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Dispersion relations of electrostatic surface waves propagating in magnetized plasmas
contained in an infinite duct and in an infinite cylindrical column surrounded by vacuum
are derived by means of a Vlasov equation and fluid equations, respectively. The
kinematic boundary condition imposed on the distribution function, the specular reflection
conditions on the four sides of a duct, can be satisfied by placing infinite number of
fictitious surface charge sheets spaced by the duct widths. The Vlasov equation that
includes these surface charge sheets is solved by summing up the contribution due to the
infinite charge sheets. The method of placing appropriate fictitious surface charge sheets
enables one to treat the surface waves in bounded plasmas of Cartesian structure with
mathematical efficiency, kinetically. The kinetic duct dispersion relation is compared with
the dispersion relation for the magnetized cylindrical plasma column. When the square
duct cross-sectional area as well as the cylinder radius become infinity, both dispersion
relations become the dispersion relation of the upper-hybrid wave.

Keywords: plasma waves

1. Introduction

We investigate two cases of electrostatic surface waves propagating in a magnetized
plasma contained in a duct and in a cylinder interfaced with vacuum by using a Vlasov
equation and fluid equations, respectively. The kinetic theory of a surface wave in a
semi-infinite plasma, which is the simplest geometry for a bounded plasma, is well
known (Barr & Boyd 1972; Alexandrov, Bogdankevich & Rukhadze 1984). Surface
waves in a slab plasma have previously been studied kinetically (Lee & Lim 2007).
Recently, the transverse magnetic mode of a surface wave in a streaming plasma in a
duct was investigated by using the Vlasov equation non-relativistically (Lee & Cho 2022)
and relativistically (Lee & Lim 2022). The above-mentioned references are concerned
with unmagnetized plasmas. In this work, we study similar problems with regards to
magnetized plasmas in a duct and in a cylinder.
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Works on the surface waves in magnetized cylindrical or duct plasmas are rather few.
Trivelpiece & Gould (1959) investigated cylindrical surface waves in a plasma-filled wave
guide in an infinite axial magnetic field. Krall & Trivelpiece (1973) derived the dispersion
relations of the surface waves in cylindrical metallic wave guides of a magnetized plasma
of an infinite axial magnetic field. The assumption of the infinite axial magnetic field
simplifies the plasma dynamics since the electron motions are predominantly along
the axial direction, but for finite values of the static magnetic field, the complexity of
the solutions prohibit understanding the physical aspects of the waves. The slow wave
approximation was employed (Krall & Trivelpiece 1973) for an electromagnetic wave, by
neglecting the wave magnetic field as compared with the static magnetic field. Swanson
(1989) dealt with waves in a magnetized plasma-filled cylindrical waveguide for finite
values of the static magnetic field. In this work, we investigate the electrostatic surface
waves in magnetized plasmas propagating in a duct and in a cylinder.

The primary importance of kinetic theory for a bounded plasma is to satisfy the
kinematic boundary condition for the distribution function on the boundary surface,
the specular reflection condition, which is assumed to hold on a sharp interface. Here,
‘sharp’ means that the density gradient across the interface is theoretically infinite. The
boundary value problem of Vlasov–Maxwell equations plus the aforementioned kinematic
condition is facilitated by introducing appropriate fictitious surface charge sheets as a
means to satisfy the specular reflection condition (Lee & Cho 2022; Lee & Lim 2022). We
consider an infinite duct formed by the intersections of four planes: x = 0, a and y = 0, b,
with −∞ < z < ∞. Then, the specular reflection conditions on the four planes, x = 0, a
and y = 0, b are satisfied by introducing fictitious surface charge sheets in the Maxwell
equations in the form (Lee & Cho 2022; Lee & Lim 2022)

S(x, y, z, t) = A1

∑
n=0,1,2,...

δ(x ± 2na) + A2

∑
n=1,2,...

δ(x ± (2n − 1)a)

+ B1

∑
n=0,1,2,...

δ( y ± 2nb) + B2

∑
n=1,2,...

δ( y ± (2n − 1)b), (1.1)

where A and B terms are to be determined by satisfying the electric and dynamic boundary
conditions connecting the plasma field and the vacuum field across the interface. Thus, we
are furnished with a linear system of equations to determine the dispersion relation of the
surface wave.

