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Abstract

Automatic detection and removal of weeds is a challenging task that requires precise sensors.
While crops and weeds possess similar features in terms of appearance, they can be
discriminated based on spectral information. This can be done because any object has its own
specific spectral signature based on its physical structure and chemical contents. This study
examined the use of wavelet transform and deep learning for discrimination of weeds from
crops. A total of 626 spectral reflectances in the range of 380 to 1,000 nmwere obtained for three
crops (cucumber [Cucumis sativus L.], tomato [Solanum lycopersicum L.], and bell pepper
[Capsicum annuum L.]) and five different weeds (bindweed [Convolvulus spp.], purple
nutsedge [Cyperus rotundus L.], narrowleaf plantain [Plantago lanceolata L.], common
cinquefoil [Potentilla simplex Michx.], and garden sorrel [Rumex acetosa L.]). Morse wavelet
was employed to decompose the spectra and extract the scalograms, which are the RGB
representations of the spectral data. Two deep convolutional neural networks (i.e., GoogLeNet
and SqueezNet) were employed for the recognition of crops and weeds. In addition, six
common classifiers, including linear discriminant analysis, quadratic discriminant analysis,
linear support vector machine, quadratic support vector machine, artificial neural networks,
and k-nearest neighbors classifier (KNN), were used for the task of crop/weed discrimination to
build the comparison with the proposed method. The error of prediction gradually decreased,
and a 100% correct classification was achieved after 258 iterations. Analysis showed that
SqueezNet provided classification of 100% accuracy, while GoogLeNet’s accuracy was 97.8% for
the test set. Among the common classifiers, KNN provided the highest accuracy (i.e., 100%).
This study showed that the proposed method can be successfully utilized for classification of
crops and weeds.

Introduction

Weeds, which are considered to be any unwanted plants in the field, not only affect the crops
around them, but can also jeopardize agricultural areas. Weeds compete for nutrients, soil,
water, and space and should be detected and eliminated at an early stage. As the most important
crop protection strategy, weed control can lead to a 20% increase in yield (Buddenhagen et al.
2020). Traditional weed control using chemicals is expensive and can be reduced by more than
50% if novel technologies are employed (Gerhards et al. 2022). The use of herbicides has
environmental impacts, including potentially polluting soil, surface water, and groundwater
(Agüera-Vega et al. 2021; Akbarzadeh et al. 2018; Le et al. 2019; Sabzi and Abbaspour-Gilandeh
2018; Slaven et al. 2023; Sunil et al. 2022). However, weed detection and control constitute a
complicated affair, as crops and weeds are quite similar in many aspects, including color
features, leaf shapes and forms, leaf patterns, and leaf/plant dimensions (Iqbal et al. 2020; Liu
et al. 2019; Sodjinou et al. 2021). Recently, weed detection and separation from crops have
advanced rapidly and have benefited from modern solutions. These recent solutions include
satellite-based detection (Rasmussen et al. 2021; Shanmugam et al. 2020; Shendryk et al. 2020),
drone-based detection (Esposito et al. 2021; Liang et al. 2019; Revanasiddappa et al. 2020),
hyperspectral imaging (Che’Ya et al. 2021; Li et al. 2021; Pignatti et al. 2019; Sulaiman et al.
2022), and multispectral imaging (Barrero and Perdomo 2018; Osorio et al. 2020).

