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Leading-edge noise is a complex phenomenon that occurs when a turbulent fluid
encounters a solid object, and is a notable concern in various engineering applications.
This study enhances a mathematical leading-edge noise model (Hales et al., J. Fluid
Mech., vol. 970, 2023, A29) for anisotropic flow and porous boundaries. The model
has two key components. First, we adjust the velocity spectrum to account for the
possibility of anisotropy in the flow. This paper rigorously introduces a third dimension
for the turbulence spectrum that preserves the turbulence kinetic energy and mathematical
definitions for integral length scales. Second, we adapt the fully analytical acoustic transfer
function to account for different boundaries by implementing convective impedance
boundary conditions when formulating the gust-diffraction problem. This problem is then
solved using the Wiener–Hopf technique. We discuss important aspects of this method,
including the factorisation of a non-trivial scalar kernel function and the application of
suitable edge conditions for the problem. Each modification is inspired by experimental
leading-edge noise data using a series of different porous leading edges and anisotropic
turbulence generated by a cylinder upstream of the edge. Experimental data demonstrate
the interplay between anisotropy and leading-edge modifications while achieving the
characteristic mid-frequency noise reduction expected from porous leading edges. Our
model is adapted to best fit the trends of the data via a tailored impedance function, leading
to good agreement with all datasets across an extended frequency range. This tailored
function is used to successfully validate the model against other datasets from a different
set of experiments.
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1. Introduction

Leading-edge noise generated by the turbulent flow around aerofoils is a significant issue in
many engineering applications, including noise generated from aircraft engines and wind
turbines. Predicting and reducing this noise is crucial for meeting increasingly restrictive
noise regulations, and improving machinery’s overall performance and efficiency.
Leading-edge noise is produced by the scattering of turbulent velocity fluctuations of an
incoming flow by the aerofoil’s leading edge. This presents two important modelling tasks:
the first represents the incoming flow with the correct turbulence model; and the second
accounts for the scattering effects by the leading edge.

Mathematical approaches to modelling leading-edge noise stem from the work done
by Amiet (1975, 1976). Here, the incoming turbulence is decomposed into hydrodynamic
‘gusts’. A transfer function g is constructed to describe the scattered velocity potential of
gusts after interacting with a leading edge. The contributions of these gusts are obtained by
integrating over a wavenumber–frequency spectrum that gives a spectral decomposition of
the incident velocity field in the wall-normal direction.

Our mathematical model varies in the construction of this transfer function. Instead of
using Curle’s integral to find the far-field (the limiting r → ∞ contribution) scattering of
a single gust, we solve this explicitly with the Wiener–Hopf technique. This method is
particularly beneficial for our study since the primary drawback of Amiet’s approach is
that it is tailored for a solid leading edge. By constructing a transfer function amenable
to compliant edges, we can model a significantly larger class of leading edges, including
metamaterials and porous plates. However, this analytical approach to the transfer function
relies on advanced mathematical analysis and a deeper understanding of the problem in
the complex plane. Thus this approach has been uncommon in scenarios where non-rigid
plates are applied due to the added mathematical intricacy of applying the Wiener–Hopf
technique with non-trivial boundary conditions. This critical issue will be addressed
in this paper. We describe how porous plates can be introduced into the model by
adapting our gust-scattering problem to feature impedance boundary conditions. Porosity
has been incorporated into aeroacoustics models in Kisil & Ayton (2018), Priddin et al.
(2019) and Jaworski & Peake (2013) through the introduction of a boundary condition
within the Wiener–Hopf process for the transfer function. However, for more and more
intricate boundaries, the factorisation procedure during the Wiener–Hopf solution process
becomes increasingly involved. Numerical or iterative methods, such as in Priddin, Kisil
& Ayton (2020), may be implemented, but these can be difficult to apply or are inefficient.
A novel approach is presented here, building on work done in Abrahams & Lawrie (1995),
Hurd & Przeździecki (1981) and Rawlins (1975) that utilises the Maliuzhinets function
(Maliuzhinets 1958; Abrahams & Lawrie 1995; Osipov & Norris 1999; Babich, Lyalinov &
Grikurov 2008) to better represent the splitting of the scalar kernel function arising during
the analysis. This function can be computed in various ways that reduce computational
cost while remaining accurate at a range of values (Osipov 1990, 2005; Aidi & Lavergnat
1996), thus is an essential tool for solving such problems analytically.

A popular choice of leading-edge adaptations with the aim of broadband noise reduction
is the introduction of porosity, as studied in Ayton et al. (2021a,b), Teruna et al. (2021),
Roger, Schram & De Santana (2013) and Geyer, Sarradj & Giesler (2012). Currently,
there are limitations on how we model porosity mathematically when background flow is
included. Some attempts using homogenisation (Howe, Scott & Sipcic 1996; Leppington
1977) show promise when describing them as an impedance boundary; however, this
model does not adapt well to the introduction of mean flow (Naqvi & Ayton 2022).
Furthermore, an accurate experimental measurement of impedance is problematic in itself
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A model for anisotropic turbulence and porous surfaces

since most standard impedance tubes do not facilitate the inclusion of a background
flow. We use an impedance model that incorporates both flow and plate thickness effects
since the thickness of our leading edge will be comparable to the pore size, combining
approaches from Jing et al. (2012), Howe et al. (1996), Crighton & Leppington (1970)
and Leppington (1977). Our model facilitates the study of how impedance affects the
approximation of leading-edge noise. This lays the groundwork for a deeper investigation
into how the inclusion of flow within the Rayleigh conductivity impacts the noise
prediction. Noise absorption within perforated screens is attributed to vorticity generated
within perforations that are convected by the mean flow (Quinn & Howe 1986; Howe
et al. 1996; Luong, Howe & McGowan 2005). This convection increases the viscous
damping and is an important consideration within theoretical models for the Rayleigh
conductivity. We will account for mean flow effects by considering Howe’s previous
analytical adjustments. Since modelling the impedance of a perforated sheet in flow
remains an open area of research, a more intricate understanding of the underlying physics
would be incorporated within the model via an improved semi-empirical impedance
function.

While this paper thoroughly investigates the implementation and effects of porosity
experimentally and theoretically, it also considers the importance of flow anisotropy.
For many critical real-world applications, flow cannot be considered fully isotropic. In
some cases, flow anisotropy may be the primary mechanism responsible for the physical
phenomena of interest. Work done on the effects of such anisotropy (Gea-Aguilera et al.
2016, 2021; Gea-Aguilera, Gill & Zhang 2017; Hales et al. 2022, 2023) demonstrate that
analytical methods show promise for a more intricate description of complex turbulence;
thus development and implementation of such methods also increase the versatility of our
model to describe scenarios in which highly anisotropic flow can be expected. In Hales
et al. (2023), distinct anisotropic behaviours in the flow were captured with the Gaussian
decomposition technique (Wohlbrandt et al. 2016), and the use of an axisymmetric model
in the style of Kerschen & Gliebe (1981); accounting for these features proved essential
to achieving a good fit with experimental leading-edge noise measurements. We seek
to generalise the model to more types of incident flow to reach the goal of a versatile
mathematical model that can incorporate numerous turbulent flow types.

It is known that the geometry of an aerofoil can have a notable impact upon leading-edge
noise (Myers & Kerschen 1997; Gill, Zhang & Joseph 2013; Paruchuri et al. 2015; Bolivar
et al. 2023). For simplicity, our experimental campaign investigates a flat plate. Previous
work, such as Ayton (2014, 2017), utilises asymptotic methods within the Wiener–Hopf
method to account for aerofoil geometry. This did not include the effects of leading-edge
porosity, therefore further experimental and theoretical work would be necessary to amend
the current model for varied leading-edge geometries.

The paper is structured as follows. We construct our leading-edge model from first
principles and formally introduce the two components of the model that we alter
throughout the paper: the velocity spectrum and transfer function. These will be analysed
in turn during the proceeding sections. Section 2 concerns the velocity spectrum.
The section analyses both isotropic and axisymmetric models from the literature. The
axisymmetric models are then generalised to introduce effects from three distinct axes.
Section 3 constructs the transfer function. A gust-diffraction problem with a convective
impedance boundary condition is built and solved using the Wiener–Hopf technique.
Due to the mathematical complexity of the governing scattering problem, factorising the
associated kernel function for this problem (and similar intricate boundaries) is a vital
issue that must be solved. We discuss how the Wiener–Hopf problem can be formulated
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and solved by considering additive and multiplicative factorisations of scalar quantities.
In § 4, we turn our attention to the experimental component of this study. We describe the
methodology of our experiment in which we combine approaches of Hales et al. (2023)
and Ayton et al. (2021b). Regarding the former, we place a cylinder at different distances
from the leading edge to generate anisotropic turbulence with different length scales, using
the same flow conditions from a previous study (Hales et al. 2023) in which measurements
were conducted using particle image velocimetry (PIV). We complemented this study with
an investigation into how adapting the properties of the leading edge can be responsible
for non-trivial broadband noise reduction. Three three-dimensional (3-D) printed porous
leading-edge inserts are used to investigate the effects of pore spacing and pore size on
leading-edge noise. A similar study (Ayton et al. 2021b) uses the same inserts but uses
isotropic flow generated by turbulence grids within the experiment. Finally, § 5 discusses
theoretical results for the far-field power spectral density (PSD). These physical changes
in the leading edge are compared with previous experimental results in which a rigid plate
is placed in an anisotropic flow. We outline the steps to implement our model. First, we
calibrate the model using one set of flow conditions and a rigid plate. Then the impedance
boundary condition is tailored to our particular experiment. With this, results discuss how
flow anisotropy and boundary adaptations can significantly affect the perceived noise, and
how these effects may combine in a non-trivial manner due to the underlying physics
accounted for directly within the mathematical model. We observe good agreement across
various frequencies and for rigid and porous set-ups at every flow condition. In particular,
our model is used to predict noise-reduction trends as we change flow conditions and
porosity profiles, reflecting various trends and features shown in our experimental results.

