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Abstract

Based on biochemical kinetics, a stochastic model to characterize wastewater treatment
plants and dynamics of river water quality under the influence of random fluctuations is
proposed in this paper. This model describes the interaction between dissolved oxygen
(DO) and biochemical oxygen demand (BOD), and is in the form of stochastic differ-
ential equations driven by multiplicative Gaussian noises. The stochastic persistence
problem for the model of the system is analysed. Further, a numerical simulation of the
stationary probability distributions of BOD and OD by approximations of the stochastic
process solution is presented. These results have implications for the prediction and
control of pollutants.

2020 Mathematics subject classification: primary 60H10; secondary 34F05, 92D25.
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1. Introduction

Modelling and simulation of biochemical systems has become an area of intensive
research in the past decades. The evolution of these system has been modelled
by deterministic reaction rate equations. In general, nonlinear physics models have
been intensively and numerously applied to uncover the biochemical complexities.
Specifically, differential equation models for the quality of river water and a wastewater
treatment plant have already been constructed. They simulate the effects and interac-
tions between dissolved oxygen (DO) and biochemical oxygen demand (BOD), algae
and others. Aspects of these models have been considered by different authors (see,
for example, [3, 6, 12] and the references therein). Moreover, stochastic differential
equation models for the evolution of DO and BOD were developed [1, 4, 8, 11,
13, 14]. Typically, such a system behaves stochastically rather than deterministically.
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The randomness in these models arise from a number of factors, such as the
inherent variability and natural heterogeneity (for example, atmospheric conditions),
measurement errors (for example, calibration), complexity (for example, complete
mixing), lack of data (for example, of nonpoint sources) and others. Also, such
models represent biological, chemical and physical processes and changes in such
aquatic ecosystems. In this context, water quality dynamics is inevitably affected by
environmental noises which can have significant effects on OD and BOD components
[1, 4]. Overall, the objective of these studies is to determine the evolution of OD and
BOD variables under the effects of such factors.

Motivated by the above research, in this paper, we consider a stochastic version
of a water quality model under the influence of random fluctuations. It describes
the interaction between BOD and DO, and is in the form of stochastic differential
equations driven by multiplicative Gaussian noises. The aim of this study is to
characterize the persistence of the long-time behaviour of the stochastic system. Such
results enable us to predict the behaviour of water quality and the impacts of the
random noises on the dynamics of the system. The paper is organized as follows. In
Section 2, we introduce the stochastic differential equation model system. In Section
3, we carry out a computational analysis. This includes analytical and numerical
results concerning the stochastic persistence of the long-time behaviour of the system.
Section 4 concludes the paper.

2. The stochastic differential equation system

Consider the dynamics model describing water quality in terms of BOD and DO
interaction with rates of reaction kinetics of nonlinear BOD degradation and DO
depletion of Michaelis–Menten type [12], through a first-order system of differential
equations, where the BOD and DO concentrations are denoted by x1(t) and x2(t),
respectively, and t is the time. Then, the BOD–DO interaction system is given by

dx1(t)
dt
= − k1

x2(t)
k + x2(t)

x1(t) + q,

dx2(t)
dt
= − k2

x2(t)
k + x2(t)

x1(t) + α(x2c − x2(t)),
(2.1)

where k1 is the BOD decay rate, k2 is the DO deoxygenation rate, k is the half-saturated
oxygen demand concentration, α is the reaeration rate, x2c is the oxygen saturation
constant and q is the source term for BOD.

The overall dynamics of BOD and DO (that is, the model in equation (2.1)) under
the influence of random fluctuations can be described by the stochastic differential
equation system:

dx1(t) =
(
− k1

x2(t)
k + x2(t)

x1(t) + q
)

dt + σ1x1 dW1(t),

dx2(t) =
(
− k2

x2(t)
k + x2(t)

x1(t) + α(x2c − x2(t))
)

dt + σ2x2 dW2(t),
(2.2)
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where W1(t) and W2(t) are independent Gaussian white noises defined on complete
probability space (Ω,F , (Ft)t≥0, P), and nonnegative constants σ1 and σ2 represent
the noise intensities. For convenience, it is assumed that the variables x1 and x2 are
dimensionless, that is, the equations describe changes in relative concentration size.

