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1. Introduction and main results

Important notions in spaces of analytic functions include zero-sets, Carleson measures,
interpolation, sampling, frames, etc. Such properties have been studied for many well-
known spaces of analytic functions in a deterministic setting. A canonical example is the
Hardy space, where all these properties are well established, see [16]. In certain spaces,
such properties admit theoretical characterizations, which are not checkable in general
(e.g. interpolation in Dirichlet spaces), while in other situations, a general characteriza-
tion is not available at all (see e.g. [24] for a general reference on interpolation). In these
circumstances, it is useful to consider a random setting, which allows to see whether
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certain properties are ‘generic’ in a sense. The random model we are interested in here
is the Poisson point process.
A Poisson point process in the unit disk D is a random sequence Λ defined in the

following way: for any Borel set A ⊂ D the counting random variable NA = #(A ∩ Λ) is
well defined and

(a) NA is a Poisson random variable, i.e., there exists µ(A) ≥ 0 such that the
probability distribution of NA is

P(NA = k) = e−µ(A) (µ(A))k

k!
, k ≥ 0.

In particular, E[NA] = Var[NA] = µ(A).
(b) If A,B ⊂ D are disjoint Borel sets, then the variables NA and NB are independent.

It turns out that these two properties uniquely characterize the point process. Also,
the values µ(A) define a σ-finite Borel measure on D, which is called the intensity of the
process.
The Poisson process is a well-known statistical model for point distributions with no (or

weak) interactions, and it has multiple applications in a great variety of fields. Because
of property (b), it is clearly not adequate to describe distributions in which each point
is not statistically independent of the other points of the process. For such situations,
other models have been proposed (e.g. determinantal processes or zeros of Gaussian
analytic functions for random sequences with repulsion or Cox processes for situations
with positive correlations and clumping [18]).
It is also possible to create a Poisson process from a given, σ-finite, locally finite,

positive Borel measure µ in D, in the sense that there exists a point process Λµ with
intensity µ, i.e, whose counting functions satisfy properties (a) and (b) above. This is a
well-known, non-trivial fact that can be found, for example, in [19, Theorem 3.6]. Such
a Poisson process Λµ is sometimes called inhomogeneous or non-stationary.
In this paper, given a positive Borel measure µ on D, we study elementary geometric

properties of the inhomogeneous Poisson process of intensity µ, specifically in relation to
conditions used to describe interpolating sequences for various spaces of analytic functions
in D. We shall always assume that µ(D) = +∞, since otherwise Λµ would be finite almost
surely.
The probabilistic point of view has already been explored before in connection with

interpolation. Here, we mention Cochran [10] and Rudowicz [22], who considered the
probabilistic model Λ = {rneiθn}n in which the radii rn ⊂ (0, 1) are fixed a priori and
the arguments θn are chosen uniformly and independently in [0, 2π] (a so-called Steinhaus
sequence). For this model, they established a zero-one condition on {rn}n so that the
resulting random sequence is almost surely interpolating for the Hardy spaces. In [9],
similar results, for the same probabilistic model, were proven for the scale of weighted
Dirichlet spaces between the Hardy space and the classical Dirichlet space. See also [13]
for related results in the unit ball and the polydisk.
We should emphasize that while the previously discussed models involved a deter-

ministic part in fixing a priori a sequence of radii (satisfying de Blaschke condition),
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the Poisson process is a natural choice to get rid of this deterministic part. We would
also like to mention that Poisson processes give rise to new properties and phenomena.
For instance, as we prove in this article, Carleson measures for Hardy spaces are com-
pletely characterized for Poisson processes, which is not known so far for the case of the
radial model. Also, a characterization of almost surely interpolating sequences for the
Bloch space in the case of Poisson processes is new and follows quite immediately from
our results and previous deterministic characterizations. A last observation concerning
the techniques: while these are inspired by those introduced for the radial model, they are
not straightforward and have to take into account, in general, the non-radial character
of the process.
Our results are given in terms of a function Fµ defined in the following way. Let

ρ(z, w) =
∣∣∣ z − w

1− w̄z

∣∣∣, z, w ∈ D,

denote the pseudo-hyperbolic distance in D, and let

D(z, r) = {w ∈ D : ρ(z, w) < r}, z ∈ D, r ∈ (0, 1),

be the discs defined by ρ. Given a positive measure µ in D, define

Fµ(z) = µ
(
D(z, 1/2)

)
, z ∈ D.

It will be clear from the proofs that the analogous results hold if Fµ(z) is replaced by
Fµ,c(z) = µ(D(z, c)), where c ∈ (0, 1) is fixed. We will also need the invariant measure,
defined by

dν(z) =
dm(z)

(1− |z|2)2
, (1)

where dm denotes the normalized Lebesgue measure in D. Observe that the measure
Fµ dν can be seen as a regularized version of dµ.
A first geometric property on random sequences we are interested in is separation.

Definition 1.1. A sequence Λ = {λk}k≥1 ⊂ D is separated if there exists δ > 0 such
that

ρ(λk, λl) ≥ δ, k 6= l.

When we need to specify the separation constant we say that Λ is δ-separated.

We are now in a position to state our first result characterizing those Λµ which can
(almost surely) be expressed as finite unions of separated sequences.

Theorem 1.2. Let Λµ be the Poisson process associated with a positive, σ-finite, locally
finite measure µ and let M ≥ 1 be an integer. Then,

P
(
Λµ union of M separated sequences

)
=

{
1 if

∫
D FM+1

µ (z)dν(z) < ∞
0 if

∫
D FM+1

µ (z)dν(z) = ∞.
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In particular,

P
(
Λµ separated

)
=

{
1 if

∫
D F 2

µ(z)dν(z) < ∞
0 if

∫
D F 2

µ(z)dν(z) = ∞.

The characterization of a.s. separated sequences was first obtained, with a different
proof, in [2, Theorem 3.2.1].

Remark 1.3. As will be explained in § 2, the conditions
∫
D F γ

µ (z) dν(z) < ∞, γ > 1,
have equivalent discrete formulations in terms of the standard dyadic partition of D
(see § 2 for the corresponding notation and in particlar Proposition 2.1 for the equiva-
lent reformulation). We choose to write the statements here in terms of Fµ for the sake
of simplicity. However, we will only use the dyadic discretization in the proofs. This is
ultimately due to property (b) of the Poisson process (the independence of the count-
ing random variables associated with disjoint dyadic regions), which allows for simple
computations and the free use of the first and second Borel–Cantelli lemmas (which are
recalled in Lemma 1.7).

Our second result deals with so-called α-Carleson sequences. Given any arc I ⊂ T =
∂D, let |I| denotes its normalized length and consider the associated Carleson window

Q(I) =
{
z = reiθ ∈ D : r > 1− |I|, eiθ ∈ I

}
.

Definition 1.4. Let α ∈ (0, 1]. The sequence Λ satisfies the α-Carleson condition if
there exists C> 0 such that for all arcs I ⊂ T∑

λ∈Q(I)

(1− |λ|)α ≤ C|I|α.

Such sequences will also be called α-Carleson sequences.