Spectral detection can be a promising solution for crop/weed separation based on the concept
that every object in the nature has its own spectral signature (Falcioni et al. 2020; Putra 2020).
This spectral signature comes from the physical properties and the nutrient, chemical, and water
contents. These properties influence the amount of absorption and reflection of electromagnetic
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waves that can be used for distinguishing crops and weeds. The use
of spectral data in agricultural applications has been extensively
researched. Applications include crop/weed discrimination
(Fletcher et al. 2016; Gómez-Casero et al. 2010; Kamath et al.
2020; Subeesh et al. 2022), disease detection (Cordon et al. 2021;
Mahlein et al. 2010, 2013; Shafri et al. 2011), ripeness estimation
(Silalahi et al. 2016), estimation of plant nutrient deficiencies
(Abdulridha et al. 2018; Ayala-Silva and Beyl 2005), classification
of grass-dominated habitats (Bradter et al. 2020), plant species/
varieties discrimination (Manevski et al. 2011; Prospere et al. 2014;
Ullah et al. 2012; Vaiphasa et al. 2007; Yu et al. 2020),
distinguishing herbicide-resistant plants (Jones et al. 2023), and
classifying forest logging residue (Acquah et al. 2016). In all these
applications, the discrimination or detection technique was built
using the specific spectral reflection of plants or plant organs.
There has been one or several wavelengths in which the reflectance
of electromagnetic energy has been different for the healthy crop
and weed, diseased crop, or malnourished crop. In this regard, the
use of hyperspectral data analysis can provide promising tools that
are fast and generalizable and can be integrated in the analyses with
semi-automated procedures (Hennessy et al. 2020). Another
advantage of spectral datasets is the potential for detailed analysis
of spectral reflectance which comes from biochemical and
biophysical attributes of plants. However, a disadvantage of
hyperspectral analysis is the processing of the data, which can be
difficult due to the high dimensionality of the data. Also, the
excessive demand for obtaining and providing sufficient samples
and the high cost of spectral measurements are among the
limitations of hyperspectral technologies (Adelabu et al. 2013).
While spectral data have been quite critical for species discrimi-
nation, a disadvantage is the redundant information within high-
resolution spectral data (Nagasubramanian et al. 2019).

Among the techniques that mostly have been used for the
analysis of spectral data and classifications are k-nearest neighbors
classifier (KNN), linear discriminant analysis (LDA), quadratic
discriminant analysis (QDA), principal component analysis,
Normalized Difference Vegetation Index (NDVI), Fourier trans-
form, Jeffries–Matusita distancemeasure, support vector machines
(SVMs), and artificial neural networks (ANNs) (Bell and
Baranoski 2004; Durgante et al. 2013; Longchamps et al. 2010;
Louargant et al. 2018; Noble and Brown 2009; Strothmann et al.
2017; Talaviya et al. 2020; Zarco-Tejada et al. 2018). Symonds et al.
(2015) developed a real-time plant discrimination system based on
discrete reflectance spectroscopy. In this study, three different laser
diodes (i.e., 635, 685, and 785 nm) were used. It was reported that
the system could make a practical discrimination for a vehicle
speed of 3 km h−1. In a recent work, Nidamanuri (2020) used
machine learning to discriminate tea (Camellia sinensis (L.)
Kuntze) plant varieties. Canopy-level hyperspectral reflectance
measurements were acquired for tea and natural plant species in
the range of 350 to 2,500 nm. The classifier could discriminate six
out of nine tea plant varieties successfully, with accuracies between
75% and 80%.

Recently, attention has been paid to the implementation and
improvement of convolutional neural networks (CNNs) for
classification purposes. The good thing about CNNs is that they
learn features on their own through the network training process,
which permits them to discriminate between unseen samples in
high performance rate (Garibaldi-Márquez et al. 2022). Andrea
et al. (2017) discriminated between maize (Zea mays L.) and weed
using CNNs. They verified LeNET, AlexNet, cNET, and sent
architectures, and cNET resulted in the best performance in terms

of accuracy (95.05%) and processing time (2.34ms). Xi et al. (2020)
proposed a network called MmNet consisting of the local response
normalization of AlexNet, GoogLeNet, and VGG inception
models. The proposed MmNet led to an accuracy of 94.50% and
a time cost of 10.369 s. Nguyen et al. (2021) used SVM and random
forest (RF) techniques for disease detection in grapevine (Vitis
vinifera L.) plants based on hyperspectral data in the range of 400
to 1,000 nm. It was observed that the SVM classifier performed
better for vegetation index-wise classification, while the RF
classifier showed better results for pixel-wise and image-wise
classification. Garibaldi-Márquez et al. (2022) studied the use of
shallow and deep learning techniques for the discrimination of
crop and weeds. RGB images were captured in field conditions and
different locations. The images were obtained in cornfields with
three different weeds present. VGG16, VGG19, and Xception
models were trained and tested, leading to accuracies of 97.93%,
97.44%, and 97.24%, respectively. In a recent work, Wang et al.
(2023) took advantage of CNNs for the classification of weed
species based on hyperspectral (HS) images. The study was based
on a database of HS images of 40 weed species. Preprocessing was
applied to the data, and the best accuracy of 98.15% was achieved.

