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Lyapunov Stability and Attraction Under
Equivariant Maps

Carlos Braga Barros, Victor Rocha, and Josiney Souza

Abstract. Let M and N be admissible Hausdorò topological spaces endowed with admissible fam-
ilies of open coverings. Assume that S is a semigroup acting on both M and N . In this paper we
study the behavior of limit sets, prolongations, prolongational limit sets, attracting sets, attractors,
and Lyapunov stable sets (all concepts deûned for the action of the semigroup S) under equivariant
maps and semiconjugations from M to N .

1 Introduction

In this paper we study the behavior of limit sets, prolongations, prolongational limit
sets, attractors, domains of attraction, and Lyapunov stable sets under equivariant
maps and semiconjugations (all deûned for semigroup actions of topological spaces).

Lyapunov stable sets and attractors were ûrst studied for dynamical and semi-
dynamical systems by Bathia and Hajek [5] and Bathia and Szegö [6, 7].
A�erwards, these concepts were generalized for dynamical polysystems by Tsinias,

Kalouptsidis, Bacciotti, and Mazzi [4, 32].
Ellis and Nerurkar [19] introduced the notion of homomorphism of semigroup

actions to explore the ûne structure of recurrence by using the algebraic structure of
compactiûcations of the acting semigroup. Following this line of investigation, Lya-
punov stable sets were also generalized for semigroup actions by Braga Barros, Rocha,
and Souza [11]. Also, Braga Barros and Souza [8,9] introduced the concepts of attrac-
tor and chain recurrence for semigroup actions and studied the behavior of Morse
decomposition for semigroup actions on principal bundles and their associated bun-
dles. If S is a semigroup acting on the topological spaces M and N , with M compact,
and p∶M → N is an open and continuous equivariant map, then an attractor, a ûnest
Morse decomposition, or a chain transitive set in M projects respectively onto an at-
tractor, a ûnest Morse decomposition, or a chain transitive set in N ([9, Propositions
3.5, 4.6, 5.3]). _is paper also follows this line of investigation by dealing with the
notions of Lyapunov stability and attraction for semigroup actions under equivariant
maps.
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Equivariant maps, also called homomorphisms of transformation groups, are very
important concepts in algebra and topological dynamics. _eorems about the exis-
tence of equivariant maps were proved by Gleason [22], Heller [24], Mostow [26],
Copeland and De Groot [13], and Kister andMann [25]. Dynamical concepts such as
minimal sets and their homomorphisms were extensively studied by Gottschalk and
Hedlund [23], Ellis and Gottschalk [18], Ellis [14–18], Auslander [1–3], and Fursten-
berg [20, 21].

Recently, Cheban [12] studied global attractors under homomorphisms of dynam-
ical systems, and Souza [30] investigated Lyapunov stability and attraction of semi-
�ows on equivariant ûber bundles.

It is well known that any intrinsic property of transformation groups is preserved
under surjective isomorphisms (see [18, 19, 23]). We show that isomorphic (conju-
gated) transformation semigroups preserve stability, dynamical objects, and asymp-
totic behavior (_eorem 4.23).

_e text is organized as follows. In the ûrst section (Section 2) we introduce the
standard notations for semigroup actions necessary for the paper. We also recall some
deûnitions and results of the theories of admissible spaces and Lyapunov stability for
semigroup actions. In Section 3, we deûne and present the main properties of do-
mains of attraction and attractors. In Section 4, we study the behavior of limit sets,
prolongations, prolongational limit sets, domains of attraction, attractors, and Lya-
punov stable sets under equivariant maps and semiconjugations.

We now discuss applications of the results presented here. Since the projections
on principal and associated bundles are equivariant maps (see [9, Section 2] for the
semigroup action and details on ûber bundles), the results of this paper can be applied
to ûber bundles. _e concept of ûber bundle is used to describe physical situations
in the most complex theories. For instance, gauge theory involves a principal ûber
bundle, called the bundle of frames, in which the ûber at each point of the base space
consists of possible coordinate bases for use when describing the values of objects at
that point. Onemust choose a particular coordinate basis at each point (a local section
of the ûber bundle) and express the values of the objects of the theory (usually “ûelds"
in the physicist’s sense) using this basis. If a semigroup acts on the physical system
and the projection of the ûber bundle is equivariant with respect this action, then
each element of the semigroup maps a possible coordinate basis for a point in the
base space to a possible coordinate basis for the mapping of that point.

_e results of this paper can also be applied to the study of attraction and Lyapunov
stability for equivariant maps between phase spaces of n-time dynamical systems. An
n-time dynamical system on a topological phase spaceM is an action of the Euclidean
space Rn on M (see [8, Example 2.6] for details). For n = 1, we recover the deûnition
of �ow or dynamical system and the direction for limit behavior is determined by
the Fréchet ûlter F = {(t,+∞) ∶ t > 0} . For n > 1, there are several possibilities of
directions for limit behavior. For instance, consider a maximal cone

S = {t = (t1 , . . . , tn) ∶ t i ≥ 0}
and deûne the ûlter basis F = {S+ t ∶ t ∈ S} of translates of S. _e limit behavior with
respect to the family F means the limit behavior on the direction of the i-vector (e.g.,
“time-like" direction in spacetime).
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Interesting n-time dynamical systems appear naturally in Lie group actions. Let
G be a ûnite-dimensional real Lie group with Lie algebra g and a manifold M. As-
sume that G acts on the right on M with smooth action α∶M × G → M. Choose n
right invariant vector ûelds X1 , . . . , Xn on the center of g and deûne n vector ûelds
X1 , . . . , Xn on M by

Xi(x) = d
dt
(x exp tX i) ∣t=0 , x ∈ M .

_e trajectory of Xi through x is given by Xi
t(x) = x exp(tX i). _en we have

Xi
t ○ X

j
s = X j

s ○ Xi
t

for all i , j and t, s ∈ R. For (t1 , . . . , tn) ∈ Rn and x ∈ M, we deûne

µ((t1 , . . . , tn), x) = X1
t1 ○ ⋅ ⋅ ⋅ ○ X

n
tn(x),

which is an n-time dynamical system on M. Moreover, for each g ∈ G the map αg =
α ∣M×{g}∶M → M is a µ-topological conjugation.
Finally, it is possible to apply the results of this paper to equivariant maps between

the phase spaces of aõne control systems. We can consider only control systems
where the solutions of the systems are given by orbits of the “system semigroup” (for
instance, control systems with piecewise constant controls). _e limit behavior of the
system is determined by a family of subsets of the system semigroup satisfying the
hypothesis of this paper (see [8, Section 5.2] for details).

2 Preliminaries

In this section we give the standard notations for semigroup actions on topological
spaces. We also recall some deûnitions and results of the theories of admissible spaces
and Lyapunov stability for semigroup actions. We refer to [8–10, 19, 27, 28, 31] for the
theory of semigroup actions on topological spaces and to [5–7, 11] for the theory of
Lyapunov stability.

_roughout this section we assume that M is a Hausdorò space and S is a semi-
group.

2.1 Semigroup Actions

We start with some standard notations of semigroup actions. An action (or a le�
action) of S on M is a mapping

µ∶ S ×M Ð→ M
(s, x) z→ µ(s, x) = sx

satisfying s(ux) = (su)x for all x ∈ M and u, s ∈ S. In this case we say that S acts
on M. As in [19], the action of S on M is also called a generalized �ow on M. _e
triple (S,M , µ) is called a transformation semigroup. We denote by µs ∶M → M the
map deûned by µs(x) = µ(s, x). We assume that µs is continuous for every s ∈ S. _e
action µ is called open if µs is an open map, for every s ∈ S.
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Now, assume that S is a semigroup acting on M. For subsets X ⊂ M and A ⊂ S, we
deûne

AX = {y ∈ M ∶ there exist s ∈ A and x ∈ X with sx = y}
and

A∗X = {y ∈ M ∶ there exist s ∈ A and x ∈ X with sy = x}.
_e set Sx (resp. S∗x) is called the orbit (resp. backward orbit) of x in M. A set X

is called forward (respectively backward) invariant if SX ⊂ X (respectively S∗X ⊂ X).
A set is called invariant if it is both forward invariant and backward invariant.

_e next deûnition of ω-limit set for semigroup actions was introduced in [8]. It
generalizes the deûnition of ω-limit set for �ows and semi�ows (see [8, Examples 2.4
and 2.5]). We will o�en indicate by P(S) the set of all subsets of S.

Deûnition 2.1 For X ⊂ M and F ⊂ P(S), the ω-limit set of X for the family F is
deûned as

ω(X ,F) = ⋂
A∈F

cl(AX).