The sequences Λ satisfying the 1-Carleson condition are by far the most studied,
because of their role in the famous characterization of the interpolating sequences for
the algebra H∞ of bounded holomorphic functions, given by Carleson [8] (see § 4). They
are sometimes found in the literature under the name of Carleson-Newman sequences.
The α-Carleson property above is a special case of a more general condition: a finite,

positive Borel measure σ on D is a Carleson measure of order α ∈ (0, 1] if σ(Q(I)) ≤ C|I|α
for some C > 0 and all intervals I. As shown by Carleson (see e.g. [16]), Carleson measures
(of order 1) are precisely those for which the embedding H2 ⊂ L2(D, σ) holds; here, H 2

is the classical Hardy space (see the definition in § 4.1). Carleson measures of order
α< 1 have been used, for example, in providing sufficient conditions for solvability of the
∂̄b-equation in Lp, Lp,∞ and in Lipschitz spaces of the boundary of strictly pseudoconvex
domains [3].

Theorem 1.5. Let Λµ be the Poisson process associated with a positive, σ-finite, locally
finite measure µ. Then
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(a)

P
(
Λµ is a 1− Carleson sequence

)
=

{
1 if ∃ γ > 1 such that

∫
D F γ

µ (z)dν(z) < ∞,

0 if
∫
D F γ

µ (z)dν(z) = ∞ for all γ ¿ 1.

(b) Let α ∈ (0, 1). If there exists 1 < γ < 1
1−α such that

∫
D F γ

µ (z) dν(z) < ∞, then

P
(
Λµ is α− Carleson

)
= 1

(c) There exists a positive, σ-finite, locally finite measure µ such that∫
D F

1/(1−α)
µ (z) dν(z) < ∞ and

P
(
Λµ is α− Carleson

)
= 0.

(d) For every γ > 1 there exists a positive, σ-finite, locally finite measure µ such that∫
D F γ

µ (z) dν(z) = +∞ but

P
(
Λµ is α− Carleson

)
= 1

for all α ∈ (0, 1).

Remark 1.6. (1) The first statement in part (a) is connected with the first part of
the statement in Theorem 1.2, since it is a well-known fact that every 1-Carleson (or
Carleson-Newman) sequence can be split into a finite number of separated sequences,
each of which being of course 1-Carleson [20, Lemma 21] (obviously a finite number of
arbitrary separated sequences may not be Carleson-Newman). However, Theorem 1.5(a)
does not give a precise information on the number of separated sequences involved. It is
also mentionable that the condition for a.s. separation from Theorem 1.2 implies auto-
matically the Carleson condition (picking γ = 2 > 1). This is perhaps more surprising
and may be explained by the nature of the process: the independence of the different
points allows for big fluctuations, so the probability of finding pairs of points arbitrarily
close is quite big unless the number of points in the process is restricted severely (up to∫
D F 2

µ(z) dν(z) < ∞).
(2) It is interesting to point out that for the inhomogeneous Poisson process we have a

characterization of 1-Carleson sequences, while in the a priori simpler random model with
fixed radii and random arguments there is only a sufficient – still optimal – condition
(see [9, Theorem 1.4]).
(3) In the case α ∈ (0, 1), the results are less precise than when α=1. The value

1/(1−α) turns out to be an optimal breakpoint but nothing specific can be said beyond
this value without additional conditions on the distribution of µ. The example given in
(c) is part of a certain parameter-dependent scale of measures which will be discussed in
§ 5 and for which the α-Carleson condition is characterized in terms of the parameter.
(4) Our conditions, both here and in Theorem 1.2, are expressed in terms of the measure

function Fµ(z) = µ
(
D(z, 1/2)

)
. Redistributing continuously µ near z (with a convolution)
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if necessary, we can always assume that µ is absolutely continuous with respect to the
Lebesgue measure.
(5) It is tempting to try to establish links between the growth of the intensity measure

and numerical estimates of the separation or the Carleson measure constants. However,
most of our results are based on the Borel–Cantelli lemma (see Lemma 1.7), which
intrinsically does not give any information on the finite number of events which do not
fulfil the underlying conditions (separation by a given constant or bounds of the Carleson
measure constants), neither how far they are from satisfying those conditions.

The structure of the paper is as follows. As mentioned earlier, our proofs are written in
terms of the standard dyadic discretization of µ, which is introduced in § 2. In particular,
we give the equivalent discrete formulations of the integral conditions for Fµ(z) given
in the statements above. In § 3, we prove the main Theorems 1.2 and 1.5. Section 4
deals with the consequences of these results in the study of interpolating sequences for
various spaces of holomorphic functions. In particular, we find precise conditions so that
a Poisson process Λµ is almost surely an interpolating sequence for the Hardy spaces Hp,
0 < p ≤ ∞, the Bloch space B or the Dirichlet spaces Dα, α ∈ (1/2, 1). A final section is
devoted to provide examples of Poisson processes associated with some simple measures.
We finish this introduction recalling the Borel–Cantelli lemma (first and second part),

which is a central tool in this paper. We refer to [4] for a general source on probability
theory. Given a sequence of events Ak, let lim supAk = {ω : ω ∈ Ak for infinitely
many k}.

Lemma 1.7. Let (Ak)k be a sequence of events in a probability space. Then,

(1) If
∑

P(Ak) < ∞, then P(lim supAk) = 0,
(2) If the events Ak are independent and

∑
P(Ak) = ∞, then P(lim supAk) = 1.

Acknowledgements: The authors would like to thank Joaquim Ortega-Cerdà, for
proposing the study of Poisson processes and for indicating the equivalence between
the continuous and discrete conditions (Proposition 2.1), and the referee, for the careful
reading of the manuscript.

2. Discretization of the integral conditions

Our proofs are written in terms of the following standard dyadic discretization of µ.
Consider first the dyadic annuli

An = {z ∈ D : 2−(n+1) < 1− |z| ≤ 2−n}, n ≥ 0.

Each An can be split into 2n boxes of the same size 2−n:

Tn,k =
{
z = reit ∈ An :

k

2n
≤ t

2π
<

k + 1

2n
}
, k = 0, 1, . . . , 2n − 1.

These boxes can be viewed as the top halves of the Carleson windows

Q(In,k) =
{
z = reiθ ∈ D : r > 1− 2−n, eiθ ∈ In,k

}
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associated with the dyadic intervals

In,k =
{
eit ∈ T :

k

2n
≤ t

2π
<

k + 1

2n
}
, n ≥ 0 , k = 0, 1, . . . , 2n − 1. (2)

Figure 1. Carleson window Q(In,k) associated with the dyadic interval In,k and its top half Tn,k.

Observe also that there exist constants c1, c2 ∈ (0, 1) such that

D(zn,k, c1) ⊂ Tn,k ⊂ D(zn,k, c2),

where zn,k is the centre of Tn,k (explicitly zn,k = (1− 3
2 2

−(n+1)) e2π
2k+1
2n ). In particular,

by the invariance of ν by automorphisms of D, there exist constants C1, C2 > 0 such that

C1 ≤ ν(Tn,k) ≤ C2, n ≥ 0, k = 0, . . . , 2n − 1.

Denote Xn,k = NTn,k
, which by hypothesis is a Poisson random variable of parameter

µn,k := E[Xn,k] = Var[Xn,k] = µ(Tn,k).

In these terms, the assumption µ(D) = +∞ is just

µ(D) =
∑
n∈N

2n−1∑
k=0

µn.k =
∑
n,k

µn,k = +∞.

