 10.6 2.875 0.7469 4.312 0.01417 1.28134533 0.25 1.566 0.6607
21 20.65 2.812 0.4797 3.594 0.007336 1.34869001 −0.625 1.692 5.986

TABLE 2. For caption see on next page.
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Index ωTe ηe τ q βe λD = λDe/ρe ŝ Zeff Qe/QGB

22 10.84 3.812 0.2547 4.094 0.01115 1.66685386 1.375 1.017 4.193
23 21.47 1.812 0.7047 3.094 0.01422 1.16278488 5.375 2.367 0.9622
24 12.59 1.312 0.8172 3.844 0.01807 1.24544945 0.375 0.6797 0.1328
25 32.59 2.312 0.1422 3.344 0.01008 1.48275739 2.375 1.355 6.441
26 21.97 4.312 0.5922 4.344 0.008684 1.09465979 −1.625 2.705 9.052
27 12.83 2.062 0.9859 4.969 0.01587 1.29399103 5.875 0.5109 0.1904
28 61.83 4.062 0.5359 3.969 0.01447 1.01174754 1.875 1.861 78.36
29 32.83 3.062 0.7609 3.469 0.003641 1.56675126 3.875 2.536 21.71
30 46.2 3.562 0.8734 3.719 0.007383 1.78897427 −1.125 0.8484 17.02
31 6.201 1.562 0.4234 4.719 0.00822 1.20199048 2.875 2.198 0.2105
32 38.64 4.562 0.1984 3.219 0.02602 1.06480002 4.875 1.523 32.98
33 44.76 2.562 0.6484 4.219 0.008917 1.4109689 0.875 2.873 11.04
34 23.31 3.438 0.6766 4.406 0.01075 1.14457745 2.625 0.4266 6.115
35 5.56 2.438 0.9016 3.906 0.01902 1.02427119 4.625 2.452 0.2475
36 52.97 2.938 0.5641 3.156 0.009562 1.07942823 1.625 0.7641 34.79
37 8.779 1.938 0.3391 3.656 0.004913 1.8610814 3.625 1.439 0.8462
38 24.73 1.688 0.7328 4.031 0.005436 1.52304234 4.125 0.5953 1.088
39 27.29 2.688 0.5078 4.531 0.0185 0.99968494 −1.875 1.27 2.196
40 14.26 4.188 0.6203 3.281 0.008179 1.37879224 −0.875 0.9328 8.305

TABLE 2. Summary of the main parameters (columns two to nine, in the same units as in the
main text) and of the corresponding GB-normalized electron heat flux (last column) for the 40
out-of-bounds testing parameters used to validate our proposed surrogate model.

Appendix D. Unit conversion

For simplicity, in the following we use superscript Fa22 to refer to quantities used in
our original UQ study in Farcaş et al. (2022) and Fa24 to refer to quantities used in
the present paper. Analogously, superscripts Ha22 and Ha24 are employed to refer to
quantities specific to Hatch et al. (2022) and Hatch et al. (2024), respectively.

In Farcaş et al. (2022), our simulations adopted the generalized Miller geometry using
R = 1.68 m, with the temperature gradient defined as

ωFa22
Te

= R
Te

dTe

dr
. (D1)

The conversion factor between ωFa22
Te

in (D1) and ωFa24
Te

used in this paper is 4.6576,
therefore ωFa24

Te
= ωFa22

Te
/4.5676.

To use the model in (4.2) in the present work, we must (i) convert the temperature
gradient and Debye length in our units to be compatible with the units used in (4.2) and
(ii) convert the ensuing flux predictions to account for the area definition. The Debye
length conversion is straightforward and was explained in the main text. To convert ωFa24

Te

to ωHa24
Te

, we can use the chain rule to obtain

ωHa24
Te

= 1
Te

dTe

dψN
= R

Te

dTe

dr
1
R

dr
dψN

= ωFa22
Te

ψN

R
dr
dψ

= 4.5676 × ωFa24
Te

ψN

R
dr
dψ
. (D2)
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Using the definition of the Miller geometry, we can evaluate dr/dψ in (D2) for any set of
input parameters. The same is not true for ψN/R, which requires the knowledge of a global
equilibrium. The value of this factor for our nominal parameters is 1/0.31, however, since
the results of (4.2) linearly scale with it, it is clear that a model comparison is inevitably
skewed by the specific choice of this factor. Since the model in (4.2) is richer than (4.1), we
nevertheless employ it in § 4 for a more comprehensive overview using a constant value
1/0.20, which is close to the one for our nominal inputs.

The predictions QHa24
e /QHa24

GB provided by (4.2) can be converted to QFa24
e /QFa24

GB as

QFa24
e /QFa24

GB = QHa24
e /QHa24

GB AHa24/V ′Ha22
, (D3)

where AHa24 = 51.07 m2 and V ′Ha22 = 37.28 m2. Moreover, QHa24
GB = QFa24

GB = QHa22
GB .
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