3. Analysis for stochastic persistence

To study the stochastic persistence and the impacts of random noise, we first discuss
the dynamics of the system in equation (2.2) in the absence of noise by determining
the stability of the solution. Therefore, we examine the equilibria and perform a phase
plane analysis.

For the equilibrium points, the steady-state solution is considered. The steady-state
equilibrium point Es = (x1s , x2s ) is given by

Es =

((
1 +

k
x2s

) q
k1

, x2c −
k2q
αk1

)
, k1, α, x2s � 0.

This interior equilibrium point exists whenever x2c > k2q/αk1 and q � 0. To analyse
the stability of this equilibrium point, we determine the characteristic equation of the
associated Jacobian matrix of equation (2.1) given by

J(x1, x2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
− k1x2

k + x2
− k1kx1x2

(k + x2)2

− k2x2

k + x2
− k2kx1x2

(k + x2)2 − α

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Using the Routh–Hurwitz criterion [2], which guarantees that all the roots of the
characteristic equation λ2 + aλ + b = 0 have negative real part if and only if a > 0
and b > 0, and considering that the model parameters are positive, the coefficients of
the characteristic equation of the Jacobian matrix J(x1s , x2s) are

a =
k1x2s

k + x2s

+
k2kx1s x2−s

(k + x2s )2 + α > 0,

b =
αk1x2s

k + x2s

> 0.

Hence, Es is a stable equilibrium point. To verify that the model has a stable
interior equilibrium Es, we take parameter values as in [6]: k1 = 0.15, k2 = 0.5, q = 0.2,
x2c = 9.5,α = 0.35, k = 3. The resulting phase portrait is shown in Figure 1.

Then, to study the stochastic persistence and the impact of random noise, the model
system in equation (2.2) will be used.

3.1. Analytical results In this subsection, we present some analytical results
concerning the stochastic persistence for the model system in equation (2.2). For this,
we follow the method of Gray et al. [5].
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FIGURE 1. This figure shows the phase portrait of equation (2.1) for given parameter values.

THEOREM 1. For any given initial values xi(0) = xi0 , i = 1, 2, the solution of the model
in equation (2.2) obeys

lim sup
t→∞

x−1
i (t) ≥ ξi a.s., (3.1)

and

lim inf
t→∞

x−1
i (t) ≤ ξi a.s., (3.2)

where ξ1 and ξ2 are solutions of the following equations:

f1(ξ1) =
q
ξ1
−

k1x2s

k
−
σ2

1

2
= 0,

f2(ξ2) =
αx2c

ξ2
−
αk + k2x1s

k
−
σ2

2

2
= 0,

respectively. (Here a.s. means almost surely.) That is, x−1
i (t) will rise to or above the

level ξi infinitely often with probability one.

PROOF. We consider approximations for dx1(t) and dx2(t) in equation (2.2) and prove
the assertion in equation (3.1). If it is not true, then there is a sufficiently small
ε ∈ (0, 1) such that

P(Ω1) > ε,
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where Ω1 = {lim supt→∞ x−1
i (t) ≤ ξi − 2ε}. Hence, for every ω ∈ Ω1, there is a

T = T(ω) > 0 such that

x−1
i (t,ω) ≤ ξi − ε whenever t ≥ T(ω). (3.3)

It follows from equation (3.3) that

f (xi(t,ω)) ≥ f (ξi − ε) whenever t ≥ T(ω). (3.4)

Moreover, by the large number theorem for martingales, there is a Ω2 ⊂ Ω with
P(Ω2) = 1 such that for every ω ∈ Ω2,

lim
t→∞

1
t

∫ t

0
σi dWi(s,ω) = 0. (3.5)

Now, fix any ω ∈ Ω1 ∩Ω2. It then follows from the Ito formula [10] and equation (3.4)
that, for t ≥ T(ω),

log(xi(t,ω)) ≥ log(xi0 ) +
∫ T(ω)

0
fi(xi(s,ω)) ds + fi(ξi − ε)(t − T(ω)) +

∫ t

0
σi dWi(s,ω).