1.1. Constructing a mathematical model for leading-edge noise
We begin by briefly outlining the modelling approach to estimate the leading-edge noise.
We aim to estimate the PSD, which is given by the time-averaged statistical variable

Ψ (ω, θ) = lim
T→∞

π

T
pt(ω, θ) p∗

t (ω, θ), (1.1)

where pt is the turbulent pressure solution and p∗
t is the conjugate of this solution, while T

is the total time of the sample.
Amiet (1976) presumes that the incoming turbulent velocity fluctuation u(I) = ∇φ(I)

can be decomposed into a sum of Fourier components, called gusts:

φ(I) =
∫ ∞

−∞

∫ ∞

−∞
w2(k) exp(ik · x − iωt) dk2 dk3. (1.2)

We would like to formally construct some function g as a transfer function, relating the
near-field velocity statistics to the far-field scattered pressure. We will construct and solve
a model problem for the scattered velocity potential φs that relates to pressure via

ps = −ρ0

(
U∞

∂φs

∂x
− iωφs

)
. (1.3)

Here, ps is the scattered pressure solution for the gust-scattering model problem. Moreover,
U∞ is defined as the constant mean flow upstream from the plate. Then the velocity
component w2 can be absorbed into the pressure solution pgust so that we may instead
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calculate a far-field pressure solution Pgust to have no dependence on velocity. We then
write the far-field pressure contribution of each gust as

pgust(k, θ) = w2(k)Pgust(k, θ). (1.4)

By linearity,

pt(ω, θ) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
w2(k)Pgust(k, θ) δ

(
k1 − ω

Uc

)
dk1 dk2 dk3. (1.5)

Here, we have applied Taylor’s hypothesis of frozen convection by using a Dirac delta
function that relates the streamwise wavenumber k1 to frequency ω by accounting for
some given flow convection velocity Uc.

If we define our velocity spectrum of the incoming turbulence as

Φ22(k) = lim
T→∞

π

T
(w2(k)w∗

2(k)), (1.6)

then our model for the far-field PSD is given by

Ψ (ω, θ) = 〈pt(ω, θ), p∗
t (ω, θ)〉

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
|Pgust(k, θ)|2Φ22(k) δ

(
k1 − ω

U∞

)
dk1 dk2 dk3 dθ. (1.7)

We formally define our transfer function to be

g(k, θ) = |Pgust(k, θ)|2, (1.8)

since this is the component of our model solely responsible for gust-scattering effects.
As we can see, our model has two important components that need to be studied. First,

the far-field scattered pressure solution Pgust(k, θ) will take into account any specific
boundary conditions on the plate itself; and second, the velocity spectrum Φ22(k) will
take into account the properties of the flow.

2. A pseudo-anisotropic turbulence spectrum

Axisymmetric spectra can be developed and successfully implemented, as per the previous
section; however, the question remains: How may we model fully anisotropic turbulence
conveniently and comparably?

This section presents a modified axisymmetric model for cylinder-induced turbulence
(or, more simply, turbulence that favours the spanwise direction) as developed in Kerschen
& Gliebe (1981), with adaptations made to include behaviour in a third dimension and the
continued use of a scaling parameter p. The parameter p is associated with the geometric
scaling in the inertial subrange. The traditional value p = 17/6 represents the famous von
Kármán turbulence spectrum. It is explained in dos Santos et al. (2022) and Hales et al.
(2022, 2023) that a value p = 11/3 can be used to implement the effects of rapid distortion
theory. We will continue to use this value for all models and approximations in this paper.

We have titled the new model ‘pseudo-anisotropic’ since it stems directly from an
axisymmetric set-up. One may construct a full 3-D model of the form

Φ22(k) = A
ak2

1 + bk2
3(

1 + C2(Λ2
1k2

1 +Λ2
2k2

2 +Λ2
3k2

3)
)p , (2.1)

for suitable constants A, a, b,C chosen to satisfy necessary physical requirements.
The turbulence model reflects a natural evolution of a previous turbulence model
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derived in Hales et al. (2023) in which a more straightforward adjustment is made for
two-dimensional anisotropy. For this model, the standard conditions for the spectrum to
preserve energy and integral length scales, and remain physically realistic, are followed
similarly.

We will use the axisymmetric framework in which we set the favoured dimension λ to
be the wall-normal dimension (0, 1, 0). However, we introduce an unknown parameter αz
to model the different behaviour in the (x, z)-plane. Effectively, we redefine the transverse

wavenumber kt from Kerschen & Gliebe (1981) to be kt =
√

k2
1 + α2

z k2
3.

In summary, we begin with the following models for the wavenumber–frequency
spectra:

Φ11(k) = A
k2

2 + α2
z �k2

3

(1 + l2t k2
1 + l2ak2

2 + α2
z l2t k2

3)
p
, (2.2a)

Φ22(k) = A
k2

1 + α2
z k2

3

(1 + l2t k2
1 + l2ak2

2 + α2
z l2t k2

3)
p
, (2.2b)

Φ33(k) = A
�k2

1 + k2
2

(1 + l2t k2
1 + l2ak2

2 + α2
z l2t k2

3)
p
. (2.2c)

Each unknown constant A, la, lt, �, αz is fixed by normalising the model’s turbulence
kinetic energy and integral length scales Λi in all three directions. More specifically, we
find that when calculating the turbulence kinetic energy,∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Φii(k) dk = u2 + v2 + w2

2
, (2.3)

where u, v,w are the three components of the root-mean-square velocity vector uRMS, it is
sensible to set

� = u2 + w2

v2 − l2t
l2a
, (2.4)

for which, as suggested in Kerschen & Gliebe (1981), the model validity requirement is set
to � ≥ 0. This restricts the number of cases to which the model can be applied, but most
realistic examples should fit this requirement. After � is fixed, we choose a constant A that
ensures that energy is normalised:

A = αzlal4t u2 Γ ( p)

π3/2Γ

(
p − 5

2

) . (2.5)

The three remaining unknowns are fixed after solving each integral length scale equation,

Λ1 := π

u2

∫ ∞

−∞

∫ ∞

−∞
Φ11(k1 = 0, k2, k3) dk2 dk3,

Λ2 := π

v2

∫ ∞

−∞

∫ ∞

−∞
Φ22(k1, k2 = 0, k3) dk1 dk3,

Λ3 := π

w2

∫ ∞

−∞

∫ ∞

−∞
Φ33(k1, k2, k3 = 0) dk1 dk2,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.6)
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giving

la = C( p)Λ2, (2.7a)

lt = 2u2

u2 + w2 C( p)Λ1, (2.7b)

αz = w2

u2
Λ3

Λ1
, (2.7c)

C( p) =
Γ
(

p − 5
2

)
√

πΓ ( p − 2)
. (2.7d)

With this, we can present the vertical velocity wavenumber spectrum and the
one-dimensional spectrum Θ3D

22 (k1) as

Φ
c,3D
22 (k) = A

k2
1 + α2

z k2
3

(1 + lt2k2
1 + l2ak2

2 + α2
z lt2k2

3)
p

(2.8)

and

Θ
c,3D
22 (k1) = A

πΓ ( p − 2)
2Γ ( p) αzlalt3

1 + (2p − 3)lt2k2
1

(1 + lt2k2
1)

p−1
. (2.9)

If we introduce a velocity ratio factor

u3D
r := 2u2

u2 + w2 , (2.10)

then we can write the full spectrum in the form

Φ
c,3D
22 (k) = v2Λ4

1Λ2 C( p)5 Γ ( p)

π3/2 Γ
(

p − 5
2

) (u3D
r )4

×
k2

1 + w4Λ2
3

u4Λ2
1

k2
3(

1 + C( p)2
(
(u3D

r )2Λ2
1k2

1 + v4

u4 Λ
2
2k2

2 + w4

u4 (u
3D
r )2Λ2

3k2
3

))p . (2.11)

In figure 1, we present two plots in which the regions of validity to extend a specific
case of axisymmetric turbulence to the 3-D model are indicated. The exact case is for
cylinder-wake turbulence used for an experimental leading-edge noise study in Hales
et al. (2023), with the exact experimental values used for these plots given in table 1.
In figure 1(a), we look at the effects of varying the ratios w/u and v/u on �̃. We keep Λ2,
Λ1 and u equal to the experimental values, and plot the ratios w/u and v/u used in that
paper. We find a large set of permissible ratios to investigate near these points.

In figure 1(b), we plot the validity regions when varying Λ2/Λ1 and w/u while keeping
v equal to its experimental value. For both examples, the axisymmetric model that is
contained within the pseudo-anisotropic model is shown to be a valid assumption. At
the same time, we can take the maximal lower bound for permissible w/u values to be
approximately 0.7.
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0.5 1.0 1.5 2.0 2.5 3.0
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1.5
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0.5
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Λ2/Λ1

� ≥ 0

� ≥ 0

� ≤ 0

� ≤ 0

(a)

(b)

Figure 1. Region of validity for the cylinder-induced anisotropic turbulence model (Hales et al. 2023) with
both Λ2/Λ1 and w/u ratios altered. (a) Plot with v/u and w/u ratios altered. Two dashed blue lines indicate
experimental values for v/u and the w = u axisymmetry assumption. (b) Plot with Λ2/Λ1 and w/u ratios
altered. Two dashed blue lines indicate experimental values forΛ2/Λ1 and the w = u axisymmetry assumption.

u (m s−1) v (m s−1) Λ1 (m) Λ2 (m)

3.92 6.08 1.33 × 10−2 3.03 × 10−2

Table 1. Model parameters for figure 1(a).

