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ABSTRACT. Potential energy released from the capsize of ice-shelf fragments (icebergs) is the
immediate driver of the brief explosive phase of ice-shelf disintegration along the Antarctic Peninsula
(e.g. the Larsen A, Larsen B and Wilkins ice shelves). The majority of this energy powers the rapidly
expanding plume of ice-shelf fragments that expands outward into the open ocean; a smaller fraction of
this energy goes into surface gravity waves and other dynamic interactions between ice and water that
can sustain the continued fragmentation and break-up of the original ice shelf. As an initial approach to
the investigation of ice-shelf fragment capsize in ice-shelf collapse, we develop a simple conceptual
model involving ideal rectangular icebergs, initially in unstable or metastable orientations, which are
assembled into a tightly packed mass that subsequently disassembles via massed capsize. Computations
based on this conceptual model display phenomenological similarity to aspects of real ice-shelf collapse.
A promising result of the conceptual model presented here is a description of how iceberg aspect ratio
and its statistical variance, the two parameters related to ice-shelf fracture patterns, influence the
enabling conditions to be satisfied by slow-acting processes (e.g. environmentally driven melting) that

facilitate ice-shelf disintegration.

INTRODUCTION

The ubiquitous aftermath of sudden explosive ice-shelf
disintegration is a closely packed mass of ice-shelf frag-
ments covering a sea-surface area that is conspicuously
larger than the original area of the disintegrated ice shelf
(Rott and others, 1996; MacAyeal and others, 2003;
Scambos and others, 2003, 2009; Braun and Humbert,
2009; Braun and others, 2009). Within the closely packed
mass, ice-shelf fragments that retain the original firn-side up
orientation can constitute less than one-quarter of the
surface-area coverage (see figs 3 and 4 of Scambos and
others, 2003), with the remainder of surface area covered by
thin rectangular slivers of ice shelf that have capsized
(rotated by 90°) and ice rubble also likely formed by a
capsize process, for example as time-lapse photographic
observations of iceberg fragmentation in Greenlandic fjords
attest (personal communication from J. Box, 2010; Ahn and
Box, 2010; Amundson and others, 2010). This ubiquitous
aftermath of explosive ice-shelf disintegration points to
iceberg capsize as a likely driver of the immediate short-
term mechanical processes involved in the disintegration.
A considerable amount of gravitational potential energy is
released from the ice/water system when unstable icebergs
capsize. As has been observed in both Antarctic and
Greenlandic settings, iceberg calving and capsize generates
impulsive surface gravity wave energy that can subsequently
stimulate the calving of new icebergs (Amundson and
others, 2008, 2010; Nettles and others, 2008; MacAyeal
and others, 2009. MacAyeal and others (2011) show that the
net energy released by capsize of an iceberg that is 300 m
thick and 150 m x 1000 m in horizontal dimension, compar-
able to icebergs capsized during the Wilkins Ice Shelf
(Antarctica) events (Scambos and others, 2009), is
~3.5 x 10'?}, which is slightly less than the explosive energy
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yield of 1 kiloton of TNT (4.2 x 10"?)). Into what forms and
into what proportions this gravitational potential energy is
converted remains a subject of ongoing research. However,
the fact that this energy conversion must be compressed into
a short time because capsize takes on the order of tens to
hundreds of seconds implies strongly that capsize may be the
key energy source controlling ice-shelf collapse.

The question of how environmental forcing conditions
cause ice shelves to be vulnerable to explosive disintegra-
tion remains of primary concern to glaciological science
(Scambos and others, 2000; Van den Broeke, 2005; Vieli
and others, 2007; Glasser and Scambos, 2008). This
question, however, is not the central focus of this study.
Instead, it focuses on the subsidiary question of how ice-
shelf fragment capsize drives the explosive nature of the
disintegration. Investigation of this subsidiary question sheds
light on what specific conditions environmental forcing must
achieve in order to cause disintegration (e.g. expressed in
terms of fracture density and spacing, surrounding sea-ice
conditions and basic properties of the ice shelf such as
thickness, stress level and flow rate). Here we develop an
idealized conceptual model of massed ice-shelf fragment
capsize and explore its behavior and parameter sensitivities
using computationally facilitated experiments.

CONCEPTUAL MODEL

We develop a conceptual model to explore the dynamics of
massed ice-shelf fragment capsize from the idealized view
expressed in Figure Ta. Restricting our idealization to two
dimensions, the model consists of a large number of closely
packed icebergs of rigid-body rheology and approximately
rectangular cross section floating in sea water that is treated
as purely hydrostatic, with no viscous or free-surface effects
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Fig. 1. Geometry of an idealized iceberg assemblage providing a conceptualization of the explosive phase of ice-shelf disintegration. (a) A
runaway capsize of the assemblage leading to horizontal expansion of capsized icebergs across the open ocean surface (to the right). (b) The
buoyant force on an iceberg is computed by determining the moments of the submerged portion of the iceberg. (c) Impulse associated with
collision. (d) Our representation of the iceberg collision volume using 12 overlapping disks.