A hot magnetized plasma has a notoriously complex dielectric tensor which involves
an infinite series of Bessel functions of various order. In the cold plasma approximation,
the dielectric tensor reduces to a simple expression free from the Bessel function series.
Consequently, we can derive simple-looking dispersion relations of the surface waves in a
duct plasma, kinetically.

A cylindrical plasma has a macroscopic geometrical similarity with a square duct
plasma. For comparison purposes, we work out the dispersion relations of surface
waves for an infinite cold magnetized cylindrical plasma by using fluid equations. Krall
& Trivelpiece (1973) investigated experimentally forced modes of surface waves in a
cylindrical plasma. For a natural mode, the electric or dynamic boundary conditions which
connect the plasma field and the vacuum field can be determined from the governing
equations themselves that we choose to employ. Actually, surface waves result from
satisfying the connection formula, and the latter can be extracted from the basic equations
themselves that we use. If the density gradient across the plasma and the other side is
very steep, the connection formula can be easily obtained by ‘infinitesimal integration’

https://doi.org/10.1017/S0022377824001041 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001041


Electrostatic surface waves 3

across the interface, which is the operation performed on a certain relevant equation in the
manner

∫ ε

−ε
(· · · )dx (Lee & Cho 1997).

In § 2, the Vlasov equation is solved for a magnetized cold plasma, including the
fictitious surface charge sheets in the Poisson equation. In §§ 3 and 4, the dispersion
relation of the surface wave propagating in the duct is derived. In § 5, the dispersion
relation of the surface wave in a cold magnetized cylindrical plasma is derived by using
fluid equations. In § 6, we compare the dispersion relations obtained for the duct plasma
and the cylindrical plasma. It is shown that both dispersion relations reduce to that of the
upper-hybrid wave when both the side length of the duct and the cylinder radius become
infinite.

2. Kinetic equation for the duct plasma

The basic equations are the linearized Vlasov equation and the Poisson equation for
electrons. Ions are assumed to be stationary and only form the neutralizing background,

∂

∂t
f (r, v, t) + v · ∂f

∂r
− e

mc
v × B0 · ∂f

∂v
− e

m
E · ∂f0

∂v
= 0, (2.1)

with B0 = ẑB0 and

∇ · E = −4πe
∫

f d3v + S(x, y, z), (2.2)

∇ × E = 0. (2.3)

In (2.2), S(x, y, z) represents the fictitious charge sheets as defined in (1.1). Additionally,
f (r, v, t) and f0(v) are the perturbation and the equilibrium distribution functions,
respectively, and the rest of the symbols are standard.

We Fourier transform the above equations by performing
∫∞

−∞ d3r eik·r(· · · ) and by
assuming ∂/∂t = −iω. Then, the wave has a phasor eikzz−iωt. The (kz, ω) dependency in
the Fourier amplitudes will be suppressed. Using (2.2) and (2.3), we can write

E(k, ω) = i
k
k2

[
4πe

∫
f (k, ω, v) d3v + S(k)

]
, (2.4)

where S(k) is the Fourier transform of (1.1):

S(k) = δ(ky)[A1Σ0 e±i2nakx + A2Σ1 e±i(2n−1)akx ]

+ δ(kx)[B1Σ0 e±i2nbky + B2Σ1 e±i(2n−1)bky ], (2.5)

where A and B terms may be functions of kz, ω, the double signs are summed over, and the
notation Σ0 and Σ1 are the summations in (1.1). Introducing cylindrical coordinates in the
velocity space such that vx = v⊥ cos ϕ, vy = v⊥ sin ϕ, (2.1) is written in the form

f (k, v, ω) = e
mωc

∫ ϕ

−∞
dϕ′ exp[Φ(ϕ) − Φ(ϕ′)]

[
Ez

∂f0

∂vz
+ (Excosϕ′ + Ey sin ϕ′)

∂f0

∂v⊥

]
,

(2.6)

where ωc = eB0/mc, the gyrofrequency, and

Φ(ϕ) = i
ωc

[(ω − kzvz)ϕ − v⊥kx sin ϕ + v⊥ky cos ϕ]. (2.7)
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4 H.J. Lee

The
∫

dϕ′ integral can be carried out by introducing a Bessel function series and we can
write (2.4) in the form