For most cases, a more simplistic spectrum may suffice. However, since our objective
is to present a framework that can account for various scenarios, an analytical model that
can incorporate more data is the next natural step. We will test the versatility of this new
model in § 5 once we have accounted for the porosity of the leading edge in our transfer
function.

3. Modelling the transfer function

Traditionally, a transfer function is used to relate the pressure fluctuations of the incident
turbulent field to the acoustic field perceived by an observer in the far field away from the
leading edge. For our model, this is equivalent to solving the gust-scattering problem and
approximating the resulting scattered solution in the far field using asymptotic methods.

This solution depends heavily on the boundary conditions prescribed on the plate.
Before discussing these conditions, we will briefly outline the governing equations for
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Impedance Z

Infinite span

Semi-infinite chord

x

y

zIncoming gust

Uc

Uc

Figure 2. Mathematical set-up for an incident gust scattering off a semi-infinite porous plate.

the gust-scattering solution. Figure 2 demonstrates how we mathematically model the
leading-edge noise problem. We assume that the plate is semi-infinite in the streamwise
direction x, and infinite in the spanwise direction z, and is situated at the wall-normal
position y = 0. We will assume that the plate has zero thickness and that all quantities
are time-harmonic with assumed exp(−iωt) dependence, which subsequently will be
suppressed. For simplicity, we solve for the scattered acoustic potential φs, which relates
to the scattered pressure ps via the non-dimensionalised relation

ps = −ρ0

(
Uc

∂

∂x
− iω

)
φs, (3.1)

with ρ0 the ambient fluid density, and Uc the mean flow convection velocity at the leading
edge. Our model accounts for constant mean flow that convects at some velocity Uc /= U∞.
For some applications, when no change is expected in this velocity, it suffices to set Uc =
U∞. Our scattered pressure solution solves the convected Helmholtz equation

(1 − M2
c )
∂2φs

∂x2 + ∂2φs

∂y2 + 2ik1M2
c
∂φs

∂x
+ (M2

c k2
1 − k2

3)φs = 0, (3.2)

where Mc = Uc/c0 is the Mach number for the convective mean flow. We apply Taylor’s
frozen turbulence hypothesis, and assume k = Mck1. Physically speaking, individual
turbulent eddies convect with the mean flow. We also assume that the scattered potential
is continuous across x < 0, i.e. φs(x, 0+)− φs(x, 0−) = 0, and on the plate, we use an
impedance boundary condition for the total field

p = ρ0c0Z
∂φ

∂n
, (3.3)

where we define Z as the non-dimensional specific impedance, and assume that our normal
vector points out of the fluid and into the boundary (for consistency with Rawlins 1975;
Rienstra & Hirschberg 1992; Barton & Rawlins 1999).

Next, we introduce the important convective constant β = √
1 − M2

c and then ensure
that our governing equation is a Helmholtz equation by introducing a convective transform

φ̃s(x, y) = φs(x, y) exp
(

ik1M2
c x

β2

)
, (3.4)

followed by the Prandtl–Glauert transformation

˜̃
φs(x, y) = φ̃s(βx, y). (3.5)
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Each transform must also be applied to our boundary conditions. With this, after dropping
tildes, we obtain the following governing equations:

∂2φs

∂x2 + ∂2φs

∂y2 + k∗2
φs = 0, (3.6a)

∓∂φs

∂y
+ Mc

βZ
∂φs

∂x
− ik∗

β2Z
φs = ±ik2 eik̃x, x > 0, y = 0±, (3.6b)

φs(x, 0+)− φs(x, 0−) = 0, x < 0, (3.6c)

∂φs

∂y
(x, 0+)− ∂φs

∂y
= 0, x < 0. (3.6d)

These equations contain two important wavenumbers,

k∗ =
√

M2
c k2

1 − β2k2
3

β
, k̃ = k1

β3 , (3.7a,b)

i.e. the convective Helmholtz wavenumber and the source wavenumber, respectively.
To construct an analytical solution, we use the Wiener–Hopf technique. In particular, we

follow the method of Barton & Rawlins (1999, 2005), Rawlins (1975) and Hales & Ayton
(2024). This method begins by taking a solution of the form

φs(x, y) = 1
2π

∫ ∞

−∞

(
A(α)
B(α)

)
exp(−iαx − γ |y|) dα, (3.8)

where γ =
√
α2 − k∗2 is a complex function of α whose branch cuts Γ ± emanating from

±k are chosen to extend to ±∞ as in figure 3. We choose these branch cuts to ensure
that integration along the real line avoids the branch points. Moreover, our chosen branch
cuts will ensure Re[γ ] > 0 when α is in the region of overlap defined in the Wiener–Hopf
technique, or when |Re[α]| > |Re[k∗]|. Since our wavenumbers will always be real (or
have negligibly small imaginary parts for analytic purposes) for our application, this is
favourable compared to horizontal branch cuts extending from ±k∗ to ±∞, respectively.

To obtain a Wiener–Hopf equation, we Fourier transform our solution (3.8) along the
real line and implement all our boundary conditions. For example, Fourier transforming
our boundary condition on the upper side plate gives(

γ − iMc

βZ
α − ik∗

β2Z

)
A(α)

=
∫ 0

−∞

(
−∂φs

∂y
+ Mc

βZ
∂φs

∂x
− ik∗

β2Z
φs

)
eiαx dx

+
∫ ∞

0

(
−∂φs

∂y
+ Mc

βZ
∂φs

∂x
− ik∗

β2Z
φs

)
eiαx dx

=
∫ 0

−∞

(
−∂φs

∂y
+ Mc

βZ
∂φs

∂x
− ik∗

β2Z
φs

)
eiαx dx − k2

α + k̃

:= L1 − k2

α + k̃
. (3.9)

We use the notation L1 to denote that this integral term is an unknown in our system
that is analytic in the lower half-plane. Therefore, if we define our lower region for the
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Im[α]

Re[α]–k∗
k∗

–�α2 – k∗2 �α2 – k∗2

–�α2 – k∗2�α2 – k∗2

Figure 3. Demonstration of branch cuts Γ k,−k and the values that γ (α) takes on each side. We take the
square root in the diagram as the principal square root.

Wiener–Hopf technique to be Im[α] < Im[k∗], and write this as DL, then we see that L1
can be defined as a lower analytic function. Similarly, the second term will be analytic
in the region Im[α] > −k̃. We will define this as our upper region, and write this as DU ,
so that this function is an upper analytic function. It can be seen that DL ∩ DU /=∅ and
DL ∪ DU = C.

Omitting the details, we repeat this procedure for the other three boundary conditions in
(3.6) and obtain the matrix system

κ

(
1 −1/γ

−1 −1/γ

)(
u
v

)
= 2

(
L1
L2

)
+ 2k2

α + k̃

(
1

−1

)
. (3.10)

This can be defined in shorthand notation as

κ K U = L + S, (3.11)

which has two upper analytic unknowns U1,2, and two lower analytic unknowns L1,2,
alongside an upper analytic source term S. An important component of our Wiener–Hopf
equation is the scalar kernel κ that we define as

κ(α) = γ − iMcβ

Z
α − ik∗

β2Z
. (3.12)

This is consistent with the kernel in both Rawlins (1975) and Barton & Rawlins (1999). To
solve this system, we rearrange to ensure the left-hand side of the equation is analytic in
the lower region DL, and the right-hand side is analytic in DU . Then we deduce that each
side is equal to some entire function E that is analytic in C.

For this, we define the additive factorisation of any tensor f as a splitting

f = ( f )+ + ( f )−, (3.13)

with f± analytic in DU (DL). We define the multiplicative factorisation of any tensor f as a
splitting

f = f +f −, (3.14)
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with f± analytic in DU (DL).
Using this notation, we re-write our Wiener–Hopf equation (3.11) as

κ+K+U −
(

2
κ− (K

−)−1S
)

+︸ ︷︷ ︸
upper analytic

= 2
κ− (K

−)−1L +
(

2
κ− (K

−)−1S
)

−︸ ︷︷ ︸
lower analytic

= E︸︷︷︸
entire

. (3.15)

We address each set of factors in turn.