(i.e. the feedbacks between the icebergs and surface gravity
waves are relegated to future study). In the initial state, at
time t =0, the icebergs are oriented upright, contained
within an integrated (but fractured) ice shelf. A variably
specified proportion of the icebergs are unstable in this
orientation, as determined by their aspect ratio (vertical
dimension divided by horizontal dimension). The fractures
that separate the icebergs in the initial state are assumed to
pre-exist, as we do not examine directly the process that
induces initial fracture of the ice shelf into the pieces that
subsequently capsize.

At the initial time, t = 0, a random infinitesimal perturb-
ation to the angular velocity of each iceberg is used to
initiate the subsequent behavior which is controlled by three
basic processes: (1) buoyancy-driven rotation of individual
icebergs (capsize); (2) iceberg-on-iceberg momentum and
energy exchange (via collision); and (3) idealized dissipa-
tion. As we describe below, these three processes allow the
evolution of a massed iceberg capsize, where energy is
transferred from the static potential energy of the ice/water
system into several forms of kinetic energy, rotational,
translational and bobbing and rocking motions, that subse-
quently decay over time to evolve the system to a post-
collapse quiescent state.

Although the conceptual model is highly idealized and
the greatest possible simplification is embraced in its
formulation, it is necessary to explore the behavior of the
model via computation, as the large number of icebergs and
their interactions are not amenable to exact analytic
solution. The goal of the numerical treatment of the
conceptual model, described below and in the Appendix,
is to conduct two basic classes of experiments. The first class
is performed to explore phenomenological similarities
between the conceptual model and the immediate explosive
part of ice-shelf disintegration. We conduct experiments to
determine how quickly massed iceberg capsize can proceed
and to determine the proportion of icebergs that have
capsized as a function of time. Of particular interest in these
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experiments is the evaluation of energetic details describing
how potential energy is converted into various forms of
kinetic energy.

The second class of experiments is performed to explore
the geometric conditions, i.e. the fracture spacing and its
variability within a single ice shelf prior to collapse,
necessary to facilitate the explosive character of ice-shelf
disintegration. Numerous experiments are conducted where
the mean aspect ratio (initial thickness to width) and
heterogeneity (defined using a Gaussian distribution) char-
acterizing the initial mass of icebergs are varied system-
atically. The result of these experiments is the construction of
a conceptual phase diagram suggesting how the role of
aspect ratio and heterogeneity impact the vulnerability of ice
shelves to explosive disintegration.

NUMERICAL IMPLEMENTATION

As shown in Figure 1, ice-shelf disintegration is conceptual-
ized as beginning from an initially quiescent arrangement of
approximately rectangular icebergs (having rounded cor-
ners, for reasons discussed below) packed into a tight mass
that extends seaward from a fixed rigid wall (i.e. a first
iceberg held fixed) to an ice front (i.e. a last iceberg that has
only sea water facing it). The open ice-free ocean into
which the mass of icebergs will expand by horizontal
movement is assumed semi-infinite and quiescent at all
times. The geometry of our initial simulations (Fig. 1a) is
similar to a row of balanced dominoes (Van Leeuwen,
2010). However, unlike a row of dominoes which only tips
under the application of sufficient force, icebergs in our
simulations can be immediately unstable to tipping,
depending on their aspect ratio (thickness to width), and
so may provide the impetus to drive the tipping of other
stable icebergs. The sea water in which the icebergs float is
treated as a hydrostatic fluid with a permanently undis-
turbed free surface, so that the complexities of free-surface
waves can be eliminated for initial study. The interactions
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among the icebergs and between the icebergs and the water
are assumed to be frictionless, except for a linear drag law
resisting horizontal iceberg motion that is designed to
simplify the dissipative effects of viscous forces and surface-
gravity-wave radiation.

Each iceberg is denoted by an index i, and has three
degrees of freedom represented by the horizontal and
vertical position of the center of mass (center of the iceberg
cross-sectional area), x; and z;, respectively, and by the
angle of tilt, §;, measured counterclockwise, with 6; =0
implying that the iceberg is upright in the initial orientation.
Horizontal and vertical dimensions are rendered nondimen-
sional by scaling the system using the initial iceberg width,
w, which, unless otherwise specified, is assumed to be less
than the initial iceberg thickness, I. For each iceberg, the
forces of gravity, buoyancy and drag are resolved as
indicated in Figure 1b and c and used to compute linear
and angular accelerations X;, Z; and §;. These accelerations
are used to compute velocities (both linear and angular)
which are then stepped forward through time, ¢, using a first-
order backwards Euler scheme to determine the location and
arrangement of the icebergs.