Ez(k, ω) = ikz

k2εL
S(k), (2.8)

where we used Ex = (kx/kz)Ez, Ey = (ky/kz)Ez, and the dielectric permittivity εL is

εL = 1 − i
k2

ω2
p

ωc

∫ ∞

0
v⊥ dv⊥

∫ ∞

−∞
dvz

∫ 2π

0
dϕ

∫ ϕ

−∞
exp

i
ωc

[Φ(ϕ) − Φ(ϕ′)]

×
[

kz
∂f0

∂vz
+ ∂f0

∂v⊥
(kx cos ϕ′ + ky sin ϕ′)

]
. (2.9)

We shall evaluate the velocity integral in the above equation for a cold plasma distribution
function

f0(v⊥, vz) = δ(v⊥)

2πv⊥
δ(vz). (2.10)

The angular integrals should be performed first to remove the singularity 1/v⊥ in
the velocity integral. Following the well-known steps involving Bessel function series
expansion, εL becomes after

∫
dϕ
∫

dϕ′ integration,

εL = 1 + ω2
p

k2

∫ ∞

0
v⊥ dv⊥

∫ ∞

−∞
dvz

∑
n

J2
n(ae)

ω − kzvz − nωc

(
kz

∂f0

∂vz
+ nωc

v⊥

∂f0

∂v⊥

)
, (2.11)

where ωp is the plasma frequency and ae = k⊥v⊥/ωc, k⊥ =
√

k2
x + k2

y .

In evaluating the ∂f0/∂vz term in (2.11),
∫

dv⊥ can be straightforwardly carried out
by taking the limit ae → 0, which gives Jn(0) → δn,0. Also, by integrating by parts with
respect to ∂/∂vz, one obtains

− ω2
p

k2

k2
z

ω2
. (2.12)

For the term ∂f0/∂v⊥, integrating by parts and using

∂

∂v⊥
J2

n(ae) = 2
k⊥
ωc

Jn(ae)J′
n(ae) (2.13)

and the asymptotic relation

lim
a→0

2n
a

Jn(a)J′
n(a) → 1

2
(δn,1 − δn.−1) (2.14)

yield

− ω2
p

k2

k2
⊥

ω2 − ω2
c

. (2.15)

Collecting the above results, the cold plasma dielectric permittivity is obtained as

εL = 1 − ω2
p

k2

(
k2

z

ω2
+ k2

⊥
ω2 − ω2

c

)
. (2.16)
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Next, we calculate the electric displacement

D(k, ω) = E(k, ω) + 4πi
ω

J (k, ω), (2.17)

where

J (k, ω) = −e
∫

d3vvf (k, ω, v) (2.18)

is the current. Using (2.6) and (2.18), we write the x component in (2.17) as an integral

Dx = Ex − 4πe2

m
i

ωcω

∫ ∞

0
v2

⊥ dv⊥

∫ ∞

−∞
dvz

∫ 2π

0
dϕ cos ϕ

×
∫ ϕ

−∞
dϕ′ exp

i
ωc

[(ω − kzvz)(ϕ − ϕ′) − v⊥kx(sin ϕ − sin ϕ′)

+ v⊥ky(cos ϕ − cos ϕ′)] ×
[

Ez
∂f0

∂vz
+ ∂f0

∂v⊥
(Ex cos ϕ′ + Ey sin ϕ′)

]
. (2.19)

In the above integral, the ∂f0/∂vz term vanishes due to the δ-function, δ(v⊥). Integrating
by parts with respect to ∂/∂v⊥, (2.19) becomes

Dx = Ex − 4πe2

m
2i

ωcω

∫ 2π

0
dϕ cos ϕ ei(ω/ωc)ϕ

∫ ϕ

−∞
dϕ′ e−iϕ′(ω/ωc)(Ex cos ϕ′ + Ey sin ϕ′).