3.1. Additive factorisations
We split the tensor

2
κ−(α)

(K−)−1(α)S(α) (3.16)

using the method of pole removal. Since S(α) is analytic in C \ {−k̃}, the factorisation
will be

((K−)−1S)+ = 2

κ−(−k̃)
(K−)−1(−k̃)S(α),

((K−)−1S)−=
(

2
κ−(α)

(K−)−1(α)S(α)− 2

κ−(−k̃)
(K−)−1(−k̃)S(α)

)
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.17)

3.2. Multiplicative factorisations
The two important terms to split multiplicatively are the matrix kernel K (note that our
matrix Wiener–Hopf equation dictates that our splitting must be K = K−K+, and this
factorisation is not commutative, unlike the scalar case) and the scalar kernel κ . The former
can be split by inspection:

K =

⎛⎜⎜⎝ 1 − 1
γ−(α)

−1 − 1
γ−(α)

⎞⎟⎟⎠
⎛⎝1 0

0
1

γ+(α)

⎞⎠ , (3.18)

where γ±(α) denotes the multiplicative factorisation of γ ,

γ+(α) =
√

−i(α + k∗), γ−(α) =
√

i(α − k∗). (3.19a,b)

However, κ(α) is split with more care in Appendix A. It is reliant on the Maliuzhinets
function for quarter-plane problems,

ψπ/2(z) = exp
(∫ z

0

2ζ − π sin(ζ )
cos(ζ )

dζ
)
, (3.20)

which can be evaluated efficiently using numerical collocation methods from Aidi &
Lavergnat (1996). Introducing 𝔈(s) to be a holomorphic eigensolution to the governing
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difference equation, we derive the solution for κ+ in the hyperbolic geometry defined by
α = −k∗ sin s:

κ+(k∗ sin(s))

= 𝔈(s)
√−ik∗

√
cos(δ)+ sin(X)

cos(δ)
ψπ/2(s − X − δ + π) ψπ/2(s + X − δ)

ψπ/2(X + δ) ψπ/2(X − δ − π)
,

δ = arctan
(

−Mβ
Z

)
, X = − arcsin

(
− 1

β2
√

Z2 + M2β2

)
− π.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.21)

The latter equation that defines X will ensure that it lies in the region

Re[X] ∈
(
−π,

π

2

]
, Im[X] ∈ [0,∞),

Re[X] ∈
[
0,

π

2

)
, Im[X] ∈ [−∞, 0),

⎫⎪⎬⎪⎭ (3.22)

as chosen in Abrahams & Lawrie (1995). We can compute κ− via κ− = κ/κ+.
For this derivation, we have implemented the hyperbolic transformation α = −k∗ sin(s),

from Abrahams & Lawrie (1995), and choose 𝔈 to be an eigensolution (suitable
holomorphic function) that ensures that each factor is analytic in the required half-plane.
For almost all sensible values of Z, 𝔈 = 1. However, if κ has a zero in the cut α-plane,
such as in the upper half-plane, then we amend the factorisation to ensure that the zero of
κ features in the factor κ−. This process is touched upon in Abrahams & Lawrie (1995)
in terms of eigensolutions to the hyperbolic difference equation solved by the kernel. At
the same time, it is hinted at in Barton & Rawlins (1999), Rawlins (1975) and Ahmad
(2006) as requiring residues to be calculated during the Cauchy integral formulation of
the factorisation. More details are omitted in Appendix A.

In Appendix B, we show that the entire function satisfies E = 0, so we can solve for L:

L = I S(α)− κ−(α)
κ−(−k̃)

K−(α) (K−)−1(−k̃)S(α), (3.23)

and deduce (
A(α)
B(α)

)
= k2

α + k̃

1

κ+(α) κ−(−k̃)

(
1

−1

)
. (3.24)

As one may expect, the solution is an odd function of y. However, this may not always be
the case, so we retain the matrix structuring of our argument to ensure its applicability to
future examples involving more complicated boundary conditions and source terms.

Now that we have found φs, we undo the convective coordinate changes, albeit leaving
our solution in Prandtl–Glauert space (our study uses Mach numbers between 0.1 and 0.2,
for which the effects of the Prandtl–Glauert transform have been noted to have little effect;
see Hales et al. 2023), so that

ps(x, y) =
i exp

(−ik1M2x
β2

)
2πβ2

∫ ∞

−∞

(
A(α)
B(α)

)(
α

β
+ k1

β2

)
exp

(
−i
α

β
x − γ |y|

)
dα,

(3.25)
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Contraction (ratio 5.5:1) and flow conditioner

Diffuser-muffler

Centrifugal fan

Exhaust

Flow in
Jet-catcher

Anechoic chamber

(3 × 4.7 × 2.15 m3)

Test section

(0.455 × 0.455 m2) and aerofoil model

Figure 4. Schematic of UNSW anechoic wind tunnel.

which has been non-dimensionalised. Then we can obtain our transfer function g by
calculating the far-field pressure solution defined as

Pgust(k, θ) = lim
r→∞

√
r ps(r, θ) (3.26)

via the method of steepest descent,

Pgust(k, θ) ∼ exp(ik∗r)

√
k∗

2πi
sin(θ)
β3 (k1 − k∗ cos(θ) β2)A(−k∗ cos(θ)), (3.27)

from which

g(k, θ) ∼ k∗ sin2(θ)

2πβ4 |(k1 − k∗ cos(θ) β3)A(−k∗ cos(θ))|2. (3.28)

Similar results follow for −π < θ < 0 but are not necessary for implementation within
this particular experimental study since our observer angle is fixed at θ = π/2.

4. Experimental methods

As mentioned previously, the experimental aspects of this paper can be considered a
unification and evolution of the work done in Hales et al. (2023) (for the turbulence
aspects) and Ayton et al. (2021b) (for the porosity aspects). Specific details can be found in
each of these papers; nonetheless, we will highlight the essential features of the experiment
in this section.

The noise measurements were performed at the University of New South Wales
(UNSW) in the open jet anechoic wind tunnel, which has test section area 0.455 m ×
0.455 m and chamber size 3 m × 4.17 m × 2.15 m. The free-stream turbulence intensity
is 0.7 % at 20 m s−1. Figure 4 shows a schematic of the tunnel. Further details about
the tunnel can be found in Moreau et al. (2022). Leading-edge inserts with thickness
T = 1.5 mm are fixed onto a flat plate aerofoil as described by schematics in figure 5;
three porous inserts studied in Ayton et al. (2021b) were used as well as the standard rigid
leading-edge insert used in Hales et al. (2023).
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Serrated

TE insert 

Porous

LE insert 

Aerofoil body

Closed

section

Open

section

352

LE insert Aerofoil body

5°

1
.5

Cylinder

�x

52

42

3
.2

352

248

M8×1.25 - 6H

(b)(a)

Figure 5. Schematics of the flat plate aerofoil test model (where LE means leading edge, and TE means
trailing edge). Figure adapted and used with the authors’ permission from Ayton et al. (2021b).

x/D Uc (m s−1) u (m s−1) ur Λ1 (m) Λr

9.5 14.8 3.79 1.39 1.41 × 10−2 2.11
12.5 15.1 3.27 1.29 1.52 × 10−2 1.85
9.5 20.9 5.08 1.58 1.32 × 10−2 2.41
12.5 21.2 4.56 1.38 1.45 × 10−2 2.23

Table 2. Turbulent flow model parameters.

4.1. Test cases and model parameters

4.1.1. Flow parameters
The flow conditions used for this experiment are an exact subset of those explored in
Hales et al. (2022, 2023). This previous experimental campaign used PIV to characterise
the properties of the flow.

A cylinder of diameter D = 22 mm was placed 6D upstream of the measurement field of
view (FOV) to generate anisotropic turbulence in its wake region. The measurement FOV
for the PIV measurement is on an (x, y)-plane and has dimensions 286 mm × 143 mm in
the streamwise (x) and vertical (y) directions, respectively. The origin of the coordinate
system is located at the centre of the cylinder. The measurement FOV covers a streamwise
distance between�x = 6D and�x = 19D, and a vertical distance between�y = −3.25D
and �y = 3.25D. The PIV uncertainty is approximately 0.1 pixels (Adrian & Westerweel
2011), corresponding to ±5 microns in the present work. The results were calculated using
32 × 32 pixels interrogation windows. The error in the calculated velocity is ±0.3125. For
a representative example, the uncertainty for the convection velocity Uc at x/D = 9.5 is
0.046 m s−1, which can be considered negligible.

Details of this process can be found in Hales et al. (2023). Experiments were conducted
at mean flow velocities U∞ = 20, 28 m s−1. The flat plate aerofoil was placed in the centre
of the cylinder wake at locations x/D = 9.5, 12.5 downstream from the cylinder, where
x = 0 refers to the centre of the cylinder. The required data for the model from each of
these configurations are listed in table 2. We list all values in one table for simplicity; note
that the convection velocity Uc is not equal to the free-stream velocity as this is measured
close to the leading edge. As discussed in Hales et al. (2023), this convection velocity is
slower than the free-stream velocity due to the interaction with the cylinder.
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Porosity case Radius R (m) Spanwise spacing �s (m) Chordwise spacing �c (m) Open area ratio

20 5 × 10−4 3 × 10−3 3 × 10−3 0.087
30 1 × 10−3 4 × 10−3 4 × 10−3 0.19
40 5 × 10−4 1.5 × 10−3 1.5 × 10−3 0.35

Table 3. Porosity model parameters.

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.8

1.6

1.4

1.2

1.0
8 10 12 14 16 8 10 12 14 16

x/D x/D

v
/u

Λ
2/

Λ
1

U∞ = 20 m s–1

U∞ = 28 m s–1

(a) (b)

Figure 6. Variation of length scale and root-mean-square velocity ratios with distance x/D from the cylinder:
(a) variation in Λ2/Λ1; (b) variation in v/u.

Figure 7. The 3-D printed samples of the three porosities investigated in this experiment: left, case 30; middle,
case 20; right, case 40. Case 40 has the finest porous structure, but has the smallest distance between pores.
Thus it has the largest open area ratio due to the large number of pores per unit area.

To demonstrate how flow anisotropy varies with the streamwise direction x, we plot the
ratios Λr and ur against the distance x/D in figure 6.