Collisions are treated as instantaneous solitary events,
rather than by adding the contact forces to the determination
of the acceleration. Collisions with ‘soft’ potentials (where
repulsive forces scale with the degree of particle overlap) are
usually the largest source of error in a simulation of
interactions involving many bodies. This is because the
potentials involved in two objects overlapping must be very
stiff to properly model their material properties and so the
timescale associated with collisions is the smallest timescale
in the simulation. In order to resolve the collisions, the time-
step, At, used must be smaller than this timescale or errors
become sufficiently large as to violate the conservation laws
of the system (momentum, energy and angular momentum).
To avoid this computational difficulty, we choose to solve
the collisions exactly (i.e. not using a ‘soft’ potential to
represent repulsive forces) by assuming that they take place
instantaneously and using the momentum and energy
conservation principles to determine the exchanges during
the collision directly. This means that we can use a much
larger At and gain additional simplifications in the treatment
of collisions that we discuss in the Appendix.

Within the simulation we use nondimensional variables
so that the iceberg width, w;, is defined to be 1 unit of length,
and the acceleration due to gravity, g, is used to determine

the corresponding unit of time: Tgm = /w/g. For an iceberg
100 m in width, this corresponds to a simulation time unit of
about 3s. Note that this is not the timescale for a single
iceberg to capsize, it is simply the conversion between
dimensionless simulation units and real units and encodes
the scaling of iceberg capsize times with their width. In our
simulations a single iceberg takes 45-100 time units to
capsize depending on the magnitude of the initial distur-
bance, corresponding to 2—6 min for the 100 m wide iceberg.

Gravity and buoyancy forces

Each iceberg has two body forces that act upon it con-
tinuously: (1) the gravitational force which operates at the
center of mass; and (2) the buoyancy force which operates at
the center of buoyancy (Fig. 1b). These forces lead to an
energy-minimizing orientation with respect to the surface of
the liquid in which the icebergs float (for an example in
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planetary morphology, see Collins and others, 2000). We
take the center of rotation of the icebergs to be their center of
mass. In this way, gravity forces act downward at the center of
mass and do not contribute a torque to the rotational
dynamics. The mass of each iceberg (per unit of length in the
unresolved dimension) is based on its cross-sectional area
and on the density of ice, p;, which is assumed uniform and
less than the density of water, p,,. We discuss the calculation
of the buoyancy forces in detail in the Appendix.

In addition, we implement a drag mechanism to represent
the removal of energy from the moving icebergs by
hydrodynamic and viscous effects. In general, icebergs
moving through water will create turbulence and surface
waves that damp their motion. We approximate this with a
simple linear drag force Fy = —vV on the center of mass that
is proportional to velocity magnitude, and a corresponding

drag torque 74 = —1f. The parameter v then controls the
magnitude of these dissipative forces in the simulation and is
determined, as described below, in a manner to give decay
rates similar to those observed in ice-melange-filled
Greenlandic fjords.

Contact forces and energy exchanges

Contact forces in rigid-body dynamics are generally treated
by one of two methods. One method involves allowing the
individual bodies to be slightly compressible and assigning a
very stiff potential to the overlap between pairs of bodies, as
in Poschel and Buchholtz (1993), Pournin (2005) and many
others. The other method is to treat each collision as
instantaneous and to use conservation laws to determine the
velocities of the rigid bodies leaving the collision, as used in
Hoomans and others (1996). We utilize the second method
and treat collisions between icebergs as discrete events that
transfer momentum and angular momentum through instant-
aneous impulses. In order to evaluate the contact impulse
between a pair of colliding objects, we must assure that
momentum and angular momentum are conserved and that
the kinetic energy of the icebergs after collision KE; is
proportional to the initial kinetic energy KE; according to the
(dimensionless) coefficient of restitution e: KE; = eKE;.

Collision detection

Collisions between icebergs are handled computationally
using techniques common to typical ‘discrete particle
mechanics’ codes used for the study of sand flows and
other phenomena (Rycroft and others, 2009). We treat the
icebergs as hard rectangular objects. When they collide, we
generate momentum-conserving collisional impulses that
instantaneously change the individual directions of motion.
The collisions are partially inelastic, with the restitution
coefficient, ¢, defined above.

For rectangular particles such as our model icebergs,
there is an ambiguity that may occur involving the perfectly
sharp corners. For any size of At, there is a set of motions
that would allow the corner of one colliding iceberg to
temporarily penetrate the corner of the other iceberg. When
determining how to handle this collision, the tip appears to
be closer to the upper surface of the iceberg rather than the
surface it initially crossed through, and an incorrect
description of collision geometry (the normal vector) may
be generated. This can cause spurious motions and is
generally a problem for any infinitely sharp feature in a time-
step-driven scheme.
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Fig. 2. The fraction of icebergs capsized by at least 45° as a function
of time for a 12-, 28- and 60-disk representation for the a, = 1.4,
h =0 ice shelf. Each curve is averaged over eight simulation runs
with different initial conditions. The error bars are determined from
the standard deviation of the simulation results at each time. The
inset shows a comparison between the a, = 1.4, h=0 and the
ap =2.0, h=0.7 iceberg assemblages, using the same scale on
the x-axis.