(2.20)

In the above equation, integrals are elementary and can be easily carried out. Entirely
analogous algebra yields the expression for Dy. Summarizing the results, we write

Dx = εxEx = i
kx

k2

εx

εL
S(k), (2.21)

Dy = εyEy = i
ky

k2

εy

εL
S(k), (2.22)

where we used (2.8), and the dielectric coefficients εx,y are

εx = 1 − ω2
p

ω2 − ω2
c

+ iky

kx

ωc

ω

ω2
p

ω2 − ω2
c

, (2.23)

εy = 1 − ω2
p

ω2 − ω2
c

− ikx

ky

ωc

ω

ω2
p

ω2 − ω2
c

. (2.24)

We have shown that, for a cold plasma, εx,y can be obtained without going through the
Bessel function series expansion. Equations (2.8), (2.21) and (2.22) will be connected to
the corresponding vacuum side field components to derive the boundary equations.

3. Boundary equations for the duct plasma waves

To apply the boundary conditions on the interface, the electric field and the displacement
vector components expressed in the Fourier k space should be inverted to the fields in
the ordinary r space by performing

∫∞
−∞ dkx

∫∞
−∞ dky eikxx+ikyy(· · · ). The integrals involve

infinite series through the surface charge S(k) (see (2.5)), but the infinite series are nicely
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6 H.J. Lee

summed at the particular positions corresponding to x = 0, a and y = 0, b (Lee & Cho
2022; Lee & Lim 2022). Thus, we apply the boundary conditions along the two infinite
lines: (x, y, z) = (0, 0, z) and (a, b, z) with −∞ < z < ∞. The two lines correspond to
the two seams of the duct which are diagonally opposite. In the following, we present only
the wide steps of the development; the details are referred to the earlier reports (Lee &
Cho 2022; Lee & Lim 2022):

Ez(0, 0, z) = lim
x=0,y=0

∫ ∞

−∞
dkx eikxx

∫ ∞

−∞
dky eikyy ikz

k2εL

× [δ(ky)(A1Σ0 e±i2nakx + A2Σ1 e±i(2n−1)akx)

+ δ(kx)(B1Σ0 e±i2nbky + B2Σ1 e±i(2n−1)bky)]

=
∫ ∞

−∞
dkx

ikz

(k2
x + k2

z )εL(kx)
(A1Σ0 e±i2nakx + A2Σ1 e±i(2n−1)akx)

+
∫ ∞

−∞
dky

ikz

(k2
y + k2

z )εL(ky)
(B1Σ0 e±i2nbky + B2Σ1 e±i(2n−1)bky)

=
∫ ∞

−∞
dkx

2ikz

(k2
x + k2

z )εL(kx)
(A1S1(akx) + A2S2(akx))

+
∫ ∞

−∞
dky

2ikz

(k2
y + k2

z )εL(ky)
(B1S1(bky) + B2S2(bky)), (3.1)

where

εL(ky) = εL(kx, ky)|kx=0, εL(kx) = εL(kx, ky)|ky=0, (3.2a,b)

S1(χ) = 1
2 + e2iχ + e4iχ + · · · S2(χ) = eiχ + e3iχ + · · · , (3.3a,b)

Ez(a, b, z) =
∫ ∞

−∞
dkx

2ikz

(k2
x + k2

z )εL(kx)
(A1S2(akx) + A2S1(akx))

+
∫ ∞

−∞
dky

2ikz

(k2
y + k2

z )εL(ky)
(B1S2(bky) + B2S1(bky)), (3.4)

Dx(0, 0, z) = lim
x=0,y=0

∫ ∞

−∞
dkx eikxx

∫ ∞

−∞
dky eikyy ikx

k2

εx(kx, ky)

εL

× [δ(ky)(A1Σ0 e±i2nakx + A2Σ1 e±i(2n−1)akx)

+ δ(kx)(B1Σ0 e±i2nbky + B2Σ1 e±i(2n−1)bky)]

=
∫ ∞

−∞
dkx

ikx

k2
x + k2

z

ν

εL(kx)
(A1Σ0 e±i2nakx + A2Σ1 e±i(2n−1)akx)

= iA1

∫ ∞

−∞
dkx

kx

k2
x + k2

z

ν

εL(kx)
, (3.5)

where

ν = 1 − ω2
p

ω2 − ω2
c

. (3.6)
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Analogously, we obtain

Dx(a, b, z) = −iA2

∫ ∞

−∞
dkx

kx

k2
x + k2

z

ν

εL(kx)
, (3.7)

Dy(0, 0, z) = iB1

∫ ∞

−∞
dky

ky

k2
x + k2

z

ν

εL(ky)
, (3.8)