4.1.2. Porosity parameters
Despite the larger scope of the experiments performed on porous inserts with spanwise
variability in Ayton et al. (2021b), for this preliminary testing of our model, we focused
only on non-varying porous cases. We present representative porosity samples in figure 7
and outline the key parameter values that distinguish them in table 3. We will use
impedance models for porous plates that are based on the Leppington model

Z1(ω) = −iωπR
4c0αH

, (4.1)
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Microphone array

Cylinder Flat plate

u

v

U∞
Uc

x

y

D

Figure 8. Schematic for the acoustics measurements of leading-edge noise in anisotropic turbulence. The
leading-edge insert can be replaced with porous inserts as shown in figure 3 of Ayton et al. (2021b).

which depends directly on the pore radius (R) and the open area ratio (αH), defined as

αH = R2π

�s�c
(4.2)

where we have defined �s as the spanwise spacing between pores from centre to centre,
and �c as the chordwise spacing between pores from centre to centre. For each porosity
case tested, �s = �c.

A correct mathematical model for the impedance of a perforated sheet is an open
problem that has led to many models of varying intricacy. These models also vary in
the flow profiles and porosities to which they are applicable. A curve-fitting approach
is taken in Chen, Ji & Huang (2020), resulting in a model that fits several datasets, as
seen in figures 13 and 14 of this paper. These figures also compare several other models,
including the Howe model that is similar to (4.1). However, this approach demonstrates no
universal agreement on how to model impedance in flow; curve fitting based on physical
observations and an analytical model appears to be the best approach.

In the next subsection, we will return to the impedance modelling, where we will design
an impedance function based on empirical models that give the best agreement for the
leading-edge noise model.

4.2. Noise measurements
The acoustic measurements are undertaken with a phased microphone array with 64
microphones arranged in a spiral shape to optimise beamforming localisation and
quantification accuracy. Figure 8 shows a schematic of the noise measurement experiment.
The microphone array is positioned in the aerofoil’s far field with its surface plane parallel
to its symmetry plane and its centre microphone aligned with its leading-edge centre. The
64 microphones simultaneously record time signals with sampling rate 65 536 Hz. For the
determination of the frequency spectra of the radiated leading-edge noise, the narrowband
beamforming results have been obtained using the source power integration method, which
normalises out the effect of the point spread function on the phased microphone array
output (Brooks & Humphreys 1999).

We display comparative beamforming maps for two porous leading-edge cases, 20 and
30. The beamforming results were processed using ‘diagonal removal’, where we set
the autospectral elements of the cross-spectral matrix (CSM) to 0, improving the array’s
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Figure 9. Beamforming maps for the case 20 porous insert at three frequencies and mean flow velocity
28 m s−1. The cylinder is 12.5D upstream of the leading edge. The flow is from left to right, and the colour bar
scale is given in dB.
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Figure 10. Beamforming maps for the case 40 porous insert at three frequencies and mean flow velocity
28 m s−1. The cylinder is 12.5D upstream of the leading edge. The flow is from left to right, and the colour bar
scale is given in dB.

signal-to-noise ratio (SNR). The array design and deconvolution of the beamformer output
minimise spatial aliasing effects.

Background noise removal was also included, where the CSM of the background case
(cylinder in, flow on, no aerofoil) was subtracted from the CSM of the test case with the
aerofoil. This reduces the influence of the cylinder or the tunnel inlet on beamforming
results. The beamforming maps in figure 9 are in dB, with the dynamic range of the plots
set to 10 dB. The turbulent inflow produces a strong noise source at the leading edge. The
region at the trailing edge is kept comparatively quiet due to the trailing-edge serrations. At
higher frequencies (6 kHz), the SNR is noticeably lower. The black lines in all these plots
show the aerofoil’s location, the leading-edge insert’s chordwise extent, and the upper and
lower wall plates. Figure 10 reproduces beamforming maps for the porous case 40 at the
same frequencies, mean flow velocity and cylinder position. We observe that the source
shapes are nearly identical, but the levels are lower.

The narrowband beamforming output maps are integrated over a region located at the
central part of the leading edge to obtain the frequency spectrum of the sound pressure
level (SPL) generated by the free-stream turbulence interacting solely with the leading
edge. The integration area is centred on the mid-span, measures 0.2 m streamwise and
0.3 m spanwise, and was kept consistent for all cases, as shown in figure 11. This ensures
that noise generated by the interaction of the wind tunnel wall boundary layers with the
aerofoil junction are rejected from the pressure spectrum. This is demonstrated for the
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Figure 11. Region of integration for beamforming to obtain the frequency spectrum of the leading-edge SPL.
The flow is from left to right, and the colour bar scale is given in dB.

porous case 20 at 4000 Hz in figure 11. The noise spectra are presented as a PSD in
dB Hz−1

5. Model validation and experimental findings

To approximate the leading-edge noise with our mathematical model, we use a
non-dimensionalised model by considering a turbulence spectrum and gust solution
independent of the length scales of the model. First, we define a dimensional length
scale L to be the plate’s total chord length (0.352 m). Second, we define a dimensional
velocity U to be the convection velocity Uc. This convection velocity is calculated as
the edge velocity Ue, the mean flow velocity measured in the vicinity of the plate. For
simplicity, we will always refer to this quantity as Uc. To ensure that our approximated
SPL has the correct dimensions, we will multiply by U/

√
L. Finally, we divide the result

by a reference pressure pa = 2 × 10−5 Pa, then calibrate with a vertical shift by a constant
C = 29, which effectively aligns our reference pressure to match experimentally. Thus the
SPL P is written in terms of Ψ via

P( f ) = 20 log10

(
U Ψ ( f ,π/2)√

L pa

)
+ 29. (5.1)

The calibration constant is much lower than the rigid plate model in Hales et al. (2023)
since that solution scaled like M2 due to different changes in variables. This model also
corrects the multiplying dimensionalisation constants from the previous model.

5.1. Experimental results
Before testing our model, we discuss the results of our experiment. First, we investigate
the effects of velocity and distance from the cylinder (x/D) on measured leading-edge
noise for both the rigid plate and the three tested porous cases. As expected, figure 12
shows that a higher flow velocity results in a broadband increase in noise generation at
the leading edge for all tested leading-edge inserts. In addition, as we found in Hales
et al. (2023), increasing the cylinder distance from 9.5 to 12.5 decreases the noise by
approximately 1–2 dB. This is hypothesised to be due primarily to the smaller ur ratio
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Figure 12. Comparisons for all tested leading-edge inserts as flow conditions (inflow velocity and cylinder
distance) are changed: (a) rigid insert; (b) case 20 insert; (c) case 30 insert; (d) case 40 insert.

when comparing x/D = 12.5 to x/D = 9.5. One observation for every flow condition is
an unexpected increase of approximately 1–4 dB between 4 and 6 kHz. We believe that
this is due to scrubbing noise from the grazing flow as it passes over the porous surfaces.
Roughness noise is a key contributor to high-frequency noise for porous leading edges, as
discussed in Jiang et al. (2024). However, it is not incorporated within our leading-edge
model, and is removed from the rest of this study. We will exclude the extremes of our
frequency range for model comparisons and focus on the low- and mid-frequency ranges
where the impedance-based model best describes the expected noise reduction due to
porosity. Next, in figure 13, we examine the changes in SPL for each porous test case
at each flow condition.

5.2. Calibrating the rigid model
Before we investigate porosity within our theoretical model, we calibrate the rigid model
to the experimental data.

Previous experimental measurements of flow statistics for turbulence past a cylinder
suggested u ≈ 1.2w. We take this as an estimated starting point to implement the 3-D
turbulence spectrum within our model against our current experimental data. It is unclear
what to expect from the integral length Λ3; we test several options for this.

First, we set u = 1.2w andΛ1 = 1.2Λ3. Second, we set u = 1.2w and chooseΛ3 = Λ1.
In addition to these, we present a tailored case for each flow condition in which we choose
w and Λ3 to fit the data best. We chose these tailored values based on observations from
the first couple of trialled ratios. First, it seemed preferable to keep Λ3 ≤ Λ1 since this
shifted the spectrum’s peak to the left, showing better agreement at the low-frequency
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Figure 13. Noise reduction (�SPL) for each flow condition when comparing the SPL from the rigid insert to
each of the three porous insert cases tested: (a) U∞ = 20 m s−1, x/D = 9.5; (b) U∞ = 20 m s−1, x/D = 12.5;
(c) U∞ = 28 m s−1, x/D = 9.5; (d) U∞ = 28 m s−1, x/D = 12.5.

x/D Uc (m s−1) u (m s−1) v (m s−1) w (m s−1) Λ1 (m) Λ2 (m) Λ3 (m) u/w Λ1/Λ3

9.5 14.8 3.79 5.27 2.71 1.41 × 10−2 2.99 × 10−2 1.48 × 10−2 1.40 0.95
12.5 15.1 3.27 4.21 2.52 1.52 × 10−2 2.81 × 10−2 1.69 × 10−2 1.30 0.90
9.5 20.9 5.08 8.02 3.50 1.32 × 10−2 3.18 × 10−2 1.32 × 10−2 1.45 1.00
12.5 21.2 4.56 6.29 3.26 1.45 × 10−2 3.23 × 10−2 1.81 × 10−2 1.40 0.80

Table 4. Suggested tailored w and Λ3 values for each flow condition.

range. However, having u/w ≥ 1.2 was also important to compensate for this shift and to
see a better agreement for the whole frequency range.