We overcome this problem by representing the icebergs
by a series of overlapping disks, so that corners are rounded
(Fig. 1d). By doing so, we also gain the freedom, to be
implemented in future study, to model shapes other than
perfect rectangles with relative ease, i.e. we can use
arrangement of disks to form arbitrary shapes. Because there
may be a sensitivity of our results to the particular disk
representation we choose, we have simulated the dynamics
of our system for three disk counts (12, 28 and 60 disks) and
have found that there are only small differences between
12 and 28 disks due to the different level of effective surface
roughness of the icebergs. Fortunately, we find that there is
little difference between the 28- and 60-disk representations
at the aspect ratios we explored here (Fig. 2). Therefore,
when not otherwise specified we use 28 disks to obtain all
results presented. In future applications, the disk-representa-
tion parameterization used to represent arbitrary shapes
should be monitored carefully to ensure adequate results.

Initial conditions

We initialize our simulations with 400 icebergs with various
specified aspect ratios a = L oriented in the initial ‘upright’
position. For rectangular icebergs, there are two important
values of the aspect ratio. At an aspect ratio <1, iceberg
capsize does not liberate energy, but rather consumes
energy. These icebergs are globally stable. Between 1 and

a critical aspect ratio o given by

2

P _ A
REI=2)

~ 1.4, (1)

Qe =

for typical values of p; and py, a capsizing iceberg would
release energy, but must first pass an energy barrier: a
sufficient initial push is needed to cause the capsize to
occur. For icebergs with a > a., capsize proceeds auto-
matically from any infinitesimal disturbance.

We seed the initial mass of icebergs with random small
perturbations in their angular velocity to initiate the
subsequent evolution. The randomness of the initial small
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perturbations introduces differences in the evolution of the
experiments and these differences are evaluated (see below)
to develop notions of fluctuation and uncertainty. The aspect
ratios are generated randomly according to a heterogeneity
parameter h, such that

a=ay(1+ hn), (2)

where 7 is a Gaussian random variable with standard
deviation 1 and «, is the mean aspect ratio. In the
computations, we use «a = max(a,(1+ hn),0.1) to avoid
a < 1 and negative values.

The icebergs are initially stacked against the leftmost
boundary of the simulation, which is treated as a rigid wall
representing either the ice at the grounding line or the
leading front of the remaining intact ice shelf. The icebergs
are stacked such that there is a gap of S < 1 iceberg widths
between them. Icebergs can capsize and flow freely to the
unoccupied right side of the model domain. We place the
icebergs so that they are initially in hydrostatic equilibrium
to avoid giving the system a large initial bobbing motion.

RESULTS

As described in the introduction, we wish to characterize
both the phenomenology of the conceptual model and
determine phase diagrams that describe how various
parameter ranges facilitate massed iceberg capsize. The
goals of studying the phenomenology are to: (1) see whether
the behavior of the conceptual system has features in
common with real ice-shelf disintegrations; and (2) deter-
mine how the behavior depends on parameters oy, h, €, v
and S. The goal of determining phase diagrams is to attempt
to simplify the understanding of how various parameter
ranges influence the outcome of the conceptual model’s
evolution. As the parameter space is quite large, we make
parameter choices designed to generate representative
results, not to represent an exhaustive study of sensitivity.
In what follows, our particular choice of parameter values is
a matter of expedience in order to seek concrete outcomes,
and not a matter of whether the choice is particularly
applicable to nature.

Parameter sensitivity analysis

With the above caveats, we perform a sensitivity analysis
showing how the evolution of the conceptual model
depends on the coefficient of restitution ¢, the hydrodynamic
damping v, and the initial spacing between icebergs S. We
choose an initial fiducial parameter point, S =0.1, e = 0.5
and v = 0.01, to explore the surrounding parameter space.
As common practice dictates, we vary one parameter at a
time while holding the others constant. For the purpose of
this analysis, we fix the geometry of the icebergs to
minimize fluctuations between runs that would hide weak
trends and so we choose a, = 1.4 with h = 0. The results
are expressed using a single experimentally derived quantity,
the fraction of icebergs that have flipped after 8000 time
units, corresponding to about 7hours of real time for
icebergs 100 m in width. The results of our parameter search
are presented in Figure 3a—c (a, b and c correspond to ¢, v
and S, respectively).