The integral conditions given in the theorems above have the following discrete
reformulation, which will be used throughout the proofs in the forthcoming sections.
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Proposition 2.1. Let µ be a positive, locally finite, σ-finite measure µ on the unit
disk and let γ > 1. The following two conditions are equivalent:

(a)
∫
D F γ

µ (z)dν(z) < +∞,
(b)

∑
n,k

µγ
n,k < +∞.

Proof. We first remark that condition (b) is equivalent to its analogue where instead
of the dyadic partition {Tn,k}n,k a ‘δ-adic’ partition of D is considered. More precisely,
let δ ∈ (0, 1) and consider the δ-adic rings

An(δ) = {z ∈ D : δn+1 < 1− |z| ≤ δn} , n ≥ 0

and the boxes

Tn,k(δ) = {z = reit ∈ An(δ) : k ≤ t

2π
[1/δ] < k + 1}, k = 0, . . . , [1/δ]− 1.

Each Tn,k(δ) is contained in at most a finite number – depending only on δ, but not
on (n, k)– of Tm,j , and reciprocally each Tm,j is contained in at most a finite number of
Tn,k(δ). This shows that for any given γ > 1, and letting µn,k(δ) = µ

(
Tn,k(δ)

)
,∑

n,k

µγ
n,k < +∞ ⇐⇒

∑
n,k

µγ
n,k(δ) < +∞.

(a)⇒(b). Take δ ∈ (0, 1) small enough so that Tn,k(δ) ⊂ D(z, 1/2) for all z ∈ Tn,k(δ).
Then, µn,k(δ) ≤ Fµ(z) for all such z and∑

n,k

µγ
n,k(δ) .

∑
n,k

∫
Tn,k(δ)

F γ
µ (z) dν(z).

Since ν(Tn,k(δ)) is bounded above and below by constants depending only on δ (but not
on (n, k)), we have∑

n,k

µγ
n,k(δ) .

∑
n,k

∫
Tn,k(δ)

F γ
µ (z) dν(z) =

∫
D
F γ
µ (z) dν(z).

(b)⇒(a). Observe that for z ∈ Tn,k the disc D(z, 1/2) is contained in the union of Tn,k

and its eight adjacent boxes Tm,j . Let us denote by T j
n,k, j = 0, . . . , 8 these boxes (being

Tn,k = T 0
n,k). Then,

∫
D
F γ
µ (z) dν(z) ≤

∑
n,k

∫
Tn,k

µγ(D(z, 1/2)) dν(z) .
∑
n,k

 8∑
j=0

µ(T j
n,k)

γ

.
∑
n,k

 8∑
j=0

µγ(T j
n,k)

 .
∑
n,k

µγ
n,k.

�
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3. Proof of Theorems 1.2 and 1.5

Proof of Theorem 1.2

Assume first that
∫
D FM+1(z) dν(z) < ∞ or, equivalently, that

∑
n,k µ

M+1
n,k < +∞.

Define the events

An,k = {Xn,k > M} = {Xn,k ≥ M + 1}.

Then,

P(An,k) = 1−
M∑
j=0

P(Xn,k = j) = 1− e−µn,k
( M∑
j=0

µj
n,k

j!

)
.

By hypothesis lim
n
(supk µn,k) = 0, so we can use Taylor’s formula

1− e−x(
M∑
j=0

xj

j!
) =

xM+1

(M + 1)!
+ o(xM+1) x → 0 (3)

to deduce that ∑
n,k

P(An,k) .
∑
n,k

µM+1
n,k

(M + 1)!
< +∞.

By the Borel–Cantelli lemma almost surely Xn,k ≤ M for all but at most a finite number
of Tn,k.
In principle, this does not imply that Λµ can be split into M separated sequences,

because it might happen that points of two neighbouring Tn,k come arbitrarily close.
This possibility is excluded by repeating the above arguments to a new dyadic partition,
made of shifted boxes T̃n,k having the ‘lower vertices’ (those closer to T) at the centre of
the Tn,k’s (see Figure 2); let

T̃n,k =
{
z = reit :

3

2
2−(n+2) < 1− r ≤ 3

2
2−(n+1) ;

k + 1/4

2n
≤ t

2π
<

k + 3/4

2n

}
.

Since each T̃n,k is included in the union of at most four Tm,j , we still have
∑

n,k µ̃
M+1
n,k <

∞, and therefore, as before, X̃n,k = NT̃n,k
is at most M, except for maybe a finite number

of indices (n, k). This prevents that two adjacent Tn,k have more than M points getting
arbitrarily close. In conclusion, for all but a finite number of indices Xn,k ≤ M , hence the
part of Λµ in these boxes can be split into M separated sequences. Adding the remaining
finite number of points to any of these sequences may change the separation constant
but not the fact that they are separated.
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Figure 2. Dyadic partitions: {Tn,k}n,k in blue, {T̃n,k}n,k in red.

Assume now that
∑

n,k µ
M+1
n,k = +∞. We shall prove that for every δl0 = 2−l0 , l0 ∈ N,

P
(
Λ union of M δl0 − separated sequences

)
= 0.

Split each side of Tn,k into 2l0 segments of the same length. This defines a partition of
Tn,k in 22l0 small boxes of side length 2−n2−l0 , which we denote by

T
l0,j
n,k j = 1, . . . , 22l0 .

Let X
l0,j
n,k = N

T
l0,j
n,k

denote the corresponding counting variable, which follows a Poisson

law of parameter µn,k,l0,j
= µ(T

l0,j
n,k ).

It is enough to show that for any l0,

P(X l0,j
n,k > M for infinitely many n, k, j) = 1.

By the second part of the Borel–Cantelli lemma, since the X
l0,j
n,k are independent, we

shall be done as soon as we see that

∑
n,k

22l0∑
j=1

P
(
X

l0,j
n,k ≥ M + 1

)
= +∞. (4)

For any Poisson variable X of parameter λ, the probability

P(X ≥ M + 1) = e−λ
( ∞∑
m=M+1

λm

m!

)
= 1− e−λ

( M∑
m=0

λm

m!

)

https://doi.org/10.1017/S0013091524000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000282


Inhomogeneous Poisson processes in the disk and interpolation 759

increases in λ. Hence, there is no restriction in assuming that 0 ≤ µn,k,l0,j
≤ µn,k ≤ 1/2

for all n, k, j. Then, we can use Taylor’s formula (3) to deduce that

P
(
X

l0,j
n,k ≥ M + 1

)
'

µM+1
n,k,l0,j

(M + 1)!
,

and therefore, (4) is equivalent to

∑
n,k

22l0∑
j=1

µM+1
n,k,l0,j

= +∞.

The fact that this sum is infinite is just a consequence of the hypothesis and Jensen’s
inequality

µM+1
n,k =

(22l0∑
j=1

µn,k,l0,j

)M+1

≤ 22l0(M+1)
22l0∑
j=1

µM+1
n,k,l0,j

22l0
≤ 22l0M

22l0∑
j=1

µM+1
n,k,l0,j

.

Proof of Theorem 1.5.