All values required for the 3-D model are listed in table 4.
For the rigid case, these examples are compared with the original axisymmetric

assumption in figure 14 for all flow conditions. Our new model compensates for the
necessary shift to the left (previously dealt with using a scaling factor) with values of
w smaller than those used for the axisymmetric assumption. We see far better agreement
across almost all frequencies when using the new turbulence model. We feel that this is
a better way to model the problem than the previous artificial � shift since it is based on
expected observations in an empirical manner.
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Figure 14. Comparison of predicted leading-edge noise when varying streamwise to spanwise ratios within the
turbulence model. Each flow condition is tested, and only the rigid model is used: (a) U∞ = 20 m s−1, x/D =
9.5; (b) U∞ = 20 m s−1, x/D = 12.5; (c) U∞ = 28 m s−1, x/D = 9.5; (d) U∞ = 28 m s−1, x/D = 12.5.

5.3. Predictions and validation for a perforated leading edge

5.3.1. Comparing homogenised impedance models for perforated plates
First, we will discuss how we model our specific impedance Z(ω). As mentioned in Naqvi
& Ayton (2022), this is an open area of research, and there is no universal agreement
on what model is best. For our study, we initially tested four models for the first flow
condition U∞ = 20 m s−1, x/D = 9.5 and for the case 20 porous insert. The first model
is Leppington’s model derived in Leppington (1977) for a porous plate, defined in (4.1) as
Z1(ω).

The primary drawback of this model is that it does not account for grazing flow. We
refer to work completed in Howe et al. (1996) to incorporate flow within the impedance.
In this paper, the Rayleigh conductivity KR is altered to account for the effects of grazing
flow. The simplest definition for Rayleigh conductivity is that it measures the ease with
which sound waves can pass through circular orifices. Howe’s model for the impedance of
a circular orifice is

ZH(ω) = − ik0πR2

2KR
. (5.2)

Without flow, the Rayleigh conductivity is equal to 2R. With flow, it becomes

K f
R = 2R(Γ − iδ),

Γ − iδ = 1 + (π/2) I1(Sr) e−Sr − i K1(Sr) sinh(Sr)
Sr
(
(π/2) I1(Sr) e−Sr + i K1(Sr) cosh(Sr)

) , Sr = ωR
Uc
,

⎫⎪⎬⎪⎭ (5.3)
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Figure 15. Model comparisons using the Leppington (4.1) and Howe (5.2) impedance models with or without
amendments for flow. The four tested impedance models are the Leppington model (Z1) from (4.1), the
Leppington model accounting for flow (Z2) from (5.5), the Howe model (ZH) from (5.2) and finally the Howe
model that accounts for flow.

where Sr is the (convective) Strouhal number, and I1,K1 are modified Bessel functions of
the first and second kind. If we rewrite the impedance model (4.1) as

Z1(ω) = − ik0πR2

αHKR
, (5.4)

then we can implement Howe’s Rayleigh conductivity for a circular aperture in grazing
flow (Howe 1998) within the no-flow impedance model (4.1):

Z2(ω) = Z1(ω)

Γ − iδ
. (5.5)

Our first acoustic comparisons will compare the Leppington and Howe models with
or without flow. We remain with the case 20 porosity and flow conditions from
U∞ = 20 m s−1, x/D = 9.5. From figure 15, the best model is the Leppington model with
flow effects, although there is still an overprediction of noise at all frequencies (especially
the high-frequency regime). The Howe model works better without flow. In fact, including
flow appears to have a detrimental effect. We will choose the best-performing model
Z2, but seek further physically inspired analytical amendments to improve the agreement
across all frequencies.

One amendment that we may make to this model is to account for plate thickness T .
This parameter may be important for some experimental cases (Jing et al. 2012). In Luong
et al. (2005), a new simplified model for the Rayleigh conductivity based on the Cummings
equation that included a simpler asymptotic approximation to Γ − iδ was constructed that
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Figure 16. Comparisons of predicted leading-edge noise for the U∞ = 20 m s−1, x/D = 9.5 flow condition
and the case 20 porous insert. We test impedance models Z1,2,3(ω) against the experimental data.

accounted for thickness:
KT

R = K0(Γ̃ − iδ̃),

K0 = 2R

1 + 2T
πR

,

Γ̃ − iδ̃ = Sr

Sr + 2i
σ 2π

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.6)

where σ is defined as the ‘contraction ratio’ of the jet and is usually set at approximately
0.75. For our purposes, the Strouhal numbers will be less than 1 and much closer to 0 for
most frequencies in which we are interested. Hence we will choose linear theory for the
Rayleigh conductivity, and define our impedance with thickness effects as

Z3(ω) =
Z1(ω)

(
1 + 2T

πR

)
Γ − iδ

− ik0T, (5.7)

which also includes an extra thickness term −ik0T from Jing et al. (2012) that corrects the
high-frequency regime.

To choose a model that best fits our experiments, we investigate the U∞ = 20 m s−1,
x/D = 9.5 flow case with the case 20 porous inserts in figure 16: we observe that the
best model includes flow and thickness effects. It captures the noise reduction very well
in the mid-frequency range, one of the features that we most hoped to predict with our
mathematical model.

However, the model seems to struggle at low and high frequencies. We see less noise
reduction at low frequencies since the waves are too large to interact with the pores. This
feature is not captured well by all models. We expect roughness noise from the pores to
dominate at the highest frequencies, approximately 4 kHz and above. Our model cannot
capture this feature; hence we restrict our attention to a frequency range 0.3–3 kHz to
focus on the region where these model predictions are most accurate.

1001 A16-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
67

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1067


A model for anisotropic turbulence and porous surfaces

5.3.2. An improved analytical model with empirical tuning
For a better agreement, we must tailor our impedance function in the lower and higher
frequency regimes. We will adapt this model input based on what we know from the
underlying mathematics and what we see within the experiments. As |Z| → ∞, our
boundary condition will tend to the Neumann limit, so the pressure scattering solution
(the transfer function) will also tend to the rigid limit, which observes less reduction since
the boundary is no longer ‘absorbing’. Therefore, to correctly match intricacies from the
experimental data, increasing Z whilst keeping the real part positive appears to be the best
mathematical option. We will begin with the Z3 model that already shows good agreement
at approximately 1–2 kHz, then ‘scale’ this function across the entire frequency domain to
improve the agreement with experiments.

We fit a scaling function for this purpose:

fscale(Sr; ε1, ε2, ε3) = ε1 + ε2 exp(5ε3 Sr)
Sr

sinh2(Sr − ε3). (5.8)

Our scaling function has three empirical constants that shift the region (in Strouhal space)
in which we require the model to change and account for high- or low-frequency effects.
Constant ε1 impacts all frequencies, so it can be considered a global (vertical) shift. If
the model is accurate in the mid-frequency range, then it is best to choose ε1 ≈ 1, but a
value less than 1 can better tailor the model to fit the noise-reduction trends since it can
be considered a negative vertical shift for P( f ). Constant ε2 is primarily responsible for
increasing the magnitude of the scaling effects at the regions of interest. It has a particular
effect of increasing the low- and high-frequency regimes, and usually should be ≈5 to
give noticeable effects. At the same time, ε3 can shift any altered regions horizontally (via
the sinh term) and change its decay properties (via the exponential). For our example, we
set ε3 = 3R/5T , leaving the mid-frequency range primarily untouched for every example.
This parameter scales on R and T due to the dependence of the rest of the function on the
Strouhal number. An alternative formulation based on ω could be possible, but this may
miss some slight intricate shifts in noise-reduction peaks that we believe depend on the
geometry of the porous inserts. This will be more apparent when we apply our empirical
impedance function to different flow conditions and porosities.

We formally define our impedance model that will be used to validate the set of
experiments described in the previous section:

ZLE(ω) = Z3(ω)× fscale

(
Sr; 1,

9
2
,

3R
5T

)
. (5.9)

In summary, this tunable impedance function compliments the theoretical leading-edge
noise model by facilitating greater flexibility for experiments that may exhibit phenomena
not captured by traditional impedance models for perforated plates. We stress that the
scattering model is not altered by this new impedance, nor is any of the turbulence
modelling or the general modelling approach.

The parameter values for ZLE were chosen to fit results to case 20 for the flow condition
U∞ = 20 m s−1, x/D = 9.5. In figure 17, we investigate its tuning procedure. We first
plot the agreement of the model using (5.9) in figure 17(a). Then in figures 17(b–d),
we demonstrate the effects of varying the three tuning parameters ε1,2,3. The model
performs better than Z3 across all frequencies. The only discrepancy is at approximately
300–600 Hz, where the rigid model also has a poorer agreement. This artefact was noted
in Hales et al. (2023) as a consequence of cylinder tonal noise that is extraneous to the
mathematical model.
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Figure 17. Changing ZLE(ω) to approximate the noise using case 20 at U∞ = 20 m s−1, x/D = 9.5: (a) case
20 comparison using (5.9); (b) effects of varying ε1; (c) effects of varying ε2; (d) effects of varying ε3.

Finally, we plot the predicted SPL for all perforated inserts with all impedance models
used. We repeat the flow conditions from this section. When we compare our novel
empirical model alongside the models using Z2 and Z3 in figure 18, we see that it can
capture the trends across a much larger range of frequencies than both, up to the highest
frequencies where roughness noise dominates. The prediction shape changes drastically
for case 30, where the doubled R value significantly impacts ZLE. Generally speaking,
the empirical model provides the best option for all porosity cases, even though it was
designed primarily with one case in mind. It is very possible that better agreements can be
reached for cases 30 and 40 with changes to scaling parameters, particularly decreasing ε3
for the former case, and increasing ε3 for the latter.