Considering first the inelasticity, we find that there is no
appreciable dependence on the choice of inelasticity of
iceberg collisions. This can be understood by considering
the role of inelasticity. If two icebergs are coming towards
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Fig. 3. The dependence of the fraction of icebergs capsized at t = 8000 (nondimensional time units) on the various model parameters: (a) the
coefficient of restitution ¢; (b) the hydrodynamic drag v; and (c) the initial spacing S between icebergs. The solid line shows the results for a
homogeneous iceberg assemblage o, = 1.4, h = 0. The dashed line shows the results for a slightly heterogeneous iceberg assemblage
ap = 1.8, h=0.2. The results do not depend significantly on the coefficient of restitution. The hydrodynamic drag strongly affects both
cases, and the initial spacing only has a strong effect for the homogeneous near-critical iceberg assemblage.

each other with some appreciable velocity, a highly inelastic
collision will result in an outcome where the two icebergs
are at rest relative to one another, whereas an elastic
collision will result in both icebergs rebounding with equal
but opposite relative motions. Within the bulk of the
collapsed ice shelf, there is no room for the icebergs to
rebound in a manner that does not immediately result in a
second collision. This means that even small degrees of
inelasticity, when applied over and over, quickly dissipate
the energy of collisions and leave only slow toppling
motions. A larger inelasticity would cause this to occur in
fewer collisions, but within the ice shelf the time between
collisions is much shorter than any other timescale of the
system (the icebergs are basically in constant contact) and
any amount of inelasticity is amplified into effectively
perfect inelasticity.

The hydrodynamic damping, on the other hand, appears
to have a strong effect on the results of the evolution. As the
damping is increased, the massed capsize process is slowed
significantly, so that at late times fewer icebergs have found
their way free of the initial closely packed mass of icebergs.
Roughly speaking, there are two regimes of behavior: that
for very low damping and that for very high damping. In the
high damping regime, the ice shelf slowly expands outward
without introducing very much space between neighboring
icebergs. The icebergs move apart just enough so that they
are no longer in contact and then come to an immediate
stop due to damping. In the low damping case, for values
v < 0.02, icebergs that capsize can propel others outwards
explosively, creating staggered jumps of expansion and
creating voids that free up space for other icebergs to
capsize into.

The initial spacing between icebergs has a more subtle
effect than the other parameters. For small values, it does not
seem to significantly affect the fraction capsized at late
times, but there is an increase towards 1 when the initial
spacing is over half an iceberg width. This is basically tuning
the collective effects (behaviors that occur only in the
context of many iceberg-on-iceberg collisions) in the
iceberg assembly. When the spacing is large, every iceberg
can flip in place if it would normally do so without
encountering any sort of hindrance from the rest of the ice
shelf. When the spacing is small, icebergs are blocked from
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flipping until space is created by the expansion of the
iceberg mass outward into open water.

Massed capsize phenomenology

The initial results of our simulations are reported here as a
means of exploring several basic concepts of ice-shelf
collapse and the influence of iceberg capsize on movement
of dense masses of post-collapse ice-shelf fragments. The
discussion is thus limited to basic qualitative phenomena,
basic flow styles and timescales of motion.

In order to demonstrate the qualitative features of the
collapse, we examine the dynamics of two particular
experiments in detail, before systematically exploring the
effect of variations in the aspect ratio and heterogeneity.
The first experiment involves homogeneous icebergs just
above the critical aspect ratio (o, = 1.4, h = 0). The second
is a heterogeneous experiment composed of highly unstable
icebergs with average aspect ratio a, = 1.8 and hetero-
geneity h = 0.7. We observe two modes of ‘collapse’ of the
initial ordered iceberg arrangement. At short times, icebergs
capsize wherever there is initial space to do so, including
within the bulk of the initial mass of icebergs. However,
once this initial instability is complete, the only way for the
remaining uncapsized icebergs to capsize is for the mass of
icebergs to expand horizontally into open water (Fig. 4). As
the mass of icebergs expands, the rate at which icebergs
capsize slows down and the system undergoes a period of
evolution in which the rate of capsize and the rate of
horizontal expansion into the open ocean are both
relatively steady. Eventually, once all the icebergs have
capsized, the mass of icebergs stops expanding as a result
of the model’s dissipation. For the highly unstable experi-
ment, the initial capsize is sufficiently energetic that the
shelf does not stop expanding and the collapse proceeds
quickly towards its end state.