(a) Assume first that
∑

n µ
γ
n,k < +∞ for some γ > 1. Observe that it is enough to

check the Carleson condition ∑
λ∈Q(I)

(1− |λ|) ≤ C|I|

on the dyadic intervals In,k given in (2). Let Qn,k = Q(In,k). Decomposing the sum on
the different layers Am, it is enough to show that almost surely there exists C > 0 such
that for all n ≥ 0, k = 0, . . . , 2n−1

∑
λ∈Qn,k

(1− |λ|) '
∑
m≥n

∑
j:Tm,j⊂Qn,k

2−mXm,j ≤ C2−n.

This is equivalent to

sup
n,k

2n
∑
m≥n

∑
j:Tm,j⊂Qn,k

2−mXm,j < ∞. (5)

Denote

Xn,m,k = NQn,k∩Am = #(Λ ∩Qn,k ∩Am) =
∑

j:Tm,j⊂Qn,k

Xm,j ,
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which is a Poisson variable of parameter

µn,m,k = µ(Qn,k ∩Am) =
∑

j:Tm,j⊂Qn,k

µm,j .

Set

Yn,k = 2n
∑
m≥n

2−mXn,k,m =
∑
m≥n

2n−mXn,k,m,

so that (5) becomes supn,k Yn,k < +∞.
Let A> 0 be a big constant to be fixed later on. Again by the Borel–Cantelli Lemma,

it is enough to show that ∑
n,k

P
(
Yn,k > A

)
< +∞, (6)

since then Yn,k ≤ A for all but maybe a finite number of n, k; in particular, supn,k
Yn,k < ∞.
The first step of the following reasoning is an adaptation to the Poisson process of

the proof given in [9, Theorem 1.1] and which allowed to improve the result on Carleson
sequences for the probabilistic model with fixed radii and random arguments. However,
while in the original proof, the Carleson boxes Qn,k are decomposed into layers Qn,k∩Am

(m ≥ n), in this new situation (as well as for (b)), Carleson boxes are decomposed into
top-halves Tm,j ⊂ Qn,k, which requires more delicate arguments to reach the convergence
needed in the Borel–Cantelli lemma.
Recall that the probability generating function of a Poisson variable X of parameter

λ is E(sX) = eλ(s−1). By the independence of the different Xn,k,m, m ≥ n,

E(sYn,k) =
∏
m≥n

E((s2
n−m

)Xn,m,k) =
∏
m≥n

eµn,m,k(s
2n−m

−1).

Thus for any s > 1, by Markov’s inequality

P(Yn,k > A) = P(sYn,k > sA) ≤ 1

sA
E(sYn,k) =

1

sA

∏
m≥n

eµn,m,k(s
2n−m

−1).

Using the estimate x(a1/x − 1) ≤ a, for a, x > 1, with a = s and x = 2m−n,

logP(Yn,k > A) ≤ −A log s+
∑
m≥n

(s2
n−m

− 1)µn,m,k

≤ −A log s+
∑
m≥n

s2n−m µn,m,k

= −A log s+ s
∑
m≥n

2n−m
∑

j:Tm,j⊂Qn,k

µm,j .

https://doi.org/10.1017/S0013091524000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000282


Inhomogeneous Poisson processes in the disk and interpolation 761

We want to optimize this estimate for s > 1. Set

Bn,k =
∑
m≥n

2−(m−n)
∑

j:Tm,j⊂Qn,k

µm,j

and define

φ(s) = −A log s+ sBn,k.

Let us observe first that the Bn,k are uniformly bounded (they actually tend to 0). Indeed,
let β denote the conjugate exponent of γ ( 1γ + 1

β = 1). Since, for m ≥ n, there are 2m−n

boxes Tm,j in Qn,k, by Hölder’s inequality on the sum in the index j we deduce that

Bn,k ≤
∑
m≥n

2−(m−n)
( ∑
j:Tm,j⊂Qn,k

µγ
m,j

)1/γ

2(m−n)/β

=
∑
m≥n

2−(m−n)/γ
( ∑
j:Tm,j⊂Qn,k

µγ
m,j

)1/γ

< +∞.

Taking A big enough we see that the minimum of φ is attained at s0 = A/Bn,k > 1.
Hence,

logP(Yn,k > A) ≤ φ(s0) = −A log
A

Bn,k
+A.

Therefore,

P
(
Yn,k > A

)
≤

(
Bn,k

A

)A

eA,

and ∑
n,k

P(Yn,k > A) ≤
( e

A

)A ∑
n,k

BA
n,k.

The estimate on Bn,k obtained previously is not enough to prove that this last sum
converges. In order to obtain a better estimate take p> 1, to be chosen later on, its
conjugate exponent q (i.e. 1

p + 1
q = 1), and apply Hölder’s inequality in the following

way:

Bn,k =
∑
m≥n

j:Tm,j⊂Qn,k

2−(m−n)µm,j = 2n
∑
m≥n

j:Tm,j⊂Qn,k

2−
m
p 2−

m
q µm,j

≤ 2n
( ∑

m≥n
j:Tm,j⊂Qn,k

2−
mβ
p
)1/β

×
( ∑

m≥n
j:Tm,j⊂Qn,k

2−
mγ
q µγ

m,j

)1/γ

.
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Choose now p so that 1 < p < β; then,

∑
m≥n

j:Tm,j⊂Qn,k

2−
mβ
p =

∞∑
m=n

2−
mβ
p 2m−n = 2−n

∞∑
m=n

2−m(
β
p−1) ' 2−n2−n(

β
p−1) = 2−n

β
p .

Thus, from the above estimate,

Bn,k ≤ 2
n
q
( ∑

m≥n
j:Tm,j⊂Qn,k

2−
mγ
q µγ

m,j

)1/γ

.

Choosing A = γ yields∑
n,k

Bγ
n,k ≤

∑
n,k

2
nγ
q

∑
m≥n

j:Tm,j⊂Qn,k

2−
mγ
q µγ

m,j .

We now apply Fubini’s theorem to exchange the sums. The important observation here
is that each Tm,j has only one ancestor at each level n ≤ m (i.e., one Tn,k containing
Tm,j). Hence,∑

n,k

Bγ
n,k ≤

∑
m,j

2−
mγ
q µγ

m,j

∑
n≤m

k:Qn,k⊇Tm,j

2
nγ
p =

∑
m,j

2−
mγ
q µγ

m,j

∑
n≤m

2
nγ
q

≤ 2
∑
m,j

2−
mγ
q µγ

m,j 2
mγ
q = 2

∑
m,j

µγ
m,j .

This finishes the proof of (6), hence of this part of the theorem.
Let us now assume that

∑
n,k µ

γ
n,k = +∞ for every γ > 1. Suppose M ≥ 1 is an integer.

Since the sum diverges for γ = M+1, Theorem 1.2 implies that the sequence Λµ is almost
surely not a union of M separated sequences. In particular, there is λ0 ∈ Λµ such that
Dλ0

= {z ∈ D : ρ(λ0, z) < 1/2} contains at least M +1 points of Λµ. Then, letting Iλ0 be
the interval centred at λ0/|λ0| with length 1−|λ0|, we have

∑
λ∈Q(Iλ0

)(1−|λ|) & M |Iλ0 |,
where the underlying constant does not depend on M or λ0. This being true for every
integer M ≥ 1, the sequence cannot be 1-Carleson.
(b) Proceeding as in the first implication of (a) we see that it is enough to prove that

almost surely

sup
n,k

Yn,k < +∞ , (7)

where now

Yn,k = 2nα
∑
m≥n

2−mα
∑

j:Tm,j⊂Qn,k

Xm,j . (8)
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The same estimates as in (a) based on the probability generating function yield, for s > 1,

logP
(
Yn,k ≥ A

)
≤ φ(s) = −A log s+Bn,k,

where now

Bn,k =
∑
m≥n

2−(m−n)α
∑

j:Tm,j⊂Qn,k

µm,j .