This yields

lim inf
t→∞

1
t

log(xi(t,ω)) ≥ fi(ξi − ε) > 0,

whence

lim
t→∞

x−1
i (t,ω) = ∞.

However, this contradicts equation (3.3). We therefore must have the desired assertion
in equation (3.1).

Next we prove the assertion in equation (3.2). If it is not true, then there is a
sufficiently small δ ∈ (0, 1) such that

P(Ω3) > δ,

where Ω3 = {lim inft→∞ x−1
i (t) ≥ ξi + 2δ}. Hence, for every ω ∈ Ω3, there is a

τ = τ(ω) > 0 such that

x−1
i (t,ω) ≥ ξi + δ whenever t ≥ τ(ω). (3.6)

Now, fix any ω ∈ Ω3 ∩Ω2. It then follows from the Ito formula that, for t ≥ τ(ω),

log(xi(t,ω)) ≤ log(xi0 ) +
∫ τ(ω)

0
fi(xi(s,ω)) ds + fi(ξi + δ)(t − τ(ω)) +

∫ t

0
σi dWi(s,ω).

This, together with equation (3.5), yields

lim sup
t→∞

1
t

log(xi(t,ω)) ≤ fi(ξi + δ) < 0,
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whence

lim
t→∞

x−1
i (t,ω) = 0.

However, this contradicts equation (3.6). We therefore obtain the desired assertion in
equation (3.2). Hence, the proof is complete. �

Moreover, we have that xi converges to a unique stationary distribution with the
probability density given by

Pi(xi) =
bai

i

Γ(ai)
x−(ai+1)e−bi/xi , xi > 0, i = 1, 2,

where

a1 =
2β1 + σ

2
1

σ2
1

, b1 =
2q
σ2

1

, β1 =
k1x2s

k
,

a2 =
2β2 + σ

2
2

σ2
2

, b2 =
2αx2c

σ2
2

, β2 =
kα + k2x1s

k
,

and Γ(.) is the Gamma function, Γ(x) =
∫ ∞

0 tx−1e−t dt, and we have

lim
t→∞

1
t

∫ t

0
xi(s) ds ≈ ζi, i = 1, 2, a.s.,

respectively, with ζ1 = kq/k1x2s and ζ2 = kαx2c/(kα + k2x1s ).

3.2. Computer simulations Here, we present some computer simulations by
applying the Milstein method [7, 9] to illustrate the behaviour of the model system
in equation (2.2) and support the analytical results. The discrete equations are

x1j+1 = x1j +

(
− k1

x2j

k + x2j

x1j + q
)
Δt

+ σ1x1j

√
ΔtW1j +

σ2
1

2
x1j (W

2
1j
− 1)Δt,

x2j+1 = x2j +

(
− k2

x2j

k + x2j

x1j + α(x2c − x2j )
)
Δt

+ σ2x2j

√
ΔtW2j +

σ2
2

2
x2j (W

2
2j
− 1)Δt,

(3.7)

where Δt is time increment, and W1j and W2j (j = 1, 2, . . . , n) are the independent
Gaussian random variables.

We solve equation (3.7) with the time step 10−2 for computation of the stochas-
tic solution. We consider the influence of noise for the same parameter values
k1 = 0.15, k2 = 0.5, q = 0.2, x2c = 9.5,α = 0.35, k = 3, where the system in equation
(2.1) possesses a stable equilibrium Es = (x1s , x2s ) = (1.89, 7.52). Resulting solu-
tions for initial conditions (x1(0), x2(0)) = (12, 6) are presented in Figures 2 and 3.
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FIGURE 2. Sample paths of the system in equation (2.2) with small values of the noise intensities
represented by red lines and its deterministic case represented by blue lines. Here, σ1 = σ2 = 0.1. (Colour
available online.)
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FIGURE 3. Sample paths of the system in equation (2.2) with large values of the noise intensities and its
deterministic case. Here, σ1 = σ2 = 0.4. (Colour available online.)
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FIGURE 4. Plot of the probability density functions of the stationary probability distributions of the
variables x1(t) and x2(t) for small noise intensities, corresponding to Figure 2, σ1 = σ2 = 0.1.