We plot the fraction of icebergs that have rotated by at
least 45° as a function of time in the inset of Figure 2 and
also the position of the leading edge of the mass of icebergs
as a function of time in Figure 4. Both figures display error
bars, which represent the expected fluctuation associated
with the randomness of initial angular velocity perturbations
given to each iceberg as an initial condition. Figure 5 depicts
the local fractional density of capsized icebergs as a function
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Fig. 4. Position of the seaward-most iceberg (nondimensional units)
relative to its initial position averaged over eight runs of the
simulation with different initial conditions and error bars deter-
mined from the standard deviation of the simulation results. The
circles correspond to an iceberg assemblage composed of uniform
blocks just above the critical aspect ratio (o, = 1.4, h=0). The
squares correspond to an iceberg assemblage composed of blocks
with average aspect ratio o, = 2.0 and heterogeneity h = 0.7.

of scaled position within the iceberg mass as a function of
time for the first experiment.

The evolution of the fraction of icebergs that have
capsized as a function of time (Fig. 2) shows an initial
period of rapid growth, corresponding to the initial capsize
of icebergs that are surrounded by sufficient space to
complete a rotation without having to push surrounding
icebergs aside significantly. This initial evolution decays into
a steady state after about t = 1000 (about 1 hour of physical
time), signifying the new physical dynamic that represents a
one-to-one relationship between iceberg capsize and the
seaward expansion of the iceberg mass needed to make
space for the capsized icebergs. This rapid growth of the
fraction of icebergs capsized followed by a steady state
seems to correspond qualitatively with the evolution of both
the Larsen B and Wilkins ice-shelf collapse events. In both
cases, the first appearance of blue ice covering the sea
surface (denoting capsized or broken fragments) grew very
quickly in the wake of initial calving of a few icebergs that
constituted the seaward leading edge of the subsequent mass
of icebergs (Scambos and others, 2009). A notable result of
the simulations that was not anticipated from the limited
observations of ice-shelf collapse is the fact that iceberg
capsize evolves into a lengthy period of steady evolution
after an initial period of relatively fast increase in the fraction
of icebergs capsized.

In step with the fraction of capsized icebergs, the
evolution of the position of the leading edge of the iceberg
mass as a function of time (Fig. 4) shows an initial period of
rapid expansion, corresponding to the initial capsize of
icebergs, followed by a period of relatively steady expansion
into the open ocean needed to make room for the steady-
state growth in the fraction of icebergs that have capsized.
Notable in this view of the system is the fact that a great deal
of experiment-to-experiment variability (denoted by larger
error bars) exists in the t < 2000 time period. Often in these
experiments the leading iceberg is catapulted ahead by the
collective flipping of the icebergs behind it. Thus, a large
amount of energy is focused into the iceberg representing
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Fig. 5. Fraction of icebergs capsized, f, as a function of the
horizontal span of the icebergs at various times. These results are
averaged over eight simulation runs. The results shown here are for
the 60-disk representation of icebergs necessary for collision
detection.

the furthest extent of expansion. The precise energy amount
depends on which way each iceberg flips, something that is
very sensitive to the random angular velocity perturbations
given to the initial arrangement of icebergs. At longer times,
these effects are smeared out as the rest of the ice sheet
catches up with the leading seaward iceberg.

Heterogeneity: a variable catalyst

We now consider the effects of iceberg heterogeneity on the
expansion of the iceberg assembly. If we consider an
assembly that is fragmented into short wide blocks, we
expect little flipping to occur. However, if there is a wide
variation in the geometry of the blocks around this mean,
some unstable blocks will tip and destabilize other blocks
that are between aspect ratios of 1 and ac. In this case,
where «, is below critical, we expect heterogeneity to be a
destabilizing force.

On the other hand, if we have an iceberg arrangement
that has many thick narrow blocks, then each block is driven
by buoyancy to flip spontaneously and simply needs to make
enough space to do so. In this case, heterogeneity will
introduce blocks that are unusually stable and may isolate
separate regions of the collapse from each other, preventing
avalanching behavior. Thus we expect heterogeneity to be a
stabilizing force if the mean aspect ratio is above critical.

If we assume a large initial spacing (in the absence of long-
range hydrodynamic interactions), then each iceberg exists
independently of the other icebergs. Therefore any given
iceberg will capsize or fail to capsize based solely on its own
properties and not the collective properties of the melange of
icebergs. For an isolated iceberg we can predict precisely
whether it will capsize: icebergs with o > a. will auto-
matically capsize, whereas those with a < a, will not. We can
use this to estimate how the fraction flipped, f, at late times
should behave in the limit of large inter-iceberg spacing. If we
have some distribution of iceberg aspect ratios given by
P(a) da then in this limit the fraction flipped is the portion of
the distribution that lies above the critical aspect ratio:

f = /j P(a)da 3)
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Fig. 6. The fraction of icebergs flipped, f, as a function of aspect
ratio a, and heterogeneity h. In region 1 no icebergs are observed
to capsize. Regions 2 and 3 indicate where heterogeneity has
stabilizing (0f/0h < 0) and destabilizing (9f/0h > 0) effects,
respectively. The solid line separating the regions is approximate
and not calculated directly from the data.