As in (a), the hypotheses imply that Bn,k is uniformly bounded: letting β denote the
conjugate exponent to γ ( 1γ + 1

β = 1) and noticing that α− 1/β = 1/γ − (1− α) > 0,

Bn,k ≤
∑
m≥n

2−(m−n)α
( ∑
j:Tm,j⊂Qn,k

µγ
m,j

)1/γ

2(m−n)/β

=
∑
m≥n

2−(m−n)(α−1/β)
( ∑
j:Tm,j⊂Qn,k

µγ
m,j

)1/γ

.

Therefore, optimizing the estimate for s > 1 exactly as we did in (a), we obtain P
(
Yn,k ≥

A
)
. BA

n,k, and we are lead to prove that for some A> 0

∑
n,k

P
(
Yn,k ≥ A

)
.

∑
n,k

BA
n,k < ∞. (9)

Again, we introduce an auxiliary weight p – to be determined later – and its conjugate

exponent q. Split 2−mα = 2−
mα
p 2−

mα
q and use Hölder’s inequality to obtain

Bn,k ≤ 2nα
( ∑

m≥n
j:Tm,j⊂Qn,k

2−
mαβ
p

)1/β

×
( ∑

m≥n
j:Tm,j⊂Qn,k

2−
mαγ
q µγ

m,j

)1/γ

.

The first sum is finite: since by hypothesis αβ = αγ
γ−1 > 1, there exists 1 < p < αγ

γ−1 and

∑
m≥n

j:Tm,j⊂Qn,k

2−
mαβ
p =

∑
m≥n

2−
mαβ
p 2m−n = 2−n

∑
m≥n

2−m(
αβ
p −1) ' 2−n

αβ
p .

This implies that

Bγ
n,k . 2nα

γ
q

∑
m≥n

j:Tm,j⊂Qn,k

2−
mαγ
q µγ

m,j
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and we can conlude the proof of (9) as before:

∑
n,k

Bγ
n,k .

∑
n,k

2nα
γ
q

∑
m≥n

j:Tm,j⊂Qn,k

2−
mαγ
q µγ

m,j =
∑
m,j

µγ
m,j2

−mα
γ
q

∑
n≤m

k:Qn,k⊇Tm,j

2nα
γ
q

=
∑
m,j

µγ
m,j2

−mα
γ
q
∑
n≤m

2−nα
γ
q '

∑
m,j

µγ
m,j < +∞.

(c) Here, we give a measure µ for which
∑

n,k µ
1/(1−α)
n,k < +∞ but

P(Λµ is α-Carleson) = 0. Let

dµ(z) =
dm(z)

(1− |z|2)α+1 log
(

e
1−|z|2

) =
dν(z)

(1− |z|2)α−1 log
(

e
1−|z|2

) ,
which is the measure µ = µ(α+ 1, 1) given in the family of examples of § 5. By a simple
computation (see (11)),

µn,k ' 2−n(1−α)

n
n ≥ 1, k = 0, . . . , 2n − 1,

and therefore, since k ranges over 2n terms,

∑
n,k

µ
1/(1−α)
n,k '

∑
n≥1

1

n1/(1−α)
< +∞.

On the other hand, letting Yn,k be as in the proof of part (b) (see (8)), we get

E(Yn,k) = 2nα
∑
m≥n

2−mα
∑

j:Tm,j⊂Qn,k

µm,j ' 2nα
∑
m≥n

2−mα2m−n 2
−(1−α)m

m

= 2−(1−α)n
∑
m≥n

1

m
= +∞

Thus, the expected weight of any single Carleson window Qn,k is infinite and Λµ cannot
be α-Carleson.
(d) One could think of considering a divergent series

∑
n,k µ

γ
n,k = +∞ such that∑

n,k µ
γ′
n,k < +∞ for every γ′ > γ, and then apply (b), showing that Λµ is α-Carleson

when γ′ < 1
1−α , i.e. when α > 1 − 1

γ′ = γ′−1
γ′ . However, this does not yield the whole

range α ∈ (0, 1) for a fixed measure, as required by the statement.
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In order to construct an example working for all α ∈ (0, 1), we pick a measure µ
supported in a Stolz angle of vertex 1, i.e. let, for n ≥ 1,

µn,k =


1

n1/γ
if k = 0

0 if k > 1.

(We could equivalently take the measure τ(2, 1/γ) given in § 5, Example 3). Then,∑
n,k

µγ
n,k =

∑
n

1

n
= ∞ (10)

but for every γ′ > γ, ∑
n,k

µγ′
n,k =

∑
n

1

nγ′/γ
< +∞.

To prove that Λµ is almost surely α-Carleson we will argue as before. Set Yn,k as in
the proof of (b) (see (8)) and follow the same steps to prove that

P(Yn,k ≥ A) . BA
n,k,

where

Bn,k =
∑
m≥n

∑
j:Tm,j⊂Qn,k

µm,j2
−(m−n)α.

By construction, Bn,k = 0 for all k > 0. On the other hand,

Bn,0 = 2nα
∑
m≥n

2−mαµm,0 = 2nα
∑
m≥n

2−mα

m1/γ
≤ 1

n1/γ
.

(Observe that this last expression is independent of α.) Hence,∑
n,k

Bγ′
n,k =

∑
n

Bγ′
n,0 ≤

∑
n

1

nγ′/γ
< +∞,

and as in the proof of (b) the Borel–Cantelli lemma allows to conclude that Λ is almost
surely α-Carleson.

4. Random interpolating sequences

In this section, we discuss several consequences of Theorems 1.2 and 1.5 on random
interpolating sequences Λµ for various spaces of holomorphic functions in D. The results
are rather straightforward consequences of the aforementioned theorems and the known
conditions for such sequences.
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4.1. Hardy (and Bergman) spaces

In this section, we characterize the measures µ for which the associated Poisson process
Λµ is almost surely an interpolating sequence for the Hardy spaces.
Recall that a sequence Λ = {λn}n∈N ⊂ D is interpolating for

H∞ =
{
f ∈ H(D) : ‖f‖∞ = sup

z∈D
|f(z)| < ∞

}
whenever for every sequence of bounded values {wn}n∈N ⊂ C there exists f ∈ H∞

such that f(λn) = wn, n ∈ N. According to a famous theorem by Carleson, Λ is
H∞-interpolating if and only if it is separated and 1-Carleson [8]. This characterization
extends to all Hardy spaces

Hp =
{
f ∈ H(D) : ‖f‖p = sup

r<1

(∫ 2π

0

|f(reit)|p dt

2π

)1/p

< +∞
}

0 < p < ∞,

for which the interpolation problem is defined in a similar manner (the data wn to be
interpolated should satisfy

∑
n(1− |λn|2)|wn|p < +∞, see e.g. [14, Chapter 9]).

The separation condition given in Theorem 1.2 implies immediately that Λµ is
1-Carleson, by Theorem 1.5; hence, the following result follows.