The use of deep learning techniques and spectral data can
facilitate the detection of weeds in agricultural fields. This will lead
to the precise detection of weeds using a noncontact and
noninvasive method. This study evaluates a method based on
wavelet transform and deep networks for the separation of crops
and weeds and compares it with the traditional classifiers.

Materials and Methods

Instrumentation and Measurements

Three crops, namely, cucumber (Cucumis sativus L.), tomato
(Solanum lycopersicum L.), and bell pepper (Capsicum annuum L.)
and five weed species including bindweed (Convolvulus spp.),
purple nutsedge (Cyperus rotundus L.), narrowleaf plantain
(Plantago lanceolata L.), common cinquefoil (Potentilla simplex
(Michx.), and garden sorrel (Rumex acetosa L.) were used for this
study. Leaves were taken from different parts of young plants of
different sizes. Samples of plants were taken from plants in
vegetative and flowering stages of growth. The number of samples
for each growth stage was almost the same. For each plant, more
than 70 samples were obtained, for a total of 626 samples. The
plants (with the soil and roots) were removed from the farm and
quickly transferred to the laboratory. All measurements were done
under the same conditions. For illumination, one lamp of type A
and one halogen lamp were used (Figure 1). Spectral reflectances in
the range 380 to 1,000 nm were obtained using the spectroradi-
ometer Specbos 1211 (JETI Technische Instrumente GmbH, Jena,
Germany). This machine is a noncontact spectroradiometer that is
connected to the PC via a USB port. The optical bandwidth of
this spectroradiometer is 4.5 nm, and the measuring range for
the illuminance is 1 to 1,500,000 Lx. As shown in Figure 1, the
spectroradiometer was set at an angle of 90° in relation to
the leaves, and the standard observer of 2° was used for the
measurements.

Preprocessing

Statistical Pretreatment
Preprocessing for high-dimensional data normally leads to better
discovery of relationships and trends of the data. In this regard,
first, the beginning of the spectra that was noisy was removed.
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Then, the data were denoised using a smoothing filter
(i.e., Savitzky-Golay filter). Next, standard normal variate for
applying normalization was used. Afterward, first derivative and
mean centering were applied to the data.

Continuous Wavelet Transform
The preprocessing was inefficient for the data for the convolutional
neural networks, as explained in the next section. In this regard,
continuous wavelet transform (CWT) was used for preprocessing.
CWT is used for the decomposition of a signal into wavelets. It is a
perfect tool for mapping the changing properties of nonstationary
signals. The basic functions of CWT are the scaled and shifted
versions of the mother wavelet. The formula used for this
transformation is as follows:

C a; τð Þ ¼
Z

1
a
c

t � τ
a

� �
x tð Þdt [1]

Based on Equation 1, the wavelet c(t) is shifted by τ and scaled
by factor a: In this study, a Morse wavelet having the following
formula was used:

c !ð Þ ¼ U !ð Þap;�!
p2

� e�!�
[2]

where U !ð Þ represents the unit step, and a is a normalizing
constant. G, which controls the symmetry of the wavelet, was set
to 3; and p is the square root of the time–bandwidth product being
in proportion to the wavelet duration was selected as

ffiffiffiffiffi
60

p
. Hence,

CWT was applied on all spectral reflectances, and a database of
scalograms was constructed. These scalograms in the form 2D
images were used for training the network and classification.
Figure 2 provides an example of a scalogram randomly chosen
from pepper plant samples.

Classification Techniques

Common Classifiers
For comparison purposes, six common classifiers were employed
for the task of discrimination of crops/weeds. These techniques
include LDA, QDA, linear support vector machine (LSVM),
quadratic support vector machine (QSVM), ANNs, and fine
k-nearest neighbors (FKNN). Table 1 presents the technical details
of these methods.

Convolutional Neural Network Classifiers
GoogLeNet was utilized in this study to verify its ability to classify
crops and weeds based on the spectral data. This pretrained
network was used for two reasons. First, this is quite a strong
network trained with a large database consisting of over 1,000
different categories. Second, use of this network saved time, as it
eliminated the trial and error of building new networks. In
addition, a pretrained network can be used by other researchers
working in the same field.