In summary, we have improved our model’s capability for matching the experimental
data for four anisotropic flow conditions with a rigid leading edge. We then altered this
model based on an impedance transfer function and the impedance model so that we agree
with one chosen flow condition and porous insert model. Initial plots at one flow condition
show that our empirical impedance model works well within the leading-edge noise model
for all porosity cases. All that remains is to test whether the model and the tailored transfer
function can be used for multiple porosities as well as flow conditions to demonstrate the
same trends in noise reduction that we see in our experimental data.

5.3.3. Validation for all flow conditions and porous cases
After considering and comparing all impedance models, the study’s goal is to demonstrate
that this model can accurately predict noise reduction for four flow conditions and three
types of porous inserts. We tailored our model for one porosity, and will demonstrate that
the transfer function and turbulence spectrum can reproduce trends shown experimentally
when simultaneously varying both porosity and anisotropy.

1001 A16-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
67

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1067


A model for anisotropic turbulence and porous surfaces

10

20

30

40

50

60

S
P

L
 (

d
B

 H
z–

1
)

10

20

30

40

50

60

S
P

L
 (

d
B

 H
z–

1
)

300 500 1000 2000 3000

300 500 1000 2000 3000

300 500 1000 2000 3000

Frequency (Hz)

0

10

20

30

40

50

60

S
P

L
 (

d
B

 H
z–

1
)

Experimental data
Impedance Z1

Impedance Z2

Impedance Z3

Impedance ZLE

(a)

(b)

(c)

Figure 18. SPL comparisons for each porous leading edge at U∞ = 20 m s−1, x/D = 9.5, including the new
empirical impedance model ZLE(ω): (a) case 20 porosity; (b) case 30 porosity; (c) case 40 porosity.

Initial comparisons show good agreement for all cases in the mid-frequency range.
Figure 19 demonstrates that our model appears capable of predicting noise reduction for
porous case 20 (for which we tailored our empirical scaling function) consistently for all
flow conditions, with a slight underprediction of peak values at the higher flow speed
but improved accuracy away from the peak. Although it is less accurate for the other
porous inserts, we can still predict trends in which insert is better at sound reduction. Our
model predicts the improvement in sound prediction from using case 40 versus case 30
at the high-frequency range, but tends to overpredict the noise reduction of case 30 in the
mid-frequency range. It severely underpredicts cases 30 and 40 at low frequencies when

1001 A16-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
67

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1067


A.D.G. Hales and others

–5

0

5

10

15
�

 S
P

L
 (

d
B

 H
z–

1
)

�
 S

P
L

 (
d
B

 H
z–

1
)

–5

0

5

10

15

Frequency (Hz)

0

5

10

15

Case 20,

experimental

Case 20

analytical

Case 30,

experimental

Case 30

analytical

Case 40,

experimental

Case 40

analytical

300 500 1000 2000 3000 500 1000 2000 3000

300 500 1000 2000 3000 300

300

500 1000 2000 3000

Frequency (Hz)

0

5

10

15

(b)(a)

(c) (d )

Figure 19. Predicted noise reduction using our leading-edge noise model that includes the full 3-D turbulence
spectra, and the impedance model ZLE(ω), each porous insert case and flow condition are tested: (a) U∞ =
20 m s−1, x/D = 9.5; (b) U∞ = 20 m s−1, x/D = 12.5; (c) U∞ = 28 m s−1, x/D = 9.5; (d) U∞ = 28 m s−1,
x/D = 12.5.

U∞ = 28 m s−1, but maintains very good agreement at the high-frequency end instead.
We reiterate that an improved model is possible via fscale with parameter values selected
for the other cases instead.

The model can also predict the noise-reduction peaks’ broadness and locations. In
particular, we can see a shift in these peaks from approximately 1 kHz in the U∞ = 20
cases to nearer to 2 kHz for the U∞ = 28 cases, demonstrating the importance of having a
model that can incorporate both anisotropic features and features of the boundary. We
notice that the model can also approximately predict the frequency at which case 20
overtakes case 30 in noise reduction; the shift in this value at a higher Mach number is
also matched by the model predictions.

One phenomenon that we cannot predict is the considerable noise reduction for the case
40 insert at the higher flow speed. This phenomenon is observed in Ayton et al. (2021b),
and understanding this noise reduction further could be necessary when optimising pore
sizes and spacings for either spanwise variable porous plates or otherwise. We also
observe a significant drop-off in noise reduction of case 30, which overtakes case 20 at
approximately 2 kHz. Our model cannot have a more substantial gap between the two
cases at the highest frequency since they generate a higher SPL than the rigid example
(mathematically speaking, the impedance at these frequencies would not be considered
within the ‘absorbing’ regime). This feature is beyond the scope of our model.

5.4. An external model validation
To finish this section, we present a final validation in which we apply our model to a
pre-existing external dataset. Plenty of experimental and numerical studies have been
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performed to investigate the effects of porosity on leading-edge noise (Priddin et al. 2019;
Ayton et al. 2021b; Ocker et al. 2021; Geyer & Enghardt 2024). We will focus on the study
by Geyer & Enghardt (2024) since it culminates in a noise prediction model developed
using machine learning. This model shows good agreement for numerous datasets but
is not built from first principles; rather, it relies on experimental trends and is based
upon symbolic regression. Although symbolic regression and machine learning have been
implemented successfully in similar experiments (Sarradj & Geyer 2014; Geyer 2020)
and elsewhere in acoustics (Bianco et al. 2019), we will show that our theoretical model
has equal promise for experiments with different flow profiles and different porosity
parameters. The experimental campaign in Geyer & Enghardt (2024) uses isotropic
turbulence generated by a turbulence grid placed upstream. The plate itself is also flat,
but some curvature is added at the leading edge to represent an aerofoil. As mentioned
in our Introduction, plate geometry should be expected to influence results; thus perfect
agreement is not expected. Furthermore, this experiment uses a plate with chord length
20 mm and thickness 5 mm. We incorporate these changes into the model, and investigate
six cases from the paper.

For each porosity case, we use the notation from Geyer & Enghardt (2024) to refer
to a porous leading edge via its pore diameter d and pore spacing s. For example, the
leading edge d1s2 refers to perforations with diameter 1 mm and chordwise spacing 2 mm.
For our validation, we omit the d3s4 and d2s3 cases as they are less compatible with
the current model since a small pore radius is required under the modelling assumption
for the impedance models. We focus solely on the change in noise between the rigid and
perforated plates, as displayed in figure 7 of Geyer & Enghardt (2024). As before, we tune
the model for just one case, d1s3. However, we will tune it to the observed noise reduction.
For this dataset, we find it is best to fix

ZLE(ω) = Z3(ω) fscale(Sr; 7/10, 10,R/T). (5.10)

This is a slight deviation from the original construction in (5.9). These changes reflect the
noticeably different trends in experimental noise reduction due to the incoming turbulence
being fundamentally different and the edge itself being of a different style. Below, we
plot the noise reduction predictions of the model against experimental data from Geyer &
Enghardt (2024) and the three machine-learning models that we label Δ1,2,3 that depend
on empirical quantities that we also list:

Δ1 = 10 log10(1.732 − 1.663αH),

Δ2 = 10 log10

(
1 + αH SrΛ

0.0182 + 15.5778 Sr6
Λ + Eα5

H

)
,

Δ3 = 10 log10

(
1 + αHM Sr2

Λ

0.0005 SrΛ + Mα5
H + 0.0784M Sr2

Λ + ME Sr6
Λ

)
,

SrΛ = fΛ
U∞

, r = 2η
αHR2 , E = ρ0f

r
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.11)

The additional parameters defined for these models are the dynamic viscosity η, the air
flow resistivity of the porous region r, and the Rayleigh number E.

Results in figure 20 show good agreement across almost all cases. Case d0.5s1 has a
consistent underprediction, while d1s15 overpredicts slightly; otherwise, the other cases
demonstrate consistency across most frequencies. It is worth noting that the models Δ2,3
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Figure 20. Comparison of predicted leading-edge noise for the model P( f ) from (5.1) alongside experimental
data taken from Geyer & Enghardt (2024), and models Δ1,2,3 from (5.11): (a) case d0.5s1; (b) case d1s15; (c)
case d1s2; (d) case d1s3; (e) case d1s4; ( f ) case d2s4.

are arguably more inconsistent across all cases and frequencies. The peak noise reduction
≈1.2 kHz is captured best by our model thanks to the tailored ε3 term. We believe our
theoretically inspired fitting method shows promise compared to the machine-learning
alternative. With more datasets and better modelling of the impedance function for a
porous plate in flow, more aspects of noise reduction (and increase) can be captured in
future work.

6. Conclusions

This paper has constructed a theoretical leading-edge noise model relevant to turbulent
flow scattering off a porous leading edge. An experimental campaign explored the roles
played by porosity and anisotropy in noise reduction from porous leading edges, and
an empirical model constructed using the Wiener–Hopf technique and an anisotropic
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turbulence spectrum was able to predict the crucial details and trends in observed SPL. For
improved accuracy when comparing the rigid model to experimental data, fully anisotropic
turbulence was used initially to calibrate the rigid model to four unique flow conditions.
It allows for testing hypotheses concerning unknown values for empirical variables such
as root-mean-square velocities and integral length scales, which may be difficult to obtain
experimentally. For example, we tested a previous hypothesis for the ratio between the
velocities in the x and w directions, and when implemented, it represented a far better fit
to the experimental data.