Nowwe recall some concepts of the theory of admissible families of open coverings
of topological spaces (see [8, 9, 11, 27]).

Let U be an open covering of M. _e U-neighborhood of a subset X ⊂ M is the
open set

B(X ,U) = {y ∈ M ∶ there exist x ∈ X and U ∈ U such that x , y ∈ U}
= ⋃{U ∈ U ∶ U ∩ X ≠ ∅}.

For every x ∈ M , we write B(x ,U) = B({x},U). If V is another open covering of
M , we say that V is a reûnement of U (or V reûnes U), and we write V ⩽ U if for all
V ∈ V, there exists U ∈ U such that V ⊂ U . We write V ⩽ 1

2U if for every V ,V ′ ∈ V
with V ∩ V ′ ≠ ∅, there exists U ∈ U such that V ∪ V ′ ⊂ U .

Deûnition 2.2 An admissible family of open coverings of a topological space M is a
family O of open coverings of M that satisûes the following properties:
(i) for each U ∈ O, there exists an open covering V ∈ O such that V ⩽ 1

2U;
(ii) if V is an open set of M and K is a compact subset of M contained in V , then

there exists an open covering U ∈ O such that B(K ,U) ⊂ V ;
(iii) for any U,V ∈ O, there exists W ∈ O that is a reûnement of both U and V.
An admissible family is said to be strong if the compact subset in item (ii) can be

replaced by a closed subset. A topological space that admits an admissible family of
open coverings is called an admissible space.

_e notion of admissible space was introduced in [27]. In general, the uniformiz-
able spaces are admissible. In particular, Tychonoò spaces, metric spaces, compact
spaces, topological groups, homogeneous spaces, and topological manifolds are ad-
missible.

We also mention that strong admissible families were considered as a hypothesis
in the main results of [27, 28].
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Example 2.3 _e family O f of all ûnite open coverings of M is strong admissible
if M is a compact Hausdorò space. We also have that the family O(M) of all open
coverings of M is strong admissible if M is paracompact.

From now on, in this section, we assume that O is an admissible family of open
coverings of M endowed with the order relation ⩽ by covering reûnement.

Next we recall the deûnitions of net and subnet.

Deûnition 2.4 A set Λ is a directed set if there is a relation ≤ on Λ satisfying:
(i) λ ≤ λ for each λ ∈ Λ,
(ii) if λ1 ≤ λ2 and λ2 ≤ λ3, then λ1 ≤ λ3,
(iii) if λ1 , λ2 ∈ Λ, then there is some λ3 ∈ Λ with λ1 ≤ λ3 and λ2 ≤ λ3.

_e relation ≤ is referred to as a direction on Λ, or is said to direct Λ.

Note that the admissible family O is directed by the relation ⩽.

Deûnition 2.5 A net in a set X is a function P∶Λ → X, where Λ is some directed
set. _e point P(λ) is usually denoted xλ , and we o�en speak of “the net (xλ)λ∈Λ". A
subnet of a net P∶Λ → X is the composition P ○ ϕ, where ϕ∶ Γ → Λ is an increasing
coûnal function from a directed set Γ to Λ; that is,
(i) ϕ(γ1) ≤ ϕ(γ2) whenever γ1 ≤ γ2,
(ii) for each λ ∈ Λ there is some γ ∈ Γ such that λ ≤ ϕ(γ).
For γ ∈ Γ, the point P ○ ϕ(γ) is o�en written xλγ , and we usually speak of “the

subnet (xλγ)γ∈Γ of (xλ)λ∈Λ".

We have the following lemmas.

Lemma 2.6 Let U and V be open coverings of M such that V ⩽ 1
2U and X is a subset

in M. _en cl(B(X ,V)) ⊂ B(X ,U).

Proof See [11, Proposition 2.5].

Lemma 2.7 Let K ⊂ M be compact. For each V ∈ O take xV ∈ B(K ,V). _en there
exists a subnet (xVλ)λ∈Λ of (xV)V∈O that converges to a point in K.

Proof See [11, Proposition 2.6].

Lemma 2.8 Suppose thatO is an admissible family of open coverings of M. Let (Λ, <)
be a directed set and consider the following direction on Λ ×O:

(λ,V) ⩾ (µ,U) if and only if λ > µ and V ⩽ U.

Let (x(λ ,V))(λ ,V)∈Λ×O and (y(λ ,V))(λ ,V)∈Λ×O be two nets in M such that y(λ ,V) ∈
B(x(λ ,V) ,V) for all V ∈ O and assume that x(λ ,V) → x in M. _en y(λ ,V) → x.

Proof Take an open coveringU ∈ O and chooseW ∈ O satisfyingW ⩽ 1
2U. We have

that there exist λ0 ∈ Λ and V0 ∈ O such that x(λ ,V) ∈ B(x ,W), if (λ,V) ⩾ (λ0 ,V0).
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Now, take an open covering V1 ∈ O such that V1 ⩽ V0 and V1 ⩽W. _en, for (λ,V) ⩾
(λ0 ,V1), we have x(λ ,V) ∈ B(x ,W) and y(λ ,V) ∈ B(x(λ ,V) ,V) ⊂ B(x(λ ,V) ,W). Since
W ⩽ 1

2U, it follows that y(λ ,V) ∈ B(x ,U), and therefore y(λ ,V) → x.

We refer to [11] for more details of convergence of nets in admissible spaces.
Next, we recall the deûnitions of prolongations and prolongational limit sets for

semigroup actions. _ey were introduced in [11].

Deûnition 2.9 Suppose x ∈ M and A ⊂ S. _e ûrst A-forward prolongation of x is
deûned by

D(x ,A) = ⋂
U∈O

cl(AB(x ,U)) .

Assume that F ⊂ P(S) is a family of subsets of S. _e ûrst forward F-prolongational
limit set of x is deûned by

J(x ,F) = ⋂
A∈F

D(x ,A).

For a subset X ⊂ M, we deûne

D(X ,A) = ⋃
x∈X

D(x ,A) and J(X ,F) = ⋃
x∈X

J(x ,F).

_e prolongations and prolongational limit sets for �ows are particular cases of the
prolongations and prolongational limit sets for semigroup actions (see [11, Section 4]).

_e following deûnitionwas introduced in [29] (formetric spaces) and reproduces
the notion of divergent net in the semigroup S. We recall thatF ⊂ P(S) is a ûlter basis
on the subsets of S if ∅ ∉ F, and given A, B ∈ F, there is C ∈ F with C ⊂ A∩ B.

Deûnition 2.10 Let F ⊂ P(S) be a ûlter basis. For a given net (tλ)λ∈Λ in S, the
notation tλ →F ∞ means that for each A ∈ F there is λ0 ∈ Λ such that tλ ∈ A for all
λ ≥ λ0.

By considering the product direction on F×O, that is, (A,U) ⩾ (B,V) if and only
if A ⊂ B and U ⩽ V, we can easily see that

ω(X ,F) = { x ∈ M ∶ there are nets (tλ) in S and (xλ) in
X such that tλ →F ∞ and tλxλ → x } ,

for any subset X ⊂ M, and

D(x ,A) = { y ∈ M ∶ there are nets (tλ) in A and (xλ) in
M such that xλ → x and tλxλ → y },

J(x ,F) = { y ∈ M ∶ there are nets (tλ) in S and (xλ) in M
such that tλ →F ∞, xλ → x, and tλxλ → y },

for any point x ∈ M.
Note that the limit sets of (S, X)with respect to the familyF ⊂ P(S) are nonempty

if X is a compact forward invariant subspace ofM andF is a ûlter basis on the subsets
of S._e following additional hypothesis on the family F is necessary to have invari-
ance of limit sets. _ese hypotheses have already been considered in [8, 9, 11, 29].
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Deûnition 2.11 _e family F is said to satisfy
(i) Hypothesis H1 if for all s ∈ S and A ∈ F there exists B ∈ F such that sB ⊂ A,
(ii) Hypothesis H2 if for all s ∈ S and A ∈ F there exists B ∈ F such that Bs ⊂ A,
(iii) Hypothesis H3 if for all s ∈ S and A ∈ F there exists B ∈ F such that B ⊂ As.

_e next lemma will be used in the sequel.

Lemma 2.12 Suppose that F ⊂ P(S) and take x ∈ M and s ∈ S.
(i) If F satisûes hypothesis H3, then J(x ,F) ⊂ J(sx ,F).
(ii) If F satisûes hypothesis H2 and the action of S on M is open, then J(sx ,F) ⊂

J(x ,F).