GoogLeNet is a convolutional network that is 22 layers deep
with 7 pooling layers included. There are nine inception modules
stacked linearly in total. The training uses an asynchronous
stochastic gradient descent with a momentum of 0.9. Initial
learning rate of 1 × 10−4, gradient threshold method of l2 norm,
and maximum epochs of 20 were used for building the network.
The inputs for GoogLeNet, which are the outputs of CWT, need to
be RGB image arrays 224× 224× 3. To avoid overfitting, a dropout
layer was employed that randomly sets input elements to zero at a
level of probability. The flowchart of the proposed method is
shown in Figure 3. Morse wavelet was applied to the signals, and
scalograms were extracted. Scalograms are the RGB representa-
tions of the spectral reflectances. Then, these RGB images were
used for retraining the CNN. Finally, the classifier was built to carry
out the classification task on new samples.

SqueezeNet is a CNN having an 18-layer depth. Like
GoogLeNet, it is pretrained for more than 1,000 categories. The
size of the input image is 227 × 227 × 3. The weighted learning
factor was set to 10. The last learnable layer was replaced with a
convolutional layer with two filters. A bias learning factor of 10 was
chosen. For training, the mini-batch size, maximum epochs, initial
learning rate, and learning optimizer method were chosen as 10,
15, 3 × 10−4, and a gradient descent with momentum, respectively.

Programming and Analysis

In this study, the data were randomly divided into three groups of
training, validation, and testing. Therefore, 70% was used for
training, 15% for validation, and 15% for testing, which was not
presented to the algorithms while training (i.e., unseen data). All
the programming was done using MATLAB (R2019b, MathWorks
Inc., Massachusetts, USA) and MS Excel (Microsoft Office Excel,
Washington, USA, 2016) software. The processing and analysis
were performed on a PC with an Intel® Core™ i7 processor and 16
GB of RAM.

Results and Discussion

The spectral reflectance of leaves of crops and weeds is remarkably
similar. This makes the discrimination of crops and weeds difficult.
Figure 4 presents the spectral reflectance of bell pepper plant and
five weeds. It is observed that use of techniques for the reduction of
data volume or use of efficient classification techniques is
necessary. As seen in Figure 4, most of the relevant information
can be obtained from 500 to 750 nm. In the blue area of the
spectrum, there are not many changes in the spectral reflectances,
and absorbance is close to 1. In a study on the discrimination of
weeds (i.e., spurge [Euphorbia spp.] and purple loosestrife
[Lythrum salicaria L.]) from the surrounding vegetation, Hom
et al. (2020) found the significant spectral bands in the same
regions. Sayed Yones et al. 2019 also observed that a good
discrimination of healthy/infested plants could be obtained in
green and red parts of spectrum for monitoring of sugar beet

Figure 1. The measurement system and illumination setup: 1, light source; 2,
spectroradiometer; 3, sample; 4, laptop computer.
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(Beta vulgaris L.) infestation. In addition, in a large part of the
near-infrared (NIR) area, there is little fluctuation and most of the
energy has been reflected. This is expected, as plants use the visible
part of the spectrum for photosynthesis and other metabolic
processes (Hua et al. 2019; Mahlein et al. 2013; Su 2020).

Pretreatment

To remove random noise in the data, the spectra were smoothed.
This pretreatment has been reported to be efficient in other works
(Huang et al. 2021; Jiang et al. 2015; Yang et al. 2019). Afterward,
they were normalized, followed by first derivative and mean
centering. These techniques help to avoid irrelevant information
and to better represent data trends (Türker-Kaya and Huck 2017).
Recently, Amirvaresi et al. (2021) reported that mean centering
and second derivative resulted in the best performance for saffron
(Crocus sativus L.) authentication and adulteration detection based
on NIR and mid-infrared (MIR) spectroscopy. In this regard, the
choice of preprocessing and combination of the techniques is a
critical step. This preprocessing led to a remarkable diagram
representing the differences of the spectra of crops and weeds. As

Figure 5 shows, the average spectrum of crops has significant zones
that are different from those of weeds. The peak of the spectrum of
crops is at 735 nm, with the trough of the weed spectrum at this
point, while the peak for the weeds is at 695 nm. Therefore, the
spectra preprocessed by smoothing were used as the input for six
traditional classifiers.