For our simulations, we use a Gaussian-distributed set of
aspect ratios with a mean «, and standard deviation ha.
Performing this integration we find the following features.
If h=0, the ice shelf goes from being completely stable
to completely capsizing as « crosses the critical aspect
ratio ac. In the vicinity of «a. the eventual behavior of
the system is highly sensitive to minute changes in the
initial conditions.

At nonzero heterogeneity, however, this jump is
smoothed out and the behavior of the ice shelf at late times
changes gradually with the parameters a, and h. There
appear to be three broad regions of behavior in this
circumstance. The first is a region in which f is basically
zero, i.e. 107* or smaller, and so most iceberg assemblages
generated with these parameters would never evolve into a
massed capsize that mimics ice-shelf disintegration. Outside
this region, we can further refine the behavior by consider-
ing whether increasing heterogeneity stabilizes or destabi-
lizes the iceberg assemblage. For a, < a., heterogeneity
introduces additional blocks above the critical aspect ratio
that would not otherwise be and so the effect of increasing
heterogeneity is to increase f and destabilize the ice shelf.
For a, > a., the entire shelf wishes to capsize at zero
heterogeneity and so increased heterogeneity introduces a
handful of stable icebergs, decreasing f.

In an attempt to develop a phase diagram where stability
is plotted as a function of both &, and h, we experiment with
a systematic range of the aspect ratio and heterogeneity. We
cannot simulate until infinite time and so we choose a cut-
off of 8000 time units or about 80 times the flipping time of a
single iceberg. In the isolated iceberg limit this is well above
the time it would take for the dynamics of every iceberg to
play out. This is, however, not necessarily the case for dense
iceberg assemblages in which collective effects seem to slow
down the dynamics significantly.

We plot f as a function of a, and h in Figure 6.
Qualitatively, the behavior can be separated into three
cases: (1) the case in which no icebergs flip; (2) the case
where heterogeneity has a stabilizing effect; and (3) the
case where heterogeneity has a destabilizing effect. We have
sketched the structure of the parameter space in a schematic
phase diagram in Figure 7.
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Fig. 7. Conceptual phase diagram showing the roles of iceberg
aspect ratio and heterogeneity within the mass of icebergs on
collapse stability. Unstable regions denote parameter ranges where
initially random infinitesimal perturbations to the angular velocity
of the icebergs can lead to capsize of the entire mass of icebergs.

We can see that collective effects change the results
quantitatively at finite time. While a series of icebergs above
the critical aspect ratio would all capsize in isolation, we
find that the fraction flipped for such iceberg assemblages is
not 100% when collective effects are introduced. Instead,
there is a gradual slowing of the capsize process such that by
the time we end our simulation ~30% of the unstable
icebergs have still failed to capsize. Despite the quantitative
differences, however, the qualitative features of this par-
ameter space are mostly preserved.

However, one qualitative change is apparent: collective
effects have introduced a bending to the line between
stabilizing and destabilizing heterogeneity. As such, only
small amounts of heterogeneity are stabilizing above the
critical aspect ratio, but sufficiently large amounts turn
the effect around and accelerate the collapse. This is likely
due to the energy introduced by the capsize of very tall
icebergs contributing to the overall expansion of the shelf in
ways that overcome the additional introduction of lower
aspect-ratio icebergs.

CONCLUSION

We have described an initial conceptual approach to
exploring the dynamics associated with the immediate
aftermath of ice-shelf collapse. The qualitative plausibility
of the initial simulations presented above encourages the
notion that it is possible to investigate the dynamics of the
short time-span phenomena associated with explosive ice-
shelf collapse using simple conceptual models that involve
computations. Our experiments have revealed interesting
connections between the distribution of post-collapse ice
fragments and the dynamics of the ice expansion into the
open ocean. We see situations in which a few large stable
icebergs slow the collapse of an otherwise unstable shelf
and situations in which a few large unstable icebergs
enhance the collapse of an otherwise stable shelf. In all
cases, the dense ice melange slows the process of expansion
as packed unstable icebergs must make room by displacing
the rest of the iceberg assemblage in order to overturn. These
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collective effects are responsible for the timescale of the
expansion and the pattern of overturn in our simulations.