Proof (i) Take y ∈ J(x ,F), A ∈ F and U ∈ O. By the continuity of s, there exists
V ∈ O such that sB(x ,V) ⊂ B(sx ,U). It follows from hypothesis H3 that there exists
F ∈ F such that F ⊂ As. _us, we have

y ∈ cl(FB(x ,V)) ⊂ cl(AsB(x ,V)) ⊂ cl(AB(sx ,U)) .

_erefore, y ∈ J(sx ,F).
(ii) For y ∈ J(sx ,F), A ∈ F and U ∈ O, take V ∈ O such that B(sx ,V) ⊂ sB(x ,U).

From hypothesis H2, there is F ∈ F such that Fs ⊂ A. Since y ∈ J(sx ,F), we obtain

y ∈ cl(FB(sx ,V)) ⊂ cl(FsB(x ,U)) ⊂ cl(AB(x ,U)),

showing that y ∈ J(x ,F).

Now we recall the notions of Lyapunov stability and asymptotic stability for semi-
group actions (see [11]).

Deûnition 2.13 Let F be a family of subsets of S and let X be a subset of M.
(i) _e set X is called S-stable if for every x ∈ X and every open covering U ∈ O

there exists V ∈ O such that SB(x ,V) ⊂ B(X ,U).
(ii) _e set X is called S-uniformly stable if for every open covering U ∈ O there

exists V ∈ O such that SB(X ,V) ⊂ B(X ,U).
(iii) _e set X is called S-equistable if for each z ∉ X there exists an open covering

U ∈ O such that z ∉ cl(SB(X ,U)).
(iv) _e set X is called S-orbitally stable if for every open coveringU ∈ O, there exists

V ∈ O such that B(X ,V) ⊂ B(X ,U) and SB(X ,V) ⊂ B(X ,V).
(v) _e set X is called F-asymptotically stable if X is an F-attractor (see Deûni-

tion 3.1) and is S-uniformly stable.

It follows immediately fromDeûnition 2.13 that a S-uniformly stable set is S-stable.
Moreover, every compactS-stable set isS-uniformly stable (see [11,_eorem3.2]). We
refer to [11] for the relation among the several concepts of Lyapunov stability in the
setting of semigroup actions on topological spaces.

_e following characterization for Lyapunov stability using prolongation will be
used in the sequel.
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Proposition 2.14 Let K be a compact subset of M. Suppose that x ∈ cl(Sx) for every
x ∈ K. _en the set K is S-equistable if and only if D(K , S) = K.

Proof See [11, Corollary 3.1].

3 Attraction

In this section, we deûne and present the main properties of domains of attraction
and attractors. Fromnow on, we assume that S is a semigroup acting on an admissible
Hausdorò space M endowed with an admissible family O.

We start with the deûnitions of domains of attraction.

Deûnition 3.1 Let X be a subset ofM andF ⊂ P(S). _e domain of weak F-attrac-
tion of X is the set

Aw(X ,F) = {x ∈ M ∶ Ax ∩ B(X ,U) ≠ ∅ for every U ∈ O and A ∈ F}.
_e domain of F-attraction of X is the set

A(X ,F) = {x ∈ M ∶ for each U ∈ O there is A ∈ F such that Ax ⊂ B(X ,U)}.
_e domain of uniform F-attraction of X is the set

Au(X ,F) = {x ∈ M ∶ for each U ∈ O
there exist A ∈ F and V ∈ O such that AB(x ,V) ⊂ B(X ,U)}.

_e domain of weak uniform F-attraction of X is deûned as

Awu(X ,F) = {x ∈ M ∶ AB(x ,V) ∩ B(X ,U) ≠ ∅, for every A ∈ F and U,V ∈ O}.

_e set X is calledweakF-attractor, F-attractor, uniformF-attractor, orweak uni-
formF-attractor if there isU ∈ O such that B(X ,U) ⊂ Aw(X ,F), B(X ,U) ⊂ A(X ,F),
B(X ,U) ⊂ Au(X ,F), or B(X ,U) ⊂ Awu(X ,F), respectively.

In the context of �ows on metric spaces, the region of attraction appears, in the
study of attraction and asymptotic stability of closed sets. It is not diõcult to show that
the concepts of domains of attraction and attractor for semigroup actions generalize
the corresponding concepts for �ows on metric spaces. In fact, let ϕ be a continuous
�ow on a metric spaceM with metric d and F = {(t,∞) ∶ t > 0}. Let tx = ϕ(t, x) be
the action ofR on M deûned by the �ow ϕ. We have that the F-domains of attraction
for the action ofR on M are exactly the regions of attraction for the �ow ϕ considered
in [6, 7].

It is easily seen that Au(X ,F) ⊂ A(X ,F). Hence, every uniform F-attractor is an
F-attractor. If F is a ûlter basis on the subsets of S, thenA(X ,F) ⊂ Aw(X ,F). In this
case, every F-attractor is a weak F-attractor.

In the following proposition we present suõcient conditions for the invariance of
the domains of attraction.

Proposition 3.2 Assume that F ⊂ P(S) and take a subset X of M. Suppose that
Aw(X ,F), A(X ,F), Au(X ,F), and Awu(X ,F) are nonempty sets.
(i) Aw(X ,F) is forward invariant if F satisûes the hypothesis H3.
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(ii) Aw(X ,F) is backward invariant if F satisûes the hypothesis H2.
(iii) A(X ,F) is forward invariant if F satisûes the hypothesis H2.
(iv) A(X ,F) is backward invariant if F satisûes the hypothesis H3.
(v) Au(X ,F) is forward invariant if F satisûes the hypothesis H2 and the action is

open.
(vi) Au(X ,F) is backward invariant if F satisûes the hypothesis H3.
(vii) Awu(X ,F) is forward invariant if the family F satisûes the hypothesis H3.
(viii) Awu(X ,F) is backward invariant if the family F satisûes the hypothesis H2 and

the action is open.

Proof (i) Take s ∈ S, z ∈ Aw(X ,F), and A ∈ F. _ere exists B ∈ F such that
B ⊂ As. For this element B ∈ F there exists a net (tV)V∈O in B such that, for every
open coveringU ∈ O, there existsV0 ∈ O that satisûes tVz ∈ B(X ,U) forV ⩽ V0. Since
(tV)V∈O ⊂ As, for each V ∈ O there exists sV ∈ Awith tV = sVs. _us, for every open
coveringU ∈ O there exists V0 ∈ O such that, if V ⩽ V0, then sV(sz) = tVz ∈ B(X ,U).
_erefore, sz ∈ Aw(X ,F) and Aw(X ,F) is forward invariant.

(ii) Take y ∈ S∗Aw(X ,F). It follows that there exist s ∈ S and z ∈ Aw(X ,F)
with sy = z. Fix A ∈ F. From the translation hypothesis there exists B ∈ F satisfying
Bs ⊂ A and, since sy ∈ Aw(X ,F) there exists a net (tV)V∈O in B such that for every
open covering U ∈ O there exists V0 ∈ O with tV(sy) ∈ B(X ,U) for V ⩽ V0. Since
tV(sy) = (tVs)y and Bs ⊂ A, we get y ∈ Aw(X ,F). _erefore,Aw(X ,F) is backward
invariant.

(iii) Take s ∈ S and z ∈ A(X ,F). For an open covering U ∈ O there exists A ∈ F
such that Az ⊂ B(X ,U). It follows from the translation hypothesis that there exists
B ∈ F such that Bs ⊂ A. _us we have Bsz ⊂ B(X ,U) and sz ∈ A(X ,F). _erefore,
A(X ,F) is forward invariant.

(iv) For y ∈ S∗A(X ,F) there exist s ∈ S and z ∈ A(X ,F) such that sy = z.
Since sy ∈ A(X ,F), given an open covering U ∈ O there exists A ∈ F satisfying
Asy ⊂ B(X ,U). Moreover, it follows from the translation hypothesis that there exists
B ∈ F with B ⊂ As. _erefore, By ⊂ B(X ,U) and A(X ,F) is backward invariant.

(v) For s ∈ S, x ∈ Au(X ,F) and U ∈ O, there exist A ∈ F and W ∈ O such
that AB(x ,W) ⊂ B(X ,U). It follows from the translation hypothesis that there exists
B ∈ F such that Bs ⊂ A. We also have that there exists an open covering V ∈ O

satisfying B(sx ,V) ⊂ sB(x ,W). _erefore, BB(sx ,V) ⊂ B(X ,U), sx ∈ Au(X ,F),
and Au(X ,F) is forward invariant.