Dy(a, b, z) = −iB2

∫ ∞

−∞
dky

ky

k2
x + k2

z

ν

εL(ky)
. (3.9)

Vacuum solution
We have ∇2E = 0 in the vacuum region, which is solved by

E ∼ exp ikz × exp(±kxx) × exp(±kyy), (3.10)

with the important constraint k2
x + k2

y = k2
z . We can construct the vacuum solutions as

follows:
vacuum region (i). x < 0, y < 0, where

Ez(i) = H eikzz ekxx ekyy, (3.11)

Ex(i) = −iH
kx

kz
eikzz ekxx ekyy, (3.12)

Ey(i) = −iH
ky

kz
eikzz ekxx ekyy; (3.13)

vacuum region (ii). x > a, y > b, where

Ez(ii) = G eikzz e−kxx e−kyy, (3.14)

Ex(ii) = iG
kx

kz
eikzz e−kxx e−kyy, (3.15)

Ey(ii) = iG
ky

kz
eikzz e−kxx e−kyy. (3.16)

Putting (x, y) = (0, 0) or (a, b) in the above equations gives the vacuum side boundary
values of the relevant quantities.

4. Dispersion relation for the duct plasma surface wave

We enforce the following boundary conditions to connect the plasma and the vacuum
fields: [Ez] = 0, [Dx] = 0, [Dy] = 0.

Along lines (0, 0, z) and (a, b, z), [Ez] = 0 respectively gives

A1I1 + A2I2 + B1J1 + B2J2 = H, (4.1)

A1I2 + A2I1 + B1J2 + B2J1 = G e−kxa e−kyb, (4.2)

where

Ii =
∫ ∞

−∞
dkx

2ikz

(k2
x + k2

z )εL(kx)
Si(akx) (i = 1, 2), (4.3)

Ji =
∫ ∞

−∞
dky

2ikz

(k2
y + k2

z )εL(ky)
Si(bky) (i = 1, 2), (4.4)
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[Dx] = 0 gives

iA1

∫ ∞

−∞
dkx

kx

k2
x + k2

z

ν

εL(kx)
= −iH

kx

kz
, (4.5)

−iA2

∫ ∞

−∞
dkx

kx

k2
x + k2

z

ν

εL(kx)
= iG

kx

kz
e−kxa e−kyb, (4.6)

[Dy] = 0 gives

iB1

∫ ∞

−∞
dky

ky

k2
x + k2

z

ν

εL(ky)
= −iH

ky

kz
, (4.7)

−iB2

∫ ∞

−∞
dky

ky

k2
x + k2

z

ν

εL(ky)
= iG

ky

kz
e−kxa e−kyb. (4.8)

Let us rewrite (4.3) and (4.4) in slightly different forms:

Ii = 2ikzμ

∫ ∞

−∞
dκ

Si(aκ)

κ2 + ξ 2k2
z

(i = 1, 2), (4.9)

Ji = 2ikzμ

∫ ∞

−∞
dκ

Si(bκ)

κ2 + ξ 2k2
z

(i = 1, 2), (4.10)

where

μ = ω2 − ω2
p

ω2 − ω2
P − ω2

c

, (4.11)

ξ =
√

(ω2 − ω2
c)(ω

2 − ω2
p)

ω2(ω2 − ω2
P − ω2

c)
=
√(

1 − ω2
p

ω2

)/(
1 − ω2

p

ω2 − ω2
c

)
. (4.12)

Integrals in (4.5)–(4.8) can be contour-integrated, giving the value iπ. Therefore, they
become

πηA1 = iH
kx

kz
, (4.13)

πηA2 = iG
kx

kz
e−kxa e−kyb, (4.14)

πηB1 = iH
ky

kz
, (4.15)

πηB2 = iG
ky

kz
e−kxa e−kyb, (4.16)

where

η = ω2 − ω2
p

ω2 − ω2
c

. (4.17)

We have six unknowns, A1, A2, B1, B2, H, G in six equations (4.1), (4.2), (4.13)–(4.16).
Eliminating H, G, A1, A2 gives

B1(kxI1 + kyJ1 + iπη kz) + B2(J2ky + I2kx) = 0, (4.18)