Theorem 4.1. Let Λµ be the Poisson process associated with a positive, σ-finite, locally
finite measure µ. Then, for any 0 < p ≤ ∞,

P
(
Λµ is Hp − interpolating

)
=

{
1 if

∫
D F 2

µ(z) dν(z) < ∞
0 if

∫
D F 2

µ(z) dν(z) = ∞.

To complete the picture, we discuss zero sequences Λ for Hp, 0 < p ≤ ∞. These are
deterministically characterized by the Blaschke condition

∑
λ∈Λ(1 − |λ|) < ∞. Noticing

that {
∑

λ∈Λµ
(1− |λ|) < ∞} is a tail event and using Kolmogorov’s 0-1 law we get:

Proposition 4.2. Let Λµ be the Poisson process associated with a positive, σ-finite,
locally finite measure µ. Then, for any 0 < p ≤ ∞,

P
(
Λµ is a zero set for H

p
)
=

{
1 if

∫
D(1− |z|) dµ(z) < ∞

0 if
∫
D(1− |z|) dµ(z) = ∞.

Observe that∫
D
(1− |z|) dµ(z) =

∑
n,k

∫
Tn,k

(1− |z|) dµ(z) '
∑
n,k

2−nµn,k

and that the condition is just

E
[ ∑
λ∈Λµ

(1− |λ|)
]
= E

[∑
n,k

∑
λ∈Tn,k

(1− |λ|)
]
'

∑
n,k

2−nE
[
Xn,k

]
=

∑
n,k

2−nµn,k < ∞.
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Observe also that
∑2n−1

k=0 µn,k = µ(An) for all n ∈ N; hence,∑
n,k

2−nµn,k =
∑
n

2−nµ(An).

Proof of Proposition 4.2. Denote Xn = NAn =
∑2n−1

k=0 Xn,k and denote µn =
E[Xn] = µ(An).
Assume first that

∑
n 2

−nµn < +∞. Set Y =
∑

n 2
−nXn and observe that, by the

independence of the different Xn,

E[Y ] =
∑
n

2−nµn < +∞ Var(Y ) =
∑
n

2−2nµn < +∞.

Then, by Markov’s inequality,

P(Y ≥ 2E(Y )) ≤ 1

2
.

Since {Y = ∞} is a tail event, Kolmogorov’s 0-1 law implies that P(Y = +∞) = 0, and
in particular, the Blaschke sum is finite almost surely.
Assume now that

∑
n 2

−nµn = +∞. Split the sum in two parts:∑
n

2−nµn =
∑

n:µn≤2n/n2

2−nµn +
∑

n:µn>2n/n2

2−nµn.

It is enough to consider the second sum, since the first one obviously converges. Since
Var[Xn] = µn, Chebyshev’s inequality yields,

P(Xn ≤ 1

2
µn) = P(Xn ≤ µn − µn

2
) ≤ P(|Xn − µn| ≥

µn

2
) ≤ 4

µn
.

Hence,

∑
n:µn>2n/n2

P(Xn ≤ 1

2
µn) ≤

∑
n:µn>2n/n2

4

µn
≤

∑
n:µn>2n/n2

4n2

2n
< +∞.

Now, by the Borel–Cantelli lemma, Xn > 1
2µn for all but maybe a finite number of the

n with µn > 2n/n2; hence,

∑
n:µn>2n/n2

2−nXn %
1

2

∑
n:µn>2n/n2

2−nµn,

which diverges, by hypothesis. �
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4.1.1. Remark. Interpolation in Bergman spaces

Interpolating sequences Λ for the (weighted) Bergman spaces

Bp
α =

{
f ∈ H(D) : ‖f‖pα,p =

∫
D
|f(z)|p(1− |z|2)αp−1 dm(z) < ∞

}
,

with 0 < α, 0 < p ≤ ∞ are characterized by the separation together with the upper
density condition

D+(Λ) := lim sup
r→1−

sup
z∈D

∑
1/2<ρ(z,λ)≤r

log 1
ρ(z,λ)

log( 1
1−r )

< α

(see [23] and [17, Chapter 5] for both the definitions and the results).
Since every 1-Carleson sequence has density D+(Λ) = 0, the same conditions of

Theorem 4.1 also characterize a.s. Bergman interpolating sequences, regardless of the
indices α and p. Again, because of the big fluctuations of the Poisson process, the condi-
tions required to have separation a.s. are so strong that they can only produce sequences
of zero upper density.
Another indication of the big fluctuations of the Poisson process is the following. For

the invariant measure dν(z) = dm(z)

(1−|z|2)2 , which obviously satisfies νn,k ' 1 for all n, k, it

is not difficult to see that almost surely,

D+(Λν) = +∞ and D−(Λν) := lim inf
r→1−

inf
z∈D

∑
1/2<ρ(z,λ)≤r

log 1
ρ(z,λ)

log( 1
1−r )

= 0.

Therefore, there are way too many points for Λν to be interpolating for any Bp
α, but

there are too few for it to be sampling, since these sets must have strictly positive lower
density D−(Λ) (see [17, Chapter 5]).

4.2. Interpolation in the Bloch space

We consider now interpolation in the Bloch space B, consisting of functions f
holomorphic in D such that

‖f‖B := |f(0)|+ sup
z∈D

|f ′(z)|(1− |z|2) < +∞.

Since Bloch functions satisfy the Lipschitz condition |f(z)− f(w)| ≤ ‖f‖B δ(z, w), where

δ(z, w) = 1
2 log 1+ρ(z,w)

1−ρ(z,w) denotes the hyperbolic distance, Nicolau and Bøe defined inter-

polating sequences for B as those Λ = {λn}n∈N such that for every sequence of values

{vn}n∈N with sup
n6=m

|vn−vm|
δ(λn,λm) < ∞ there exists f ∈ B with f(λn) = vn, n ∈ N [5].

Theorem ([5, p. 172], [24, Theorem 7]). A sequence Λ of distinct points in D is an
interpolating sequence for B if and only if:
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(a) Λ can be expressed as the union of at most two separated sequences,
(b) for some 0 < γ < 1 and C> 0,

#
{
λ ∈ Λ : ρ(z, λ) < r

}
≤ C

(1− r)γ

independently on z ∈ D.

As explained in [5], condition (b) can be replaced by:

(b)’ for some 0 < γ < 1 and C > 0, and for all Carleson windows Q(I ),

#
{
λ ∈ Q(I) : 2−(l+1)|I| < 1− |λ| < 2−l|I|

}
≤ C2γl , l ≥ 0.

In [24, Corollary 2], it is mentioned that it can also be replaced by:

(b)” , there exist 0 < γ < 1 and such that Λ is γ-Carleson.

In view of conditions (a) and (b)”, the following characterization of Poisson processes
which are a.s. Bloch interpolating sequences follows from Theorems 1.2 and 1.5(b) (with
γ ∈ (2/3, 1)).

Theorem 4.3. Let Λµ be the Poisson process associated with a positive, σ-finite, locally
finite measure µ. Then,

P
(
Λµ is B − interpolating

)
=

{
1 if

∫
D F 3

µ(z) dν(z) < ∞
0 if

∫
D F 3

µ(z) dν(z) = ∞.