(vi) Fix y ∈ S∗Au(X ,F). Take s ∈ S and x ∈ Au(X ,F) such that sy = x. For an
open covering U ∈ O there exist A ∈ F andW ∈ O such that AB(sy,W) ⊂ B(X ,U).
By the continuity of µs there exists an open covering V ∈ O such that sB(y,V) ⊂
B(sy,W), and from the translation hypothesis there exists B ∈ F such that B ⊂ As. It
follows that BB(y,V) ⊂ B(X ,U) and y ∈ Au(X ,F). _erefore,Au(X ,F) is backward
invariant.

(vii) Take s ∈ S, z ∈ Awu(X ,F), open coverings U,V ∈ O, and A ∈ F. By the
continuity of µs there exists an open covering W ∈ O such that sB(z,W) ⊂ B(sz,V).
_e hypothesis H3 provides an element B ∈ F satisfying B ⊂ As. Since z ∈ Awu(X ,F),
we have BB(z,W) ∩ B(X ,U) ≠ ∅. _us, AsB(z,W) ∩ B(X ,U) ≠ ∅ and AB(sz,V) ∩
B(X ,U) ≠ ∅. _erefore, sz ∈ Awu(X ,F).
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(viii) Take y ∈ S∗Awu(X ,F),U,V ∈ O and A ∈ F. From the hypothesis there exist
s ∈ S, B ∈ F and an open covering W ∈ O such that sy ∈ Awu(X ,F), Bs ⊂ A and
B(sy,W) ⊂ sB(y,V). It follows that BB(sy,W) ∩ B(X ,U) ≠ ∅. _us, BsB(y,V) ∩
B(X ,U) ≠ ∅, and therefore AB(y,V) ∩ B(X ,U) ≠ ∅, that is, y ∈ Awu(X ,F).

Now, we show that under certain conditions the domains of attraction are open
sets.

Proposition 3.3 Suppose that F ⊂ P(S) and take a compact subset K of M.
(i) Aw(K ,F) is an open set containing K if it is a weak F-attractor and F satisûes

the hypothesis H2.
(ii) A(K ,F) is an open set containing K if it is an F-attractor and F satisûes the

hypothesis H3.
(iii) Au(K ,F) is an open set containing K if it is a uniform F-attractor and F satisûes

the hypothesis H3.

Proof Take an open covering W ∈ O such that B(K ,W) ⊂ Aw(K ,F) and ûx x ∈
Aw(K ,F). It follows from deûnition that there exists s ∈ S such that sx ∈ B(K ,W).
Since B(K ,W) is an open set we can choose a neighborhood V of sx in M contained
in B(K ,W). For an element y ∈ µ−1

s (V), we have sy ∈ V ⊂ Aw(K ,F) and then y ∈
S∗Aw(K ,F). Since Aw(K ,F) is backward invariant we get y ∈ Aw(K ,F). _erefore
Aw(K ,F) is an open set containing K. Items (ii) and (iii) follow analogously.

We introduce the sets Atrw(X ,F), Atr(X ,F), Atrwu(X ,F), and Atru(X ,F) as
Atrw(X ,F) = {x ∈ M ∶ X ∩ ω(x ,F) ≠ ∅},(3.1)
Atr(X ,F) = {x ∈ M ∶ ω(x ,F) ≠ ∅ and ω(x ,F) ⊂ X},

Atrwu(X ,F) = {x ∈ M ∶ J(x ,F) ∩ X ≠ ∅},
Atru(X ,F) = {x ∈ M ∶ J(x ,F) ≠ ∅ and J(x ,F) ⊂ X}.

_e set Atrw(X ,F) is forward invariant ifF satisûes hypothesis H3, and it is backward
invariant if F satisûes hypotheses H2; the set Atr(X ,F) is invariant if F satisûes both
hypotheses H2 and H3 (see [11, Proposition 2.15]). It follows from the deûnition and
Lemma 2.12 that Atrwu(X ,F) is S-forward invariant if F satisûes hypothesis H3 and
Atrwu(X ,F) is S-backward invariant if F satisûes hypothesis H2 and the action of S
on M is open. On the invariance of Atru(X ,F), we have the following result.

Proposition 3.4 Assume that the action is open and F satisûes hypotheses H2 and
H3. For X ⊂ M, Atru(X ,F) is invariant if it is nonempty.

Proof Take s ∈ S and z ∈ Atru(X ,F). _en J(z,F) ≠ ∅ and J(z,F) ⊂ X. By Lemma
2.12, we have J(z,F) = J(sz,F), and therefore Atru(X ,F) is forward invariant. Now,
take y ∈ S∗Atru(X ,F). _ere exist s ∈ S and z ∈ Atru(X ,F) such that sy = z. Since
z ∈ Atru(X ,F), we have J(sy,F) ≠ ∅ and J(sy,F) ⊂ X. By Lemma 2.12, it follows
that J(sy,F) = J(y,F), and therefore Atru(X ,F) is backward invariant.

_e next four theorems characterize the domains of attraction of compact sets.
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_eorem 3.5 Let F be a ûlter basis on the subsets of S and K a compact subset of M.
_en Aw(K ,F) = Atrw(K ,F).

Proof Suppose that K∩ω(x ,F) ≠ ∅. _en K∩cls(Ax) ≠ ∅ for all A ∈ F. Hence, for
every U ∈ O and A ∈ F, we have Ax ∩ B(K ,U) ≠ ∅, and therefore x ∈ Aw(K ,F). As
to the converse, suppose that x ∈ Aw(K ,F). _en for every U ∈ O and A ∈ F, there is
t(A,U)x ∈ Ax ∩ B(x(A,U) ,U), with t(A,U) ∈ A and x(A,U) ∈ K. Since K is compact, we
may assume that the net (x(A,U))(A,U)∈F×O converges to the point y ∈ K. _en the
net (t(A,U)x)(A,U)∈F×O also converges to y. In fact, for a given W ∈ O, take V ∈ O

such that V ⩽ 1
2W. _ere is (A0 ,U0) ∈ F × O such that x(A,U) ∈ B(y,V) for all

(A,U) ⩾ (A0 ,U0). Take V0 ∈ O such that V0 reûnes both V and U0. As t(A,U)x ∈
B(x(A,U) ,U) and x(A,U) ∈ B(y,V), it follows that (A,U) ⩾ (A0 ,V0) implies t(A,U)x ∈
B(y,W). _us, the net (t(A,U)x) converges to y. Now, as t(A,U) →F ∞, we have
y ∈ K ∩ ω(x ,F), and the proof is complete.

_eorem 3.6 Let F be a ûlter basis on the subsets of S and let K be a compact subset
of M. _en A(K ,F) ⊂ Atr(K ,F). _e equality holds if M is locally compact and Ax is
connected for all A ∈ F and x ∈ M.

Proof Take x ∈ A(K ,F). By_eorem 3.5, we have ω(x ,F) ≠ ∅, becauseA(K ,F) ⊂
Aw(K ,F). Take y ∈ ω(x ,F) and U ∈ O. Since K is compact and M is a Tychonoò
space, there is V ∈ O such that cls(B(K ,V)) ⊂ B(K ,U). As x ∈ A(K ,F), there is
A ∈ F such that Ax ⊂ B(K ,V). Hence, y ∈ cls(Ax) ⊂ cls(B(K ,V)) and therefore y ∈
B(K ,U). Since U is an arbitrary open covering in O and K is compact, it follows that
y ∈ K. _us, ω(x ,F) ≠ ∅ and ω(x ,F) ⊂ K. Now, assume that M is locally compact
and Ax is connected for all A ∈ F and x ∈ M. Let N ⊂ M be a compact neighborhood
of K. Suppose that the point x ∈ M satisûes ω(x ,F) ≠ ∅ and ω(x ,F) ⊂ K. For a
given U ∈ O, take V ∈ O such that V ⩽ U and B(K ,V) ⊂ N . _en Ax ∩ B(K ,V) ≠ ∅
for all A ∈ F. Suppose by contradiction that Ax ⊈ B(K ,V) for every A ∈ F. Since
Ax is connected, there is tAx ∈ N ∖ B(K ,V) with tA ∈ A. As N is compact and
tA →F ∞, it follows that there is a point y ∈ ω(x ,F) ∩ (N ∖ B(K ,V)), which is
a contradiction. Hence, there is A ∈ F such that Ax ⊂ B(K ,V) ⊂ B(K ,U), and
therefore x ∈ A(K ,F).

_eorem 3.7 Let F be a ûlter basis on the subsets of S and K a compact subset of
M. _en Au(K ,F) ⊂ Atru(K ,F). Equality holds if M is locally compact and Ax is
connected for all A ∈ F and x ∈ M.