Traditional and Deep Classifiers

CWT was used for preprocessing for the deep networks. Table 2
presents the validation and test accuracies achieved by each
classifier. As can be observed, the proposed method using
SqueezNet has led to complete separation of crops and weeds
both for validation and test samples. However, in case of
GoogLeNet, accuracy of 97.8% was achieved. It can be noted that
among traditional classifiers, FKNN led to complete separation.
Next, the LDA andQSVM represented better performance, both of
them had a 5-fold validation accuracy of 99.6% and a test accuracy
of 100%. The QDA technique ranked last, with validation and test
accuracies equal to 82.5% and 86.6%, respectively. Comparison of
the training time shows that the GoogLeNet (106.63 min) and then

Figure 2. A spectral reflectance of a bell pepper plant leaf (A) and its scalogram of continuous wavelet transform (CWT) colored as an RGB image (B).

Table 1. Technical details of the common classifiers used for discrimination of plants/weeds

LDA Linear discriminant analysis
5-fold cross-validation; covariance structure: full; gamma equal to zero

QDA Quadratic discriminant analysis
Covariance structure: diagonal

LSVM Linear support vector machine
Kernel function: linear; box constraint level: one; multiclass method: one-vs-one

QSVM Quadratic support vector machine
Kernel function: quadratic; box constraint level: one; multiclass method: one-vs-one

ANN Artificial neural network
Single hidden layer; layer size: 10; max. iteration: 1,000; activation function: rectified linear unit (ReLU)

KNN k-Nearest neighbors
Number of neighbors: one; distance metric: euclidean; distance weight: equal

Figure 3. Block diagram of the proposed algorithm for the separation of crops and weeds.
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the SqueezNet (26.85 min) required more time for training
(Table 2). The great difference between the deep networks and
traditional classifiers is that these networks involve the conversion
of spectra to images and then use the images for training, which
takes a significant time.

Compared with previous research, the performance of
SqueezNet and FKNN has been remarkable. Nidamanuri (2020)
utilized ANNs for the discrimination of tea plant varieties using
spectral discrimination. Here, ANN was compared with other
methods, including KNN, LDA, SVMs, and normalized spectral
similarity score. It was observed that SVM, as a machine learning
technique, led to higher classification accuracies. Next, it was LDA
that provided a high-accuracy performance. It was reported that
six out of nine varieties could be discriminated with accuracies
ranging between 75% and 80%. The inclusion of natural tea plants

increased the variability of the spectral data and reduced the
classification accuracy. Shirzadifar et al. (2018) used soft
independent modeling of the class analogy method for discrimi-
nation of three weeds based on spectral data. It was observed that
the use of preprocessing was necessary for achieving proper results.
Five preprocessing methods were evaluated, and second derivative
was effective. The authors reported NIR area as the best area for the
discrimination. The proposed method could discriminate three
weed species with 100% accuracy for 63 samples. Jiang et al. (2020)
proposed a graph convolutional network for crop and weed
recognition. Their network achieved accuracies of 97.80%, 99.37%,
98.93% and 96.51% for four different datasets and had better
results compared with AlexNet, VGG16, and ResNet-101. De
Souza et al. (2020) studied the differentiation of sugarcane
(Saccharum officinarum L.) from weeds based on spectral data and

Figure 4. The spectral reflectance of plant leaves: (A) bell pepper, (B) Convolvulus spp., (C) Cyperus rotundus, (D) Plantago lanceolata, (E) Potentilla simplex, and (F) Rumex
acetosa.
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using soft independent modeling. They observed that the selection
of only four significant bands in VIS-NIR could lead to the same
results as the whole spectrum. Their method obtained an accuracy
of 97.4%. In a recent work, Su et al. (2022) mapped blackgrass
(Alopecurus myosuroides Huds.) in wheat (Triticum aestivum L.)
fields using multispectral images and deep learning. For the
classification task, RF with Bayesian hyperparameter optimization
was used. This work led to an accuracy of 93%, and the most
discriminant spectral index was composed of green-NIR.