Note. In case
∫
D F 3

µ(z) dν(z), it is also possible to prove (b)’ directly, with the same
methods employed in the proof of Theorem 1.5. It is enough to prove the estimate for
dyadic arcs In,k, and for those

#
{
λ ∈ Q(In,k) : 2

−(l+1)|In,k| < 1− |λ| < 2−l|In,k|
}
'

∑
j:Tn+l,j⊂Qn,k

Xn+l,j .

In the above, the left-hand side corresponds essentially to the number of points in the
layer Q(In,k) ∩An+l. Thus, with m = n+ l, (b)’ is equivalent to

sup
n,k

sup
m≥n

2−γ(m−n)
∑

j:Tm,j⊂Qn,k

Xm,j < +∞.

Letting

Yn,k,m = 2−γ(m−n)
∑

j:Tm,j⊂Qn,k

Xm,j , E[Yn,k,m] = 2−γ(m−n)
∑

j:Tm,j⊂Qn,k

µm,j
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and proceeding as in the first part of the proof of Theorem 1.5(a) we get (taking A=3):

∑
n,k

∑
m≥n

P
(
Yn,k,m ≥ 3

)
.

∑
n,k

∑
m≥n

[
2−γ(m−n)

∑
j:Tm,j⊂Qn,k

µm,j

]3
≤

∑
n,k

∑
m≥n

2−3γ(m−n)
∑

j:Tm,j⊂Qn,k

µ3
m,j 22(m−n)

=
∑
m,j

µ3
m,j

∑
n≤m

∑
k:Qn,k⊇Tm,j

2−(3γ−2)(m−n).

For any γ > 2/3, this sum is bounded by
∑

m,j µ
3
m,j , so we can conclude with the

Borel–Cantelli lemma.

4.3. Interpolation in Dirichlet spaces

Our last set of results concerns interpolation in the Dirichlet spaces,

Dα =
{
f ∈ H(D) : ‖f‖2Dα = |f(0)|2 +

∫
D
|f ′(z)|2(1− |z|2)α dm(z) < ∞

}
,

with α ∈ (0, 1). The limiting case α=1 can be identified with the Hardy space H 2.
In these spaces, interpolating sequences are characterized by the separation and a

Carleson type condition. This was initially considered by W.S. Cohn, see [11]; we refer
also to the general result [1]. While separation is a simple condition, that in our random
setting is completely characterized by Theorem 1.2, the characterization of Carleson
measures in these spaces is much more delicate. This was achieved by Stegenga using the
so-called α-capacity [25]. In our setting, it is, however, possible to use an easier sufficient
one-box condition that can be found in K. Seip’s book, see [24, Theorem 4, p. 38], which
we recall here for the reader’s convenience.

Theorem 4.4 (Seip). A separated sequence Λ in D is interpolating for Dα, 0 < α < 1
if there exist 0 < α′ < α such that Λ is α′-Carleson.

The reader should be alerted that in Seip’s book the space Dα is defined in a slightly
different way and that the above statement is adapted to our definition.
For these spaces, Theorems 1.2 and 1.5 lead to less precise conclusions. Indeed, in view

of Theorem 1.5(c),(d), we cannot hope for complete characterizations if we do not impose
additional conditions on the measure µ .

Theorem 4.5. Let Λµ be the Poisson process associated with a positive, σ-finite, locally
finite measure µ.

(a) If 1/2 < α < 1, then

P
(
Λµ is interpolating for Dα

)
=

{
1 if

∫
D F 2

µ(z) dν(z) < +∞
0 if

∫
D F 2

µ(z) dν(z) = +∞.
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(b) If 0 ≤ α < 1/2 and there exists 1 < γ < 1
1−α such that

∫
D F γ

µ (z) dν(z) < +∞,
then

P
(
Λµ is interpolating for Dα

)
= 1.

Clearly, the condition
∫
D F 2

µ(z) dν(z) < +∞ is also necessary in the case (b) (if the
integral diverges, then Λµ is almost surely not separated).

Proof. (a) If
∑

n,k µ
2
n,k = +∞, then Λµ is almost surely not separated by Theorem 1.2;

hence, it is almost surely not interpolating.
If

∑
n,k µ

2
n,k < +∞, Theorem 1.2 shows again that the sequence Λµ is almost surely

separated. By Seip’s theorem, it remains to show that Λµ is almost surely α′-Carleson for
some α′ < α. Pick 1/2 < α′ < α < 1, so that 1/(1−α′) > 2. Choosing γ ∈ (2, 1/(1−α′)),
we get ∑

n,k

µγ
n,k .

∑
n,k

µ2
n,k < +∞,

and by Theorem 1.5(b), we conclude that Λµ is almost surely α′-Carleson.
(b) If α < 1/2, then 1/(1 − α) < 2 and the value γ given by the hypothesis satisfies

1 < γ < 2. Therefore, ∑
n,k

µ2
n,k .

∑
n,k

µγ
n,k < +∞,

which allows to deduce from Theorem 1.2 that Λµ is almost surely separated.
Since the inequality γ < 1/(1−α) is strict, we also have γ < 1/(1−α′) for some α′ < α

sufficiently close to α. Again, Theorem 1.5(b) shows that Λµ is almost surely α′-Carleson,
and Seip’s theorem implies that Λµ is almost surely interpolating. �

4.4. Additional remarks and comments

The above results show several applications of our Theorems 1.2 and 1.5, but they also
give rise to many challenging questions. Is it possible to get a necessary counterpart of
Theorem 1.5(b) under reasonable conditions on µ (more general than the class considered
in § 5 below)? Is it possible to get precise statements when α = 1/2? Also, the case of the
classical Dirichlet space seems to be largely unexplored for Poisson point processes, while
the situation regarding interpolation, separation and zero-sets for the radial probabilistic
model is completely known for all α ∈ [0, 1] (see [6, 9]).

5. Examples

In this final section, we illustrate the above results with three simple families of measures
on D. In the second part, we briefly discuss alternative, non-discrete, formulations of the
conditions given in the previous statements.

https://doi.org/10.1017/S0013091524000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000282


772 A. Hartmann and X. Massaneda

5.1. Radial measures

Define

dµ(a, b)(z) =
dm(z)

(1− |z|2)a logb
(

e
1−|z|2

) =
dν(z)

(1− |z|2)a−2 logb
(

e
1−|z|2

) ,
where either a > 1, b ∈ R, or a =1 and b ≤ 1 (so that µ(a, b)(D) = +∞).
Observe that

µ(a, b)n,k ' 2−n(2−a)

nb
n ≥ 1, k = 0, . . . , 2n − 1,

and therefore, for γ > 0,

∑
n,k

µ(a, b)γn,k '
∑
n

2n
2−n(2−a)γ

nbγ
=

∑
n

2−n[(2−a)γ−1]

nbγ
. (11)

Proposition 5.1. Consider the Poisson process Λa,b associated with the measure
µ(a, b), with either a> 1 or a=1 and b ≤ 1.

(a) Λa,b can a.s. be expressed as a union of M separated sequences if and only if either
a < 2− 1

M+1 and b ∈ R or a = 2− 1
M+1 and b > 1

M+1 .
(b) In particular, Λa,b is a.s. separated if and only if either a < 3/2 and b ∈ R or

a = 3/2 and b > 1/2.
(c) Λa,b is a.s. a 1-Carleson sequence if and only if a< 2, b ∈ R.
(d) Let α ∈ (0, 1). Then Λa,b is a.s. an α-Carleson sequence if and only if a < 1 + α

or a = 1 + α and b> 1.