The fully analytic far-field pressure was solved using the Wiener–Hopf technique
and a convective impedance boundary to incorporate the effects of porosity into the
model. To ensure efficiency and accuracy, we incorporated the Maliuzhinets function
and its numerical approximation from the literature into this solution. Solving this
gust-scattering problem required a thorough understanding of the analytical properties
of the Wiener–Hopf equation, which is investigated within Appendix B; we observe
physically accurate results that demonstrate that this transfer function has significant
potential for further applications.

The primary strength of our approach to leading-edge modelling for porous inserts is
that the only initial fitting was for a baseline rigid model and a single porosity case;
we show that the transfer function within the model is suitable to be applied for more
porosities and also for more flow conditions.

For a simpler, less accurate, predictive model, one may use the axisymmetric model
that is calibrated for one single flow condition and then apply a tailored approach for the
impedance modelling of a porous plate in flow (or even apply the Leppington model from
Leppington (1977) with flow and thickness effects).

Regarding our experiment, we observed trends in noise reduction when changing pore
size and spacing that were consistent with previous experiments (Ayton et al. 2021b).
What is unique to this study is that we coupled this with an investigation into the
effects of changing the properties of the flow via anisotropic cylinder-induced turbulence.
Attempting to capture these effects with a mathematical model proved difficult but
worthwhile. We find that using impedance models for porous plates in grazing flow was
not wholly suitable to the complexity of this problem; in particular, we were not able to
accurately capture low- and high-frequency sources of noise that are extraneous to our
modelling approach (such as roughness noise from the pores).

Our model was able to predict numerous unique features and trends in the noise
reduction when changing flow conditions as well as porosity. From our study, we believe
that there is plenty of scope for future materials; however, what is lacking from the
literature appears to be a more versatile and accurate way to model the impedance profile
of a porous plate in flow.
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Appendix A. Deriving the multiplicative factorisation of κ

Since we assume |A| /= 1, we rewrite our kernel as

γ − i tan(δ) α − ik
sin(X)
cos(δ)

, (A1)

with

tan(δ) = −iA,

sin(X) = B

ik
√

1 − A2
,

⎫⎪⎬⎪⎭ (A2)

where X is in either of the regions described in (3.22), and we assume Re[δ] ∈
[−π/2,π/2].

By writing our kernel in this manner, we set α = −k sin(s) once more to obtain

κ(s) = ik
√

1 + D2 (cos(s − δ)− sin(X)) = ik(cos(s − δ)− sin(X))
cos(δ)

. (A3)

We can repeat the procedure from § 4 of Abrahams & Lawrie (1995) for kernels of the
form γ + μ. However, since our kernel is no longer even, we alter conditions (2.14) and
(4.3) that are used to find the constants that multiply the eigenfunctions. We will instead
use the conditions

κ+(−π) = κ−(−π),

κ(−π) = κ+(−π) κ−(−π) = ik
sin(X)− cos(δ)

cos(δ)
,

⎫⎪⎬⎪⎭ (A4)

where we evaluate K± in the complex s-plane. Taking into account the new kernel with
this introduced parameter δ, we alter (4.6) of Abrahams & Lawrie (1995) to

fδ(s) = 1
ψπ/2(s − X − δ + π) ψπ/2(s + X − δ)

. (A5)

Before completing this factorisation, we note that due to this additional parameter δ, we
have an increased likelihood of having a zero within K in our s-space. This zero must be
accounted for during this process.

1001 A16-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
67

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-0445-0247
https://orcid.org/0000-0003-0445-0247
https://orcid.org/0000-0001-6280-9460
https://orcid.org/0000-0001-6280-9460
https://orcid.org/0000-0001-8364-305X
https://orcid.org/0000-0001-8364-305X
https://orcid.org/0000-0002-2754-9269
https://orcid.org/0000-0002-2754-9269
https://orcid.org/0000-0001-9517-4318
https://orcid.org/0000-0001-9517-4318
https://orcid.org/0000-0001-9477-942X
https://orcid.org/0000-0001-9477-942X
https://orcid.org/0000-0002-1261-6035
https://orcid.org/0000-0002-1261-6035
https://doi.org/10.1017/jfm.2024.1067


A model for anisotropic turbulence and porous surfaces

s label s value α value Effect on factorisation E1 amendment

s1 X + δ − π

2
k cos(X + δ) Zero of κ− α − k cos(X + δ)

k cos(X + δ)

s2 X + δ + 3π

2
k cos(X + δ) Pole of κ+, zero of κ− α − k cos(X + δ)

k cos(X + δ)

s3 −X + δ − 3π

2
−k cos(X − δ) Zero of κ+ −k cos(X − δ)

α + k cos(X − δ)

s4 −X + δ + π

2
−k cos(X − δ) Zero of κ− α + k cos(X − δ)

k cos(X − δ)

Table 5. A list of possible zeros in both s-space and α-space that may lie in either factor κ±. We include
whether these points are zeros or poles of their corresponding factor, and how one amends E1 to ensure
analyticity.

When no zeros are present, using (A4) and (A5) gives

κ+(−k sin(s)) =
√

k
i

√
cos(δ)+ sin(X)

cos(δ)
fδ(−π)

fδ(s)
,

κ−(−k sin(s)) =
√

k
i

√
cos(δ)+ sin(X)

cos(δ)
1

fδ(0) fδ(s + π)
.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(A6)

Setting δ = 0, we recover the no-flow case studied in Abrahams & Lawrie (1995) and
elsewhere. The potential zeros in both s- and α-space are listed in table 5 along with how
we amend the factorisation to account for them.

Appendix B. Showing that E is zero

To deduce that the entire function E satisfies E ≡ 0, we must show that all components
on each side of the Wiener–Hopf equation tend to zero as α → ∞. Recall that our
Wiener–Hopf equation is of the form

κ+K+U −
(

2
κ− (K

−)−1S
)

+︸ ︷︷ ︸
upper analytic

= 2
κ− (K

−)−1L +
(

2
κ− (K

−)−1S
)

−︸ ︷︷ ︸
lower analytic

. (B1)

The asymptotic behaviours of K and S are trivial. We find the asymptotic behaviour of κ
and the unknowns U and L in turn.

B.1. Edge conditions for impedance boundary conditions
To find the large-α behaviour of our unknowns, it is sufficient to understand the small-r
behaviour of the Fourier inverses of these quantities. For simplicity, we will consider a
boundary condition of the form

∂φ

∂n
+ A

∂φ

∂x
+ Bφ = 0, y = 0, x < 0, (B2)

where A,B ∈ C are arbitrary constants. As r → 0, solutions to the Helmholtz equation
will be a summation of terms of the form

Pnrn cos(n(θ − π))+ Qnrn sin(n(θ − π)), n > 0. (B3)
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Considering (B2), we therefore need to satisfy

APn + Qn = 0,

−Pn sin(2πn)− Qn cos(2πn)+ A{Pn cos(2πn)− Qn sin(2πn)} = 0,

}
(B4)

for which we deduce Qn = −APn, and the only value of n for which the latter holds is
some n = ς that satisfies

tan(2πς) = 2A
1 − A2 . (B5)

We will consider only the real part of ς , since we want the asymptotic behaviour at the
edge. Therefore,

ς = 1
2π

Re
[

arctan
(

2A
1 − A2

)]
. (B6)

The inner expansion near the plate can be written as

φ ∼ rς (cos(ς(θ − π))− A sin(ς(θ − π)))+ O(rς+1). (B7)

With this small r scaling, we deduce that

L1 ∼ α−ς , L2 ∼ α−ς ,

U1 ∼ α−ς−1, U2 ∼ α−ς .

}
(B8)

When using these edge conditions to find E during the Wiener–Hopf technique, it can be
useful to rewrite the parameter ς as

ς = − 1
2π

arg
(

1 − iA
1 + iA

)
− 1

2
sign(Re[A])H(|A| − 1), (B9)

to be comparable to the large-α scaling of the multiplicative scalar factors κ±. In this
formulation, H is the Heaviside step function whose value at zero is assumed to be zero.

B.2. Asymptotics of κ±

As shown in Rawlins (1975), the large-α behaviour of scalar kernels is known to be given
by

κ± ∼ α1/2∓(1/2π) arg(κ(∞)/κ(−∞))

∼ α1/2∓(1/2π) arg((1−iA)/(1+iA)). (B10)

From (B9), we can rewrite this scaling as

κ± ∼ α(1/2)(1±sign(Re[A])H(|A|−1))±ς . (B11)

B.3. Final asymptotic analysis of the Wiener–Hopf equation
For our specific example,

A = Mβ
Z
, (B12)

which will always satisfy Re[A] > 0 for our chosen model. We also expect |A| ≤ 1 to be
satisfied for all our tested models.
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With these restrictions, ς ∈ [−1
4 ,

1
4 ] and

κ+ ∼ ας, κ− ∼ α1−ς . (B13a,b)

Returning to our matrix Wiener–Hopf equation, we deduce

κ+K+U ∼
(
α−(1/2)
α0

)
,

(
2
κ− (K

−)−1S
)

+
∼
(
α−1

α−1

)
,

2
κ− (K

−)−1L ∼
(
α−(3/2)
α−1

)
,

(
2
κ− (K

−)−1S
)

−
∼
(
ας−2

ας−3/2

)
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (B14)

all as α → ∞. Since both sides of our Wiener–Hopf equation consist of components that
all tend to zero at infinity, the entire functions E1,2 must both be zero. Thus E = 0, as
required.
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