Proof Take x ∈ Au(K ,F). Since Au(K ,F) ⊂ A(K ,F), we have ω(y,F) ≠ ∅.
Hence, J(x ,F) ≠ ∅. Take y ∈ J(x ,F) and U ∈ O. Choose V ∈ O such that
cls(B(K ,V)) ⊂ B(K ,U). As x ∈ Au(K ,F), there is A ∈ F and W ∈ O such that
AB(x ,W) ⊂ B(K ,V). Hence, y ∈ cls(AB(x ,W)) ⊂ cls(B(K ,V)), and therefore
y ∈ B(K ,U). It follows that y ∈ K. _us, J(x ,F) ≠ ∅ and J(x ,F) ⊂ K. Now, assume
that M is locally compact and Ax is connected for all A ∈ F and x ∈ M. Let N ⊂ M
be a compact neighborhood of K. Suppose that the point x ∈ M satisûes J(x ,F) ≠ ∅
and J(x ,F) ⊂ K. For a given U ∈ O, take V ∈ O such that V ⩽ U and B(K ,V) ⊂ N .
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_en AB(x ,W) ∩ B(K ,V) ≠ ∅ for all A ∈ F andW ∈ O. For each A ∈ F andW ∈ O,
deûne the set

U(A,W) = { y ∈ B(x ,W) ∶ Ay ∩ B(K ,V) ≠ ∅} .

If y ∈ U(A,W), then there is s ∈ A such that sy ∈ B(K ,V). Hence, µ−1
s (B(K ,V)) ∩

B(x ,W) is an open neighborhood of y contained inU(A,W). _us,U(A,W) is an open
set contained in B(x ,W). _ere are A ∈ F andW ∈ O such that AU(A,W) ⊂ B(K ,V).
Indeed, suppose by contradiction that AU(A,W) ⊈ B(K ,V) for every A ∈ F andW ∈
O. _en there is x(A,W) ∈ U(A,W) such Ax(A,W) ⊈ B(K ,V). Since Ax(A,W) is con-
nected and Ax(A,W)∩B(K ,V) ≠ ∅, there is t(A,W) ∈ A such that t(A,W)x(A,W) ∈ N ∖
B(K ,V). Since N is compact, we may assume that the net (t(A,W)x(A,W))(A,U)∈F×O
converges to a point z ∈ N ∖ B(K ,V). As U(A,W) ⊂ B(x ,W) and tA →F ∞, it fol-
lows that z ∈ J(x ,F) ∩ (N ∖ B(K ,V)), which is a contradiction. _us, we can take
(A0 ,W0) ∈ F×O such that A0U(A0 ,W0) ⊂ B(K ,V). If x ∈ U(A,W) for some (A,W) ⩾
(A0 ,W0), then the result is proved. If x ∉ U(A,W) for every (A,W) ⩾ (A0 ,W0),
then there is A ∈ F, A ⊂ A0, such that Ax ⊂ M ∖ N . In fact, x ∉ U(A,W) implies
Ax ∩ B(K ,V) = ∅. If Ax ∩ N ≠ ∅ for all A ∈ F, then there is y ∈ ω(x ,F) ∩ N ≠ ∅,
and therefore ∅ ≠ ω(x ,F) ⊂ J(x ,F) ⊂ K. As in the proof of _eorem 3.6, it follows
that there is A ∈ F such that Ax ⊂ B(K ,V), which contradicts Ax ∩ B(K ,V) = ∅.
_us, there is A ∈ F such that Ax ⊂ M ∖ N , and we can take A ⊂ A0. It fol-
lows that A∗(M ∖ N) is a neighborhood of x. Hence, there is W ∈ O such that
B(x ,W) ⊂ A∗(M ∖N), and we can takeW ⩽W0. _us, we have AB(x ,W) ⊂ M ∖N
with (A,W) ⩾ (A0 ,W0). In particular, AU(A,W) ⊂ M ∖ N with (A,W) ⩾ (A0 ,W0),
and we again have a contradiction.

_eorem 3.8 Let F be a ûlter basis on the subsets of S and K a compact subset of M.
_en Awu(K ,F) = Atrwu(K ,F).

Proof Take x ∈ Atrwu(K ,F). It follows that there exists k ∈ K ∩ J(x ,F). _us,
B(k,U) ∩ AB(x ,V) ≠ ∅ for all A ∈ F and U,V ∈ O. Since B(k,U) ⊂ B(K ,U), we
get x ∈ Awu(K ,F). Conversely, take x ∈ Awu(K ,F). For U ∈ O and A ∈ F, we can
choose t(A,U) ∈ A and x(A,U) , k(A,U) ∈ M such that k(A,U) ∈ K, x(A,U) ∈ B(x ,U) and
t(A,U)x(A,U) ∈ B(k(A,U) ,U). By the compactness of K we can assume that k(A,U) →
k ∈ K. Lemma 2.8 implies that x(A,U) → x. _us, we apply Lemma 2.8 to obtain
t(A,U)x(A,U) → k. Since t(A,U) →F ∞, it follows that k ∈ J(x ,F), and therefore
x ∈ Atrwu(K ,F).

4 Behavior Under Equivariant Maps

In this section we study the behavior of limit sets, prolongations, prolongational limit
sets, domains of attraction, attractors, and Lyapunov stable sets under equivariant
maps and semiconjugations.

_roughout this section we assume that M and N are admissible Hausdorò spaces
endowed with admissible families of open coverings O and O′, respectively. We also
suppose that S is a semigroup acting on both M and N .
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4.1 Equivariant Maps

We start with the following deûnition.

Deûnition 4.1 A map p∶M → N is said to be S-equivariant if p(sx) = sp(x) for
every s ∈ S and x ∈ M. A continuous and surjective S-equivariant map is called
an S-topological semiconjugation. An S-equivariant homeomorphism is called an S-
topological conjugation.

Note that a map p∶M → N is S-equivariant if and only if

p(AX) = Ap(X) for every A ⊂ S and X ⊂ M .

If p∶M → N is an S-topological semiconjugation and x ∈ M, then it is easily seen that

p(ω(x ,F)) ⊂ ω(p(x),F) and p(J(x ,F)) ⊂ J(p(x),F).
Moreover, if p∶M → N is a bijective S-equivariant map, then p−1∶N → M is also
an S-equivariant map. Hence, if p∶M → N is an S-topological conjugation, then
p−1∶N → M is an S-topological conjugation, and therefore

p(ω(x ,F)) = ω(p(x),F) and p(J(x ,F)) = J(p(x),F).
Let us present some examples of equivariant maps.

Example 4.2 LetG be aHausdorò topological group. _e right and le� translations
on G are G-topological conjugations.

Example 4.3 (Right invariant �ows on homogeneous spaces) Let G be a Hausdorò
topological group. Let H be a closed subgroup of G and consider the homogeneous
space G/H. Denote by π∶G → G/H the canonical projection. A right invariant �ow
on G is a continuous �ow ϕ that commutes with the right translations of G, that is,
ϕt(hg) = ϕt(h)g for every t ∈ R and g , h ∈ G. Right invariant �ows appear in Lie
theory: if G is a Lie group and X if a right invariant vector ûeld on G, it is known that
the �ow Xt associated with X satisûes Xt(hg) = Xt(h)g for every g , h ∈ G and t ∈ R
From now on, let ϕ be a right invariant �ow on G. We have that

ϕ∶R ×G/H Ð→ G/H
(t, gH) z→ ϕ(t, gH) = π(ϕ(t, g))

(4.1)

is a continuous �ow on G/H. We have seen in Section 2 that G and G/H admit ad-
missible families of open coverings. Consider the action of R on G/H deûned by the
�ow ϕ, that is, for t ∈ R and x ∈ G/H we deûne tx = ϕ(t, x).

In the following we present examples of R-equivariant maps in this context.
(i) Given g ∈ G, the map

g∶G/H Ð→ G/H
xH z→ g(xH) = xgH

is the map induced in G/H by the canonical projection π. _us, g is a homeo-
morphism of G/H and g ○ π = π ○ Rg , where Rg denotes the right translation
by g. If X is a subset of G/H, we simply denote Xg = g(X) for every g ∈ G.
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_e �ow ϕ commutes with the homeomorphisms g, that is, ϕt(xg) = ϕt(x)g
for every t ∈ R, g ∈ G and x ∈ G/H. In other words, each homeomorphism g as
above is a R-topological conjugation.