The training process with SqueezNet in the present study shows
that the original training had been very well performed (Figure 6).
In this figure, the most important element is the validation curve,
which has been improving and following the training data. It can
be seen that from iteration 258, the network could remarkably
discriminate the crops and weeds (i.e., 100% accuracy). Table 3
provides the details of training of the network. As the table
indicates, in the 6th epoch, when validation accuracy reaches
100%, the validation loss is quite small, and in the 13th epoch, it
reaches 0.0003. The mini-batch accuracy, which represents the
accuracy of training for mini-batches or subbatches (if the whole
dataset is considered to be a batch), has also been provided. The
mini-batch accuracy shows that the training gets stable after the
fourth epoch. Figure 7 presents the amount of loss function for
each iteration. Minimizing loss function is based on the gradient
descent algorithm. In every iteration, the gradient of the loss
function is obtained and evaluated, and then the weights for the
descent algorithm are updated. In the figure, it can be seen that
the training has been going uniformly better, and the loss value for
the validation data has been gradually decreasing while following
the training data, showing that the learning process has been
correctly performed.

The confusion matrix describing the performance of SqueezNet
has been provided in Figure 8. In this matrix, output class is the
predicted classification, and the target class refers to the actual
classes. It can be seen that the algorithm has randomly chosen 34
crop samples and 61 weed samples as test spectra that all have been
classified correctly. Akbarzadeh et al. (2018) utilized SVM for the
discrimination of crops and weeds based on spectral data. They
reported that their gaussian SVM algorithm could classify the
plants with a success rate of 97%. They obtained spectral data in

three wavelengths and combined the SVM with the Normalized
Difference Vegetation Index (NDVI). Rock et al. (2016) performed
the discrimination of eight plant species using emissive thermal
infrared spectroscopy. The hyperspectral images were acquired in
the range of 7.8 to 11.6 μm at 40-nm resolution. The overall
accuracy of discrimination obtained was equal to 92.26%. In a
recent work, Jin et al. (2022) compared GoogLeNet, MobileNet-v3,
ShufeNet-v2, and VGGNet for the discrimination of weeds. It was
observed that ShufeNet-v2 and VGGNet showed higher overall
accuracies (≥0.999). However, among the classifiers, ShufeNet-v2
and MobileNet-v3 were remarkably faster than GoogLeNet and
VGGNet.

An advantage of the spectral data for the discrimination of
plants is that it is light independent, as the spectral reflectance of
each object is specific and acts as a fingerprint. Therefore, the
spectral responses of plants can be measured on-farm and used for
discrimination purposes in agricultural applications. Other
techniques that have recently been employed for plant discrimi-
nation and weed detection are multispectral/hyperspectral
imaging, 3D modeling of plants, and LiDAR (Sandoval et al.
2012; Andújar et al. 2018; Jarocińska et al. 2021; Jin et al. 2022;
Reiser et al. 2018; Su et al. 2019). Barrero and Perdomo (2018)
fused multispectral and RGB images for weed detection. As the
result of their analysis, it was observed that the Normalized Green–
Red Difference Index provided better features than NDVI. The
preprocessing included transformation of RGB images to hue,
intensity, and saturation and usage of Haar transformation. The
best weed detection performance was obtained using the neural
network for the percentage of detected weed area of between 80%
and 108%. In the research work conducted by Özlüoymak (2020)
on the usage of stereo-imaging for the detection of crops and
weeds, artificial plants, including one crop and six weeds, were
utilized. The proposed technique led to R2 values of 0.962 and 0.978
for the detection of crops and weeds, respectively. In a recent study,
Shahbazi et al. (2021) studied the ability of light detection and
ranging (LiDAR) sensors for the detection of weeds. It was
reported that the ability to detect the weeds at different scanning
distances from the sensor was significantly dependent on the size of
the target and its orientation toward the LiDAR. The study showed
that LiDAR could detect 100% of the weeds based on their height
differences with the plant canopy. Tao and Wei (2022) used a
hybrid classifier based on CNN-SVM for weed recognition. For the
deep CNN, the VGG network, which was trained based on true-
color images, was employed. The VGG-SVM classifier resulted in
an accuracy of 92.1% for the separation of winter rape (Brassica
napus L.) seedlings and four weeds.