B1(I2kx + J2ky) + B2(I1kx + Jiky + iπηkz) = 0, (4.19)
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which give the dispersion relation in the form

kx(I1 ± I2) + ky(J1 ± J2) = −iπηkz. (4.20)

The + (−) sign corresponds to symmetric (anti-symmetric) mode. Since we have the
constraint k2

x + k2
y = k2

z , let us put

kx = bkz√
a2 + b2

, ky = akz√
a2 + b2

, (4.21a,b)

so that the y-direction becomes ignorable when b → ∞. Using the formula (Lee & Cho
2022; Lee & Lim 2022)

∫ ∞

−∞
dκ

Si(aκ) ± S2(aκ)

κ2 + ξ 2k2
z

= 1
2

∫ ∞

−∞

dκ

κ2 + ξ 2k2
z

1 ± eiaκ

1 ∓ eiaκ
. (4.22)

Equation (4.20) takes the form

b√
a2 + b2

∫ ∞

−∞

dκ

κ2 + ξ 2k2
z

1 ± eiaκ

1 ∓ eiaκ
+ a√

a2 + b2

∫ ∞

−∞

dκ

κ2 + ξ 2k2
z

1 ± eibκ

1 ∓ eibκ
= − πη

kzμ
.

(4.23)
Picking up the simple pole at κ = iξkz, (4.23) becomes

b√
a2 + b2

tanh
a
2
ξkz + a√

a2 + b2
tanh

b
2
ξkz = −ηξ

μ
= −νξ, (4.24)

for the lower sign (symmetric mode), where ν is defined by (3.6). For the upper sign
(anti-symmetric mode), tanh is replaced by coth. Taking the limit b → ∞ gives the slab
dispersion relation

tanh
a
2
ξkz = −νξ. (4.25)

Taking the limit a → ∞ in the above equation gives the dispersion relation for
semi-infinite plasma, which is νξ = −1:

1 − ω2
p

ω2 − ω2
c

+
√(

1 − ω2
p

ω2 − ω2
c

)/(
1 − ω2

p

ω2

)
= 0, (4.26)

which agrees with the electrostatic dispersion relation obtained from the cold fluid
equation (Lee 1995). The slab dispersion relations obtained by taking b → ∞ that contain
the symmetric and anti-symmetric modes agree with the earlier results which were
obtained by fluid equation (Gradov & Stenflo 1983).

5. Cylindrical plasma

In this section, we derive the surface wave dispersion relations in a cold magnetized
plasma contained in infinite-length cylinder of radius ‘a’, interfaced with vacuum. We use
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the following fluid equations written in cylindrical coordinates:

−iωv(r, θ, z) = e
m

∇φ − ωcv × ẑ, (5.1)

−iωn(r, θ, z) + N(r)∇ · v + vr
∂N
∂r

= 0, (5.2)

∇2φ = 4πen. (5.3)

Here, we assume that the equilibrium density N(r) has density gradients in the radial
direction. At the interface r = a, N changes abruptly with infinite gradient, otherwise is
homogeneous. This artificiality is designed solely to derive the boundary conditions at the
interface by ‘infinitesimal integration’ across the interface. Equation (5.1) yields

vr = e
m

ω

ω2 − ω2
c

(
i
∂φ

∂r
+ ωc

ω

1
r

∂φ

∂θ

)
, (5.4)

vθ = e
m

ω

ω2 − ω2
c

(
−ωc

ω

∂φ

∂r
+ i

1
r

∂φ

∂θ

)
, (5.5)

vz = i
ω

e
m

∂φ

∂z
. (5.6)

Equations (5.2)–(5.6) give the wave equation written in terms of φ:

∂

∂r

[(
1 − ω2

p

ω2 − ω2
c

)
∂φ

∂r

]
+
(

1 − ω2
p

ω2 − ω2
c

)
1
r

∂φ

∂r
+ ∂

∂z

[(
1 − ω2

p

ω2

)
∂φ

∂z

]

+ iωc

ω

1
r

∂

∂r

(
ω2

p

ω2 − ω2
c

)
∂φ

∂θ
+
(

1 − ω2
p

ω2 − ω2
c

)
1
r2

∂2φ

∂θ 2
= 0, (5.7)

where ω2
p = 4πe2N(r)/m. If we take the infinitesimal integration across the interface r = a

in the manner
∫ ε

−ε
(· · · ) dr, we can extract useful boundary conditions. In this operation,

we pick up only the perfect differentials that survive the limit ε → 0. Equation (5.4) yields