(ii) Let H1 ⊂ H2 be two closed subgroups of G with H1 normal in H2 and denote
by π1∶G → G/H1 and π2∶G → G/H2 the respective canonical projections. Con-
sider the equivariant ûbration

ρ∶G/H1 Ð→ G/H2

gH1 z→ gH2 .

Let ϕ1 and ϕ2 be the continuous �ows induced inG/H1 andG/H2 by the canon-
ical projections π1 and π2 and ϕ as in (4.1), respectively. Since ρ ○ π1 = π2, it is
easily seen that ρ is a continuous and open R-equivariant map.

Example 4.4 [Bitransformation semigroups]A bitransformation semigroup is a pair
of transformation semigroups (S,M) and (M ,T) with the same phase spaceM such
that s(xt) = (sx)t for all x ∈ M, s ∈ S and t ∈ T. _e notation (S, X ,T) signiûes the
bitransformation semigroup constituted by the pair (S,M) and (M ,T). _e theory of
bitransformation semigroup has several applications in the theories of control systems
and semigroup actions on principal and associated bundles. We refer to [14] for the
theory of bitransformation semigroups.

Now, let (S, X ,T) be a bitransformation semigroup. It follows from the deûnition
that, for each t ∈ T, the map t∶M → M deûned by t(x) = xt is a continuous S-
equivariant map. _erefore, if T is a group, then each application t is indeed a S-
topological conjugation.

We need the following deûnition of uniformly continuous map.

Deûnition 4.5 A map f ∶M → N is said to be uniformly continuous with respect to
O and O′ if for each U ∈ O′, there is V ∈ O such that x , y ∈ V for some V ∈ V implies
f (x), f (y) ∈ U for some U ∈ U, that is, f (B(x ,V)) ⊂ B( f (x),U) for every x ∈ M. If
f is a bijective uniformly continuous map such that f −1∶N → M is uniformly contin-
uous with respect to O′ and O, then f is called a uniform isomorphism. Furthermore,
if f is an S-topological conjugation and a uniform isomorphism, then it is called a
uniform S-conjugation.

_is notion of uniform continuity was introduced in [33] for uniform spaces. It
is easily seen that every uniformly continuous map is continuous. We also have that
continuous maps on compact spaces are uniformly continuous.

Let f ∶M → N be a continuous map. For each U ∈ O′, deûne the open covering
f −1U of M by f −1U = { f −1(U) ∶ U ∈ U}. _e map f is uniformly continuous with
respect to O and O′if for each U ∈ O′ there is V ∈ O such that V ⩽ f −1U. In fact, if
y ∈ B(x ,V), then y, x ∈ V for some V ∈ V. Take U ∈ U such that V ⊂ f −1(U). It
follows that f (y), f (x) ∈ U .

Now, suppose that O(M) is the family of all open coverings of M and f ∶M → N
is a continuous map. For each U ∈ O′, we have f −1U ∈ O(M). _us, f is uniformly
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continuous with respect to O(M) and O′. In particular, f is a uniform isomorphism
if f is a homeomorphism and O′ = O(N).

Example 4.6 Let (M , d) be a pseudometric space. _e family Od of the coverings
Uε = {B(x , ε) ∶ x ∈ M} by ε-balls, for ε > 0, is admissible. If (N , d′) is another
pseudometric space, a function f ∶M → N is uniformly continuous with respect d
and d′ if and only if it is uniformly continuous with respect to Od and Od′ .

Example 4.7 Let G be a Hausdorò topological group with V a base of symmetric
open neighborhoods at the identity. Deûne the family OR of open coverings of the
form RV = {Vg ∶ g ∈ G} for V ∈V. _is family OR is given by a diagonal uniformity
on G (see [33, Problem 35F]). Hence,OR is a base for a covering uniformity on G and
is therefore admissible. It is easily seen that the right translations of G are uniform
G-conjugations with respect to OR . Analogously, we deûne the family OL of open
coverings of the form LV = {gV ∶ g ∈ G} for V ∈V. In this case, the le� translations
of G are uniform G-conjugations with respect to OL .

4.2 Uniformly Continuous Equivariant Maps

In this section, we present some results on the behavior of attractors, domains of at-
traction, and Lyapunov stable sets under uniformly continuous equivariant maps.

_e next result establishes the behavior of domains of attraction under uniformly
continuous equivariant maps.

Proposition 4.8 Let F ⊂ P(S) and p∶M → N be a uniformly continuous S-equi-
variant map. For X ⊂ M, one has

p(Aw(X ,F)) ⊂ Aw( p(X),F) , p(Awu(X ,F)) ⊂ Awu( p(X),F) and

p(A(X ,F)) ⊂ A( p(X),F) .
If p is open, then p(Au(X ,F)) ⊂ Au(p(X),F).

Proof Let x ∈ Aw(X ,F), A ∈ F, and U ∈ O′. Take an open covering V ∈ O such that
p(B(y,V)) ⊂ B(p(y),U) for every y ∈ M. Since Ax ∩ B(X ,V) ≠ ∅, it follows that

∅ ≠ p(Ax ∩ B(X ,V)) ⊂ p(Ax) ∩ p(B(X ,V)) ⊂ Ap(x) ∩ B( p(X),U) .
Hence, p(Aw(X ,F)) ⊂ Aw(p(X),F). For the weak domain of uniform attraction,
take x ∈ Awu(X ,F), A ∈ F and open coveringsU′ ,V′ ∈ O′. By the uniform continuity
of p there exist open coverings U,V ∈ O satisfying p(B(x ,V)) ⊂ B(p(X),V′) and
p(B(x ,U)) ⊂ B(p(X),U′) for every x ∈ X. Since AB(x ,V) ∩ B(X ,U) ≠ ∅, we
obtain

∅ ≠ p(AB(x ,V) ∩ B(X ,U)) ⊂ Ap(B(x ,V)) ∩ p(B(X ,U))
⊂ AB( p(x),V′) ∩ B( p(X),U′) .

_erefore, p(x) ∈ Awu(p(X),F). Now, pick x ∈ A(X ,F) and U ∈ O′. Take an open
covering V ∈ O such that p(B(y,V)) ⊂ B(p(y),U) for every y ∈ M. _ere exists
A ∈ F such that Ax ⊂ B(X ,V). Hence, Ap(x) = p(Ax) ⊂ B(p(X),U) and, therefore,
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p(A(X ,F)) ⊂ A(p(X),F). Finally, suppose that p is open and take x ∈ Au(X ,F)
and U ∈ O′. Take an open covering V ∈ O such that p(B(y,V)) ⊂ B(p(y),U)
for every y ∈ M. _ere exist A ∈ F and W ∈ O such that AB(x ,W) ⊂ B(X ,V).
Hence, Ap(B(x ,W)) ⊂ B(p(X),U). As p(B(x ,W)) is a neighborhood of p(x),
there exists an open covering W′ ∈ O′ such that B(p(x),W′) ⊂ p(B(x ,W)). Hence,
AB(p(x),W′) ⊂ B(p(X),U) and, therefore, p(Au(X ,F)) ⊂ Au(p(X),F).

_e following result is an immediate consequence of Proposition 4.8.

Corollary 4.9 Let F ⊂ P(S) and p∶M → N be an uniform S-conjugation. For a
given set X ⊂ M, one has

p(Aw(X ,F)) = Aw( p(X),F) , p(Awu(X ,F)) = Awu( p(X),F) ,
p(A(X ,F)) = A( p(X),F) , and p(Au(X ,F)) = Au( p(X),F) .

Now we present a result on the behavior of attractors under uniformly continuous
equivariant maps.

Proposition 4.10 Let F ⊂ P(S) and p∶M → N be a uniformly continuous S-equi-
variant openmap. Assume that X ⊂ M is aweakF-attractor,F-attractor, weak uniform
F-attractor, or uniform F-attractor. Suppose that one of the following conditions is sat-
isûed:
(i) p(X) is compact in N,
(ii) p(X) is closed in N and O′ is a strong admissible family.

_en p(X) is a weakF-attractor, F-attractor, weak uniformF-attractor, or uniform
F-attractor, respectively.

Proof Suppose that p(X) is compact in N . If X is a weak F-attractor, then there
exists V ∈ O such that B(X ,V) ⊂ Aw(X ,F). By Proposition 4.8, it follows that
p(B(X ,V)) ⊂ Aw(p(X),F). Since p(X) is compact and p(B(X ,V)) is a neigh-
borhood of p(X), there exists an open covering U ∈ O′ such that B(p(X),U) ⊂
p(B(X ,V)). Hence, B(p(X),U) ⊂ Aw(p(X),F), and therefore p(X) is a weak
F-attractor. _e cases of attractor, weak uniform attractor, and uniform attractor are
proved in the sameway. _e result is similarly proved by assuming that p(X) is closed
in N and O′ is a strong admissible family.