What is missing, of course, is a definitive set of
observations, both of a qualitative and a quantitative nature,
to which simulations of explosive ice-shelf collapse and the
subsequent evolution of the ice-shelf fragment plume can be
compared. We thus encourage future efforts to monitor any
future collapse events with instruments and methods
capable of discerning the various stages of evolution that
may be compressed into a matter of hours.
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APPENDIX: COMPUTATIONAL DETAILS

We include here the technical details of our computational
implementation of the conceptual model of ice-shelf
disintegration. The algorithm proceeds as follows. First, for
each block, we determine the body forces upon that block
due to its environment. These are the forces due to
buoyancy, gravity and simplified hydrodynamic drag. The
force and torque about the center of mass of each iceberg, F
and T, respectively, are evaluated using volume integration
of the forces of gravity and buoyancy:

F:// —pignzdxdz+// pwgn; dxdz
total area area submerged

(A1)

Th :// —1pwgr>< n,dxdz, (A2)
area submerged 2
where g is the acceleration of gravity, py, is the density of sea
water (assumed uniform), x and z are horizontal and vertical
coordinates, respectively, r = (x — xem)nyx + (z — zem)n;, is
the position vector of point (x, z) relative to the position of
the center of mass, (Xcm, Zem), and ny and n, are unit vectors
in the x and z directions, respectively. We compute these
integrals by first representing our icebergs as four line
segments the equations of which we can determine based on
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the iceberg’s rotation from the vertical. We iterate through
each line segment, computing its intersection with the water
surface to determine if it is entirely above water, below
water or crossing the water surface.

We then update the velocity and angular velocity of each
block using a first-order Euler time-step. Using these new
values, we then update the position and rotation with a first-
order Euler time-step. Performing the updates in this order
increases the stability of the Euler integrator without
introducing additional computational cost or complexity to
the procedure. The use of an Euler integrator is not critical to
the performance of the computation since the determining
limiting factor on time-step size is the stability of the
collision algorithm. We show this in Figure 8 by examining
the trajectory of a single iceberg for different time-steps. We
use a value of 107 in our simulations in order to ensure that
the collision scheme remains stable and does not generate
persistent overlaps. At this time-step size, the error in vertical
position of the single iceberg at t = 500 is about 0.01% and
the continuous part of the dynamics is far below the
threshold for numerical instability. A higher-order integrator
could be used in place of the Euler scheme, but at these
levels of error it would be an unnecessary increase in
computational cost compared with other sources of error in
the dynamics (e.g. collisional overlap).

In order to evaluate the contact normal impulse we need
only know the positions of the iceberg centers of mass, the
position and surface normal at the collision point, and the
linear and angular velocities of the two icebergs as shown in
Figure 1c. We must take into account that the contact points
are moving, both due to translational momentum and the
rotations of the objects. The relative motion of the two
colliding objects, denoted by labels 1 and 2, at the contact
point is

Vi, = (Vi + 1 x (017)) = (V2 + T x (629))- (A3)
The post-collision velocities are expressed in general in

Hahn (1988) as a function of the coefficient of restitution &
such that KE; = eKE;:

Vil —eviy. (A4)
If we express all of the post-collisional velocities with

respect to a collisional impulse acting along the normal
direction F, then we can solve for the normal impulse:

14+e)vi,-n
Fn :—( LLZ , (AS)
where
1 1 2 2

m my L b
is a reduced mass. If this impulse is negative, it implies that
the collision in question is due to numerical error introdu-
cing an overlap between receding icebergs. For any such
unphysical collisions we set the normal impulse to zero.

In order to determine the points of collision, we use a
disk-based representation of the collision boundary. We
evenly place a series of disks of radius r = 0.15 along the
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Fig. 8. The simulation error as a function of time-step when
compared to a run at At = 10~ for the dynamics of a single block.
A single block of aspect ratio 1.4 is simulated from start until
t =500, at which point the final vertical position of the block is
compared with that for time-step At =10"%. Even at time-steps
larger than those we use for the simulation, the error in the vertical
position of the block is <1%.

sides of each block. We choose a number of disks to cover
the boundary without gaps for the largest aspect-ratio
blocks in use. In order to determine efficiently which
icebergs are at risk of collision, we sort the icebergs into a
grid of size 2/ where [ is the length of the longest side of the
icebergs in the simulation. In this way, collisions between
icebergs are guaranteed to occur only between shared or
neighboring cells.

We check for all possible overlaps between the com-
ponent disks of each pair of icebergs that could collide.
When an overlap is found, we generate a collision event
using the point equidistant between the two disk centers for
the location of collision, and the vector between the centers
for the direction of the normal vector. With these parameters,
we use the result of Equation (A5) to determine the velocity
and angular velocity of the icebergs leaving the collision.

Because of the coefficient of restitution, when two
icebergs collide during one time-step they move apart more
slowly than they moved towards each other during the
previous time-step. The consequence of this is that it may
take multiple time-steps for an iceberg involved in a
collision to stop being in a state of overlap with its collision
partner. This can generate spurious collisions in subsequent
time-steps. However, these spurious collisions can be
distinguished from real collisions as the velocities of the
icebergs are directed away from each other, leading to the
calculated collision impulse being negative. That is, colli-
sions which are spurious generate an attracting force
between the two icebergs rather than a repulsive force. In
order to prevent these spurious collisions from generating
errors, we ignore any situation that generates a negative
value of the contact impulse.
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