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Two-dimensional (2D) materials present an unprecedented opportunity to probe structure-property 

relationships; in projection we can characterize almost every individual atom, making 2D materials well-

suited for high precision defect analysis. In particular, understanding the types and densities of point 

defects in 2D materials is important for producing 2D materials that can achieve theoretical limits of 

charge mobility and quantum yield for high quality optoelectronics [1]. Recently, machine learning 

techniques have been widely applied to electron microscopy data for defect identification, image 

segmentation, and image denoising [2-6]. Machine learning also opens up new possibilities to analyze 

large datasets of atomic resolution information. For example, we have previously shown that machine 

learning methods can be used to circumvent fundamental limitations from electron beam damage and 

achieve sub-pm precision measurements of defect structures in 2D transition metal dichalcogenides 

(TMDC) [6]. Here, we use a combination of automated acquisition, electron scattering simulations, and 

machine learning to acquire, process, and analyze aberration-corrected scanning transmission electron 

microscopy (STEM) images of 2D materials. We analyzed 56,814 point defects in an atomic resolution, 

~million atom dataset to determine the precise atomic structures, spatial distributions, and concentrations 

of 7 different types of point defects in a 2D TMDC (WSe2-2xTe2x). 

To achieve robust defect identification, a key step is generating high quality, realistic training data to train 

the deep learning models (fully convolutional networks, FCN). First, we simulate semi-quantitative 

annular dark-field (ADF) STEM images with a wide range of microscope conditions including aberrations 

and probe current variations. Next, we include common imperfections presented in real experimental data, 

such as linear and non-linear drift distortion, scan jittering, Poisson and Gaussian noise. Moreover, we 

added low frequency variation to emulate surface contamination. These steps generate realistic STEM 

images (Figure 1) for a robust FCN training, which achieves a 98% true positive rate. The FCN trained 

using simulated data performs comparably to an FCN trained on human-labeled experimental data, but 

with much less manual labor and human intervention required. The FCNs identified 56,814 defect sites, 

or roughly 10% of the atomic columns measured. The identified defects are mostly Te substitutions 

(86.6%) and Se vacancies (12.5%). Class averaged [6] images of each defect type are shown in Figure 2. 

Besides the common Te substitutions and Se vacancies, the FCNs also discover rare metal-site defects 

such as SeW antisite defects (0.8%) and W vacancies (0.08%) that are 2 orders of magnitude less frequent 

than the Se vacancies. Our technique provides detailed atomic structures, spatial distributions, and 

concentrations of each defect type simultaneously, which are often inaccessible by optical techniques [7]. 

Although we demonstrate the technique with 2D TMDC, this workflow can in principle be applied to 

other 2D materials and scanning probe techniques, paving the way towards large-scale, all-atom analysis 

of 2D materials [8]. 
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Figure 1. Figure 1: Simulated ADF-STEM images generated by our workflow for FCN training, including 

electron counting noise, aberrations, detector noise, image distortions, and surface contamination. 

Representative images with (a-b) low magnification and (c-f) high magnification. 
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Figure 2. Figure 2: Class-averaged images of FCN-identified atomic defects segmented from 

experimental STEM datasets of WSe2-2xTe2x. Other than the class averaging, we did not apply any sort 

of smoothing, filtering, or probe deconvolution to our STEM images. (a-d) Chalcogen-site defects. From 

left to right: Double Te substitution (2Te), single Te substitution (SeTe), single Se vacancy (SV), double 

Se vacancy (DV). (e-g) Metal-site defects. From left to right: Double Te antisite (2TeW, two overlapping 

Te atoms residing at W sublattice), single Se antisite (SeW), W vacancy (VW). The number of images 

summed is labeled at the bottom left corner of each image. 
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