As a consequence of Proposition 4.10 we have the following corollary.

Corollary 4.11 Let F ⊂ P(S) and p∶M → N be a uniformly S-conjugation. Take a
subset X ⊂ M. Suppose that either X is compact or X is closed in M and O′ is a strong
admissible family. _en the set X is is a weak F-attractor, F-attractor, weak uniform
F-attractor, or uniformF-attractor if and only if p(X) is respectively aweakF-attractor,
F-attractor, weak uniform F-attractor, or uniform F-attractor.

Now, we discuss stability under uniformly continuous equivariant maps.
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Proposition 4.12 Let p∶M → N be a uniformly continuous S-equivariant open map.
If X ⊂ M is S-stable, then p(X) is S-stable.

Proof Take x ∈ X and U ∈ O′. By uniform continuity, there exists an open covering
W ∈ O such that p(B(X ,W)) ⊂ B(p(X),U). Take open coveringsW′ ∈ O andV ∈ O′

such that SB(x ,W′) ⊂ B(X ,W) and B(p(x),V) ⊂ p(B(x ,W′)). It follows that

SB( p(x),V) ⊂ Sp(B(x ,W′)) ⊂ p(B(X ,W)) ⊂ B( p(X),U) .

_erefore, p(X) is S-stable.

As a consequence, we have the following corollary.

Corollary 4.13 Let p∶M → N be a uniform S-conjugation. _en a subset X ⊂ M is
S-stable if and only if p(X) is S-stable.

Concerning uniform stability, we have the following result.

Proposition 4.14 Let p∶M → N be a uniformly continuous S-equivariant open map.
Assume that X ⊂ M is S-uniformly stable. Suppose that one of the following conditions
is satisûed:
(i) p(X) is compact in N,
(ii) p(X) is closed in N and O′ is a strong admissible family.

_en p(X) is S-uniformly stable.

Proof Suppose that X ⊂ M is S-uniformly stable and p(X) is compact in N . For an
open covering U ∈ O′ there exists W ∈ O such that p(B(X ,W)) ⊂ B(p(X),U).
Take open coverings W′ ∈ O and V ∈ O′ such that SB(X ,W′) ⊂ B(X ,W) and
B(p(X),V) ⊂ p(B(X ,W′)). It follows that

SB( p(X),V) ⊂ Sp(B(X ,W′)) ⊂ p(B(X ,W)) ⊂ B( p(X),U) .

Hence, p(X) is S-uniformly stable. _e result is similarly proved by assuming that
p(X) is closed in N and O′ is a strong admissible family.

In the following proposition, we show that uniform conjugations preserve uniform
stability.

Proposition 4.15 Let p∶M → N be a uniform S-conjugation. _e set X ⊂ M is
S-uniformly stable if and only if p(X) is S-uniformly stable.

Proof Suppose that X ⊂ M is S-uniformly stable. For a givenU ∈ O′ there exist open
coverings V,W ∈ O such that p(B(X ,V)) ⊂ B(p(X),U) and SB(X ,W) ⊂ B(X ,V).
Since p−1 is uniformly continuous, there exists an open covering U′ ∈ O′ such that
B(p(X),U′) ⊂ p(B(X ,W)). Hence,

SB( p(X),U′) ⊂ Sp(B(X ,W)) ⊂ p(B(X ,V)) ⊂ B( p(X),U) .

_erefore, p(X) is S-uniformly stable. _e converse is clear.
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Corollary 4.11 and Proposition 4.15 imply the following result on asymptotic sta-
bility.

Corollary 4.16 Let F ⊂ P(S) and p∶M → N be a uniform S-conjugation. Take a
subset X ⊂ M. Suppose that either X is compact or X is closed in M and O′ is a strong
admissible family. _en a subset X ⊂ M is F-asymptotically stable if and only if p(X)
is F-asymptotically stable.

4.3 Topological Semiconjugations

Now, we discuss the behavior of prolongations and prolongational limit sets under
topological semiconjugations. Let p∶M → N be an S-topological semiconjugation.
Assume that M is a compact space and F is a ûlter basis on the subsets of S. _eo-
rem 3.1 from [9] assures that

p(ω(X ,F)) = ω( p(X),F)

for all X ⊂ M. We can prove an analogous result for prolongational limit sets.

_eorem 4.17 Suppose that M is a compact space. Assume that F is a ûlter basis
on the subsets of S, p∶M → N is an open S-topological semiconjugation. For a given
nonempty subset X of M, we have

p( J(X ,F)) = J( p(X),F) .

Proof Let x ∈ M. We claim that

(4.2) J( p(x),F) = ⋂
U∈O,
A∈F

cl(Ap(B(x ,U))) = ⋂
U∈O,
A∈F

p(cl(AB(x ,U))) .

In fact, the second equality follows immediately from the assumptions on p. Now, take
y ∈ J(p(x),F), A ∈ F andW ∈ O. Since p is an open map, it follows that p(B(x ,W))
is a neighborhood of p(x) in N . Hence, there is V ∈ O′ such that B(p(x),V) ⊂
p(B(x ,W)). _us,

y ∈ cl(AB(p(x),V)) ⊂ cl(Ap(B(x ,W))) .

On the other hand, ûx y ∈ M such that y ∈ cl(Ap(B(x ,U))), for every U ∈ O and
A ∈ F. We ûx A ∈ F andW ∈ O′. By the continuity of p and admissibility of O there
exists V ∈ O such that p(B(x ,V)) ⊂ B(p(x),W). _erefore,

y ∈ cl(Ap(B(x ,V))) ⊂ cl(AB(p(x),W))

and y ∈ J(p(x),F). Now, we show that J(p(x),F) ⊂ p(J(x ,F)). Take y ∈ J(p(x),F).
For each A ∈ F and U ∈ O, we have from (4.2) that y = p(z(A,U)), where
z(A,U) ∈ cl(AB(x ,U)). Since M is compact, there exists a subnet (z(Aλ ,Uλ))λ∈Λ of
(z(A,U))(A,U)∈F×O such that z(Aλ ,Uλ) → z in M. Fix A ∈ F andU ∈ O and take λ0 ∈ Λ
such that Aλ ⊂ A and Uλ ⩽ U, for λ > λ0. _us, for λ > λ0, one has

z(Aλ ,Uλ) ∈ cl(AλB(x ,Uλ)) ⊂ cl(AB(x ,U)) ,
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and we get z ∈ cl(AB(x ,U)) and z ∈ J(x ,F). Since p(z(Aλ ,Uλ)) = y, for all λ ∈ Λ,
we conclude that y = p(z) ∈ p(J(x ,F)). On the other hand, if z ∈ J(x ,F), it follows
from (4.2) that

p(z) ∈ p( J(x ,F)) ⊂ ⋂
U∈O
A∈F

p(cl(AB(x ,U))) = J( p(x),F) ,

and we obtain p(J(x ,F)) = J(p(x),F). _erefore, for a subset X of M one has

p( J(X ,F)) = ⋃
x∈X

p( J(x ,F)) = ⋃
x∈X

J( p(x),F) = J( p(X),F) .

For prolongations we have the following result.

Corollary 4.18 Suppose that M is a compact space. Let p∶M → N be an open S-
topological semiconjugation. For nonempty subsets A ⊂ S and X ⊂ M, we have

p(D(X ,A)) = D( p(X),A) .

Proof _e family {A} is a ûlter basis of subsets of S and D(X ,A) = J(X , {A}).
_erefore, the result follows immediately from _eorem 4.17.

For compact sets, the uniform continuity in Proposition 4.8 can be omitted.

Lemma 4.19 Let F ⊂ P(S) and p∶M → N an S-topological semiconjugation. For a
given compact set X ⊂ M, one has

p(Aw(X ,F)) ⊂ Aw( p(X),F) , p(Awu(X ,F)) ⊂ Awu( p(X),F) and

p(A(X ,F)) ⊂ A( p(X),F) .
If p is open, then p(Au(X ,F)) ⊂ Au(p(X),F).