In Figure 3, we show a plot of the sample paths of the solution (x1(t), x2(t)) for noise
intensities σ1 = σ2 = 0.1. Figure 3 also shows sample paths of x1(t) and x2(t) for
large noise intensities σ1 = σ2 = 0.4. We note that we obtain the same behaviour for
different initial conditions. These figures clearly illustrate persistence and the effect
of changing the noise intensities. As we can observe, for small noise intensities, the
system shows small-amplitude noisy oscillations while for larger noise intensities, the
system exhibits large-amplitude oscillations of complex form.

The transition from small- to large-amplitude stochastic oscillations with increasing
noise are accompanied by the significant changes of the form of the probability density.
In Figures 4, 5, 6 and 7, we show the approximate probability density functions
of the stationary distribution obtained by computer simulation of sample paths of
x1(t) and x2(t) of equation (3.7) in the case of keeping the parameters the same
but with different noise intensities σ1 = σ2 = 0.1, 0.2, 0.3 and 0.4, respectively. The
simulations were run for 2 million iterations with step size 10−2. From these figures,
one can see the changes of probability densities under increasing values of the noise
intensities σ1 and σ2. The probability densities reveal a maximum indicating the most
probable concentration size and influence by the noise intensity. This maximum of the
stationary distribution depends on the noise intensity. Clearly, the maximum is shifted
for large noise intensities. These computer simulations of the solution also show that
for large noise intensities, the distribution of the solution is skewed in the sense that
the distribution of the solution becomes more symmetric for small noise intensities.
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FIGURE 5. Plot of the probability density functions of the stationary probability distributions of the
variables x1(t) and x2(t) for increasing the noise intensities σ1 = σ2 = 0.2.
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FIGURE 6. Plot of the probability density functions of the stationary probability distributions of the
variables x1(t) and x2(t) for increasing the noise intensities σ1 = σ2 = 0.3.
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FIGURE 7. Plot of the probability density functions of the stationary probability distributions of the
variables x1(t) and x2(t) for large noise intensities, corresponding to Figure 3, σ1 = σ2 = 0.4.

We note also that values of means of these probability distributions of x1(t) and
x2(t) are 0.5266 and 5.0379, respectively, which are useful in assessing the behaviour
of the solution process.

4. Conclusion

One of the major concerns of many communities is to monitor pollution or water
quality and its effects in various life processes in a stream. In general, to study the level
of oxygen-related pollution, it has been agreed that the main assumption underlying the
modelling approach is that the two variables, namely the concentration of BOD and
that of DO, are sufficient to evaluate the quality of water. DO is a commonly used index
of water quality since it reflects the general healthy state, or otherwise, of an aquatic
environment. BOD, in company with measures such as suspended solids, ammonia
and nitrate concentrations, characterizes the polluting load of the complex organic
materials. Also, it is responsible for the removal of DO from the water, and hence
the importance of identifying the dynamic relationships which govern the BOD–DO
interaction. Therefore, many descriptions of the BOD–DO interaction have been
proposed using mathematical modelling which are mostly based on a deterministic
approach.

In this paper, we have studied a stochastic water quality model for persistence
of the system under the effect of random fluctuations. Such a model describes the
interaction between DO and BOD components, and is in the form of stochastic
differential equations driven by multiplicative noises. We have analysed the persistence
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of the long-time behaviour of the system using techniques from dynamical systems
and the theory of stochastic processes. Further, we have numerically simulated the
stationary probability distributions of BOD and DO variables by approximating the
solution process. These computer simulations assess the persistence of the long-time
behaviour of the system. In particular, the stationary probability distribution has a
maximum, indicating a very probable state. This maximum is, for instance, enhanced
with decreasing noise intensities.

The implications of the study are briefly summarized as follows. First, the results
obtained in this paper enable us to predict the behaviour of river water quality using
DO and BOD variables, and the impacts of the random noises on the dynamics
of the system. Second, this stochastic approach provides a practical method for a
measurement of the risk to water quality through BOD loading capacity. Finally, these
results are worthwhile for the prediction and control of pollutants.

In future work, such water quality models, which represent biological, chemical
and physical processes, and describe nondegenerate diffusive systems, can be studied
to consider more complex stochastic differential equations.
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