This study showed that spectral data are a proper tool for the
discrimination of crops and weeds. The spectral reflectances of
leaves of three crops (cucumber, tomato, and pepper) and five
weeds (Convolulus spp., C. rotundus, P. lanceolata, P. simplex, and
R. acetosa) were obtained in the wavelength range of 380 to
1,000 nm. The classification performance of two deep CNNs and
six common classifiers was investigated and compared. Two types
of preprocessing (i.e., mathematical pretreatment and wavelet
transform) were used for achieving the best performance of the
techniques. It was observed that the utilization of continuous
wavelet transform for dimensionality reduction of spectral data
was quite successful. Results of analysis showed that the proposed
method using SqueezNet discriminated crops and weeds with
100% accuracy. This study demonstrates successful use of spectral
data for accurate discrimination of various crops and weeds based
on their spectral signatures. Future studies may consider the

Crop

Figure 5. The average of preprocessed spectra of crops and weeds. The spectra were
smoothed, normalized, and mean-centered.
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Table 2. Comparison of validation and test accuracies for different classifiers

Methoda LDA QDA LSVM QSVM ANN FKNN GoogLeNet SqueezNet

Validation accuracy (%) 99.6 82.5 98.8 99.6 99.4 100.0 100.0 100.0
Test accuracy (%) 100.0 86.6 99.1 100.0 99.1 100.0 97.8 100.0
Training time (min) 0.061 0.210 0.058 0.039 0.109 0.076 106.63 26.85

aLDA, linear discriminant analysis; QDA, quadratic discriminant analysis; LSVM, linear support vector machine; QSVM, quadratic support vector machine; ANN, artificial neural network; FKNN,
fine k-nearest neighbors.

Figure 6. Diagram showing the SqueezNet training process and accuracy per iteration.

Table 3. The details of the training process of the network for each learning epoch

Epoch Iteration Mini-batch accuracy Validation accuracy Mini-batch loss
Validation

loss

———————————%———————————

1 1 20 64.21 1.2562 0.7786
1 43 70 92.63 0.6065 0.2806
2 86 90 94.74 0.3808 0.1416
3 129 90 97.89 0.1119 0.0679
4 172 100 92.63 0.0076 0.1579
5 215 100 96.84 0.0079 0.0637
6 258 100 100.0 0.0005 0.0030
7 301 100 100.0 0.0016 0.0013
8 344 100 100.0 0.0026 0.0028
9 387 100 100.0 0.0016 0.0028
10 430 90 98.95 0.4685 0.0165
11 473 100 100.0 0.0079 0.0069
12 516 100 100.0 0.0005 0.0022
13 559 100 100.0 0.0001 0.0009
14 602 100 100.0 0.0000 0.0004
15 645 100 100.0 0.0000 0.0007

Figure 7. Diagram of loss function values per iteration during the SqueezNet training process.
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generalization of the technique. The usage of a bigger dataset with
many different types of crops and weeds will lead to the
development of a robust classifier for crop/weed separation. It is
suggested that the classifier be integrated into real-time weed
detection systems for the evaluation of the technique in the field.
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discrimination of wild oat and canary grass in wheat fields for less herbicide
application. Agron Sustain Dev 30:689–699

Hennessy A, Clarke K, Lewis M (2020) Hyperspectral classification of plants: a
review of waveband selection generalisability. Remote Sens 12:113

Hom KMH, Bajwa SG, Lym RG, Nowatzki JF (2020) Discrimination of leafy
spurge (Euphorbia esula) and purple loosestrife (Lythrum salicaria) based on
field spectral data. Weed Technol 34:250–259

HuaW, Lin Z, Guo D, Fan G, Zhang Y, Yang K, Hu Q, Zhu L (2019) Simulated
long-term vegetation–climate feedbacks in the Tibetan Plateau. Asia-Pac J
Atmos Sci 55:41–52

Figure 8. Confusion matrix of the networks representing true and false classifications: (A) GoogLeNet and (B) SqueezNet.

8 Mohammadi et al.: Deep learning weed detection

https://doi.org/10.1017/wsc.2024.36 Published online by Cambridge University Press

https://doi.org/10.1017/wsc.2024.36


Huang Y, Li J, Yang R, Wang F, Li Y, Zhang S, Wan F, Qiao X, Qian W (2021)
Hyperspectral imaging for identification of an invasive plant Mikania
micrantha Kunth. Front Plant Sci 12:626516

Iqbal N, Khaliq A, Cheema ZA (2020) Weed control through allelopathic crop
water extracts and S-metolachlor in cotton. Inf Process Agric 7:165–172
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