Proof. (a) is immediate from Theorem 1.2 and (11) with γ = M + 1 and the usual
equivalence of Proposition 2.1.
(b) If a ≥ 2 the series in (11) diverges for all γ > 1, thus by Theorem 1.5(a) Λa,b is a.s.

not 1-Carleson.
On the other hand, if a < 2, there exists γ such that (2 − a)γ − 1 > 0 (i.e, such

that γ > 1
2−a ). For that γ, the series in (11) converges, and we can conclude again by

Theorem 1.5(a).
(c) Suppose first that a < 1+α. As in the previous case, since 2−a > 1−α, there exists

γ ∈ ( 1
2−a ,

1
1−α ). For this γ, the series in (11) converges and we can apply Theorem 1.5(b).

If a > 1 + α and b ∈ R, then Λµ(a,b) contains in the mean more points than Λµ(1+α,1)

for which we have shown in Theorem 1.5(c) that it is almost surely not α-Carleson.
It thus remains the case a = 1 + α. Again, when b=1 – and thus also when b< 1

since then we have more points in the mean – the proof of Theorem 1.5(c) shows that
the corresponding sequence is almost surely not α-Carleson.
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Finally, suppose that a = 1 + α and b> 1. Recall from (8), the notation

Yn,k = 2nα
∑
m≥n

2−mα
∑

j:Tm,j⊂Qn,k

Xm,j .

In the proof of Theorem 1.5(b), we have shown that

P (Yn,k ≥ A) ≤ BA
n,k,

where

Bn,k =
∑
m≥n

2−(m−n)α
∑

j:Tm,j⊂Qn,k

µm,j .

From the explicit form of µm,j , we get

Bn,k '
∑
m≥n

2−(m−n)α × 2m−n × 2−m(2−a)

mb
= 2n(α−1)

∑
m≥n

2−m(α+1−a)

mb
,

which converges exactly when a < 1 + α or when a = 1 + α and b> 1, which is the case
we are interested in here. In this situation, we get

Bn,k ' 2−n(2−a)

nb
.

Clearly, when A ≥ 1/(2−a) = 1/(1−α), then
∑

n,k B
A
n,k converges, and the Borel–Cantelli

lemma shows that Yn,k ≥ A can happen for an at most finite number of Carleson windows
Qn,k. Hence, Λµ(a,b) is a.s. α-Carleson. �

5.2. Measures with a singularity on T

Define now

dσ(a, b)(z) =
dm(z)

|1− z|a logb
(

e
|1−z|

) ,
where either a > 2, b ∈ R, or a =2 and b ≤ 1 (so that σ(a, b)(D) = +∞). Here,

σ(a, b)n,k = σ(a, b)(Tn,k) '
2−2n

[(k + 1)2−n]a logb
(

e
(k+1)2−n

) , n ∈ N, k = 0, . . . , 2n−1.
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Hence, for γ > 1,

∑
n,k

σ(a, b)γn,k '
∑
n

2−nγ(2−a)
2n∑
k=1

1(
ka logb

(
e

k2−n

))γ . (12)

Let us examine the growth of the sum in k. For that, set

Sn(a, b, γ) =
2n∑
k=1

1

kaγ logbγ
(

e
k2−n

) '
∫ 2n

1

dx

xaγ logbγ
(

e
x2−n

) .
The change of variable t = log

(
e

x2−n

)
leads to

Sn(a, b, γ) '
∫ 1

log(2ne)

(
et

e2n

)aγ−1 −dt

tbγ
=

2−n(aγ−1)

eaγ−1

∫ log(2ne)

1

et(aγ−1) dt

tbγ
.

Our standing assumption being a > 2 or a =2 and b ≤ 1, we only need to consider these
two cases. In both cases, et(aγ−1)/tbγ → +∞ as t → +∞, and the last integral behaves
essentially as the value in the upper bound of the integration interval

∫ log(2ne)

1

et(aγ−1) dt

tbγ
' 2n(aγ−1)

nbγ
.

Hence,

Sn(a, b, γ) '
1

nbγ
,

and

∑
n,k

σ(a, b)γn,k '
∑
n

2−nγ(2−a) × 1

nγb
=

∑
n

2−nγ(2−a)

nγb
. (13)

We are now in a position to prove the following result.

Proposition 5.2. Consider the Poisson process Λ̃a,b associated with the measure
σ(a, b) with either a> 2 or a=2 and b ≤ 1.

(a) For a> 2, the process Λ̃a,b is a.s. neither a finite union of separated sequences nor
an α-Carleson, for any α ∈ (0, 1].

(b) For a=2, the process Λ̃2,b is
(i) the union of M separated sequences if and only if b > 1

M+1 ,
(ii) α-Carleson for α ∈ (0, 1) if b > 1− α.

https://doi.org/10.1017/S0013091524000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000282


Inhomogeneous Poisson processes in the disk and interpolation 775

Proof. (a) is immediate from Theorems 1.2 and 1.5, since (13) diverges for all γ > 0.
(b) In this case, the series (13) is just

∑
n 1/n

bγ .
The case (i) follows from Theorem 1.2 with γ = M + 1.
For (ii), by the hypothesis 1/b < 1/(1−α), there exists 1/b < γ < 1/(1−α), for which

the series (13) converges. We can conclude by Theorem 1.5. �

5.3. Measures in a cone

Given a point ζ ∈ T, consider the Stolz region

Γ(ζ) =
{
z ∈ D :

|ζ − z|
1− |z|

< 2
}
.

We discuss the previous measures restricted to Γ(ζ). With no loss of generality, we can
assume that ζ =1. Let thus

dτ(a, b)(z) = χΓ(1)(z) dµ(a, b)(z) = χΓ(1)(z)
dm(z)

(1− |z|2)a logb
(

e
1−|z|2

) ,
where now either a > 2 and b ∈ R or a =2 and b ≤ 1 (so that ν(a, b)(D) = +∞). Since,
in Γ(1), the measures dµ(a, b) and dσ(a, b) behave similarly, we could replace dµ(a, b) by
dσ(a, b) in the definition of dτ(a, b) and obtain the same results.
Observe that ν(a, b)n,k is non-zero only for a finite number N of k at each level n, and

that for those k

τ(a, b)n,k ' 2−n(2−a)

nb
n ≥ 1, k = 0, . . . , N.

Hence,

∑
n,k

τ(a, b)γn,k '
∑
n

2−n(2−a)γ

nbγ
, (14)

which is exactly the same estimate as in (13) and thus immediately leads to the same
result as Proposition 5.2. This might look surprising since σ(a, b) (and a fortiori µ(a, b))
puts infinite mass outside Γ(ζ) (actually outside Stolz angles at ζ with arbitrary opening).

Proposition 5.3. Consider the Poisson process Λ̂a,b associated with the measure
τ(a, b), with either a> 2 or a=2 and b ≤ 1.

(a) For a> 2, the process Λ̂a,b is a.s. not a finite union of separated sequences
separated or α-Carleson for any α ∈ (0, 1].

(b) For a=2, the process Λ̂2,b is
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(1) the union of M separated sequences if and only if b > 1
M+1 ,

(2) α-Carleson for α ∈ (0, 1) if b > 1− α.
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