[φ]r=a = 0. (5.8)

Integrating (5.7) yields [(
1 − ω2

p

ω2 − ω2
c

)
∂φ

∂r

]
r=a

= 0, (5.9)

where the square bracket denotes the jump across the interface. Putting ωp = const. or
zero in (5.7) gives the wave equation in the plasma or in the vacuum. We also restrict to
an azimuthally symmetric field (∂/∂θ = 0). We have

∂2φ

∂r2
+ 1

r
∂φ

∂r
+ ∂2φ

∂z2
= 0, in vacuum, (5.10)

∂2φ

∂r2
+ 1

r
∂φ

∂r
+ ξ 2 ∂2φ

∂z2
= 0, in plasma, (5.11)

where ξ is defined in (4.12).

https://doi.org/10.1017/S0022377824001041 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001041


Electrostatic surface waves 11

Now let us solve the above equations for an infinite cylindrical plasma. Since the
z-direction is infinite, we can assume φ(z) ∼ eikzz and the plasma equation in (5.11)
becomes

∂2φ(r)
∂r2

+ 1
r

∂φ

∂r
− ξ 2k2

z φ(r) = 0, (5.12)

where we suppressed the z-dependent phase. Equation (5.12) is solved by the functions I0
and K0, the modified Bessel functions of first and second kind of order zero, respectively.
Here, K0 is rejected since it blows up at r = 0, so the plasma solution takes the form

φp(r) = AI0(kzξr) 0 < r < a. (5.13)

In vacuum, the function I0 should be rejected since it blows up at r = ∞. We have

φv(r) = BK0(kzr) r > a, (5.14)

where A, B are constants to be determined by boundary conditions. Equations (5.8) and
(5.9) give

AI0(ξkza) = BK0(kza), (5.15)

νξAI′
0(ξkza) = BK ′

0(kza), (5.16)

where prime denotes the derivative with respect to the argument and ν is defined in (3.6).
The above two equations yield the dispersion relation

νξ
I′

0(ξkza)

I0(ξkza)
= K ′

0(kza)

K0(kza)
. (5.17)

6. Discussion

We consider a square duct plasma whose surface wave dispersion relation can be
obtained from (4.24) by putting a = b:

√
2 tanh

ξ

2
akz = −νξ. (6.1)

Direct comparison of (5.17) and (6.1) requires numerical computation. Here, we wish to
be satisfied only with an asymptotic evaluation of the two relations. Using the formula for
Bessel functions

d
dx

I0(αx) = αI1(αx),
d
dx

K0(αx) = −αK1(αx), (6.2a,b)

(5.17) becomes

νξ
I1(ξkza)

I0(ξkza)
= −K1(kza)

K0(kza)
. (6.3)

If kza → ∞, I0 ≈ I1, K0 ≈ K1, and therefore (6.3) becomes

νξ = −1 or

(
1 − ω2

p

ω2 − ω2
c

)√√√√√√√√
1 − ω2

p

ω2

1 − ω2
p

ω2 − ω2
c

= −1, (6.4)

which is identical to (4.26).
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However, the square duct surface wave in (6.1) gives in the limit kza � 1, νξ = −√
2.

Thus, they agree, asymptotically, except for the geometrical factor
√

2.
Scrutinizing (6.4) indicates that ω2 should be in the range ω2

c < ω2 < ω2
p. Solving (6.4)

for ω2 gives
ω2 = 1

2(ω
2
p + ω2

c), (6.5)

which is the upper-hybrid frequency.
By taking a → ∞, we removed the cylindrical boundary, and (6.5) is the eigenmode of

the upper-hybrid frequency oscillating in the semi-infinite plasma.
This work may find applications in a laboratory or astrophysical situation where

electrostatic waves propagate through certain channels. Obtaining dispersion relations for
waves in channels is of significant interest for the development of plasma electronics and
studying the initial stage of development of instabilities and wave generation. In this work,
we assumed the plasma–vacuum boundary is infinitely sharp, which might deviate from
the actual experimental situation. However, models other than the sharp boundary, for
example, the diffuse boundary model, prohibit analytic derivation of the surface wave
dispersion relations.
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