Proof Let x ∈ Aw(X ,F), A ∈ F, and U ∈ O′. Since X is compact and
X ⊂ p−1(B(p(X),U)), there exists an open covering V ∈ O such that B(X ,V) ⊂
p−1(B(p(X),U)). _en Ax ∩ B(X ,V) ≠ ∅ and therefore

∅ ≠ p(Ax ∩ B(X ,V)) ⊂ Ap(x) ∩ B( p(X),U) .
_us, p(x) ∈ Aw(p(X),F), and p(Aw(X ,F)) ⊂ Aw(p(X),F). Now, take x ∈
Awu(K ,F), A ∈ F and U′ ,V′ ∈ O′. Take open coverings U,V ∈ O such that
B(x ,V) ⊂ p−1(B(p(x),V′)) and B(K ,U) ⊂ p−1(B(p(K),U′)). We have that
AB(x ,V) ∩ B(K ,U) ≠ ∅. _us, it follows that

∅ ≠ p(AB(x ,V) ∩ B(K ,U)) ⊂ AB( p(x),V′) ∩ B( p(K),U′)
and therefore p(x) ∈ Awu(p(K),F). Now, let x ∈ A(X ,F) and U ∈ O′. Take an
open covering V ∈ O such that B(X ,V) ⊂ p−1(B(p(X),U)). Now choose A ∈ F

satisfying Ax ⊂ B(X ,V). It follows that Ap(x) ⊂ B(p(X),U), and therefore p(x) ∈
A(p(X),F). Finally, suppose that p is open, x ∈ Au(X ,F), andU ∈ O′. Take an open
covering W ∈ O such that B(X ,W) ⊂ p−1(B(p(X),U)). _en there exist A ∈ F,
W′ ∈ O, andV ∈ O′ such that AB(x ,W′) ⊂ B(X ,W) and B(p(x),V) ⊂ p(B(x ,W′)).
Hence, AB(p(x),V) ⊂ B(p(X),U), and therefore p(Au(K ,F)) ⊂ Au(p(K),F).

As a consequence of Lemma 4.19 one has the following proposition.
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Proposition 4.20 Let F ⊂ P(S) and p∶M → N be an open S-topological semiconju-
gation. Assume that X ⊂ M is a compact set. If X is a weak F-attractor, weak uniform
F-attractor, F-attractor, or uniform F-attractor, then p(X) is respectively a weak F-
attractor, weak uniform F-attractor, F-attractor, or uniform F-attractor.

Proof If X is a weak F-attractor, then there exists an open covering V ∈ O such that
B(X ,V) ⊂ Aw(X ,F). By Lemma 4.19, it follows that p(B(X ,V)) ⊂ Aw(p(X),F).
Since p(X) is compact and p(B(X ,V)) is a neighborhood of p(X), there exists an
open covering U ∈ O′ such that B(p(X),U) ⊂ p(B(X ,V)). Hence, B(p(X),U) ⊂
Aw(p(X),F), and therefore p(X) is a weak F-attractor. _e cases for attractors and
uniform attractors are proved in the same way.

_e next proposition describes the behavior of the sets given in (3.1) under con-
tinuous equivariant maps.

Proposition 4.21 LetF ⊂ P(S) and p∶M → N an S-topological semiconjugation. For
a given set X ⊂ M, one has p(Atrw(X ,F)) ⊂ Atrw(p(X),F) and p(Atrwu(X ,F)) ⊂
Atrwu(p(X),F). Furthermore, if M is compact and p is open, then p(Atr(X ,F)) ⊂
Atr(p(X),F) and p(Atru(X ,F)) ⊂ Atru(p(X),F).

Proof Suppose that y ∈ Atrw(X ,F) and take x ∈ ω(y,F) ∩ X. _en p(x) ∈
ω(p(y),F) ∩ p(X). Hence, p(y) ∈ Atrw(p(X),F), and therefore p(Atrw(X ,F)) ⊂
Atrw(p(X),F). _e proof for the inclusion p(Atrwu(X ,F)) ⊂ Atrwu(p(X),F)
follows in the same way. Now, assume that M is compact and p is open. Since
p(ω(x ,F)) = ω(p(x),F) for every x ∈ M, we have the inclusion p(Atr(X ,F)) ⊂
Atr(p(X),F). By_eorem 4.17, p(J(x ,F)) = J(p(x),F) for every x ∈ M, and there-
fore we have the inclusion p(Atru(X ,F)) ⊂ Atru(p(X),F).

On the behavior of Lyapunov stability under continuous equivariantmaps, we have
the next theorem.

_eorem 4.22 Let F ⊂ P(S) and p∶M → N be an open S-topological semiconjuga-
tion. For a given compact set K ⊂ M, one has
(i) p(K) is S-stable if K is S-stable.
(ii) p(K) is S-equistable if K is S-equistable, x ∈ cl(Sx) for all x ∈ K and M is

compact.
(iii) p(K) is F-asymptotically stable if K is F-asymptotically stable.

Proof (i) Take U ∈ O′. By the continuity of p and the admissibility of O there
exists U′ ∈ O such that B(K ,U′) ⊂ p−1(B(p(K),U)). It follows from S-stability
of K that there exists U′′ ∈ O satisfying SB(K ,U′′) ⊂ p−1(B(p(K),U)). _us
Sp(B(K ,U′′)) ⊂ B(p(K),U). Since p(K) is compact and p(B(K ,U′′)) is an open
set it follows from the admissibility of O′ that there exists V ∈ O′ which satisûes
B(p(K),V) ⊂ p(B(K ,U′′)). _erefore SB(p(K),V) ⊂ B(p(K),U) and p(K) is S-
stable.

(ii) First we observe that if x ∈ cl(Sx) for all x ∈ K, then p(x) ∈ cl(Sp(x)) for
all x ∈ K. Now, suppose that K is a compact and S-equistable and M is compact.
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We have from Proposition 2.14 that D(K , S) = K. _us, Corollary 4.18 implies that
D(p(K), S) = p(K) and we conclude that p(K) is S-equistable.

(iii) It follows immediately from the ûrst item above and Proposition 4.20.

For topological conjugations, we have the following result.

_eorem 4.23 Let F ⊂ P(S) and let p∶M → N be an S-topological conjugation. For
subsets X and K of M, with K compact, one has the following:
(i) p(ω(X ,F)) = ω(p(X),F) and p(J(X ,F)) = J(p(X),F).
(ii) If A ⊂ S then p(D(X ,A)) = D(p(X),A).
(iii) p(Atrw(X ,F)) = Atrw(p(X),F), p(Atr(X ,F)) = Atr(p(X),F),

and p(Atru(X ,F)) = Atru(p(X),F).
(iv) p(Aw(K ,F)) = Aw(p(K),F), p(A(K ,F)) = A(p(K),F)

and p(Au(K ,F)) = Au(p(K),F).
(v) _e set K is an F-weak attractor (respectively F-attractor, F-uniform attractor)

if and only if p(X) is a F-weak attractor (respectively F-attractor, F-uniform at-
tractor).

(vi) _e set K is S-stable if and only if p(K) is S-stable.
(vii) _e set K is S-equistable if and only if p(K) is S-equistable.
(viii) _e set K ifF-asymptotically stable if and only if p(K) isF-asymptotically stable.

Proof We know that p(ω(X ,F)) ⊂ ω(p(X),F) holds without compactness of M.
_us, since p−1 is an S-equivariant map, one has

(4.3) ω( p(X),F) = p( p−1(ω(p(X),F))) ⊂ p(ω(X ,F)) .

Analogously, the inclusion p(J(X ,F)) ⊂ J(p(X),F) does not need compactness of
M. In fact, for z ∈ J(x ,F), with x ∈ X,U ∈ O′ and A ∈ F, there exists an open covering
V ∈ O satisfying p(B(x ,V)) ⊂ B(p(x),U). Hence,

p(z) ∈ cl( p(AB(x ,V))) ⊂ cl(AB(p(x),U)) .

_us, the equality p(J(X ,F)) = J(p(X),F) follows as in (4.3). In particular, for
every A ⊂ S, we have p(D(X ,A)) = D(p(X),A). _e statements for domains of
attraction and attractors can be proved analogously as was done in (4.3). For sta-
bility and asymptotic stability, we can argue analogously. Now, suppose that K is S-
equistable and ûx y ∉ p(K). Take x ∈ M such that p(x) = y. One has x ∉ K. By
the equistability of K there exists U ∈ O such that x ∉ cl(SB(K ,U)). _us we have
y ∉ p(cl(SB(K ,U))) and y ∉ cl(SB(p(K), p(U))), where p(U) = {p(U) ∶ U ∈ U}.
Since p(K) is compact there exists V ∈ O′ such that B(p(K),V) ⊂ B(p(K), p(U)).
_erefore, y ∉ cl(SB(p(K),V)) and p(K) is S-equistable. Finally, p−1(p(K)) = K is
S-equistable if p(K) is S-equistable.
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