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Abstract

We formulate a centrally planned portfolio selection problem with the investor and the
manager having S-shaped utilities under a recently popular first-loss contract. We solve
for the closed-form optimal portfolio, which shows that a first-loss contract can some-
times behave like an option contract. We propose an asymptotic approach to investigate
the portfolio. This approach can be adopted to illustrate economic insights, including the
fact that the portfolio under a convex contract becomes more conservative when the
market state is better. Furthermore, we discover a means of Pareto improvement by
simultaneously considering the investor’s utility and increasing the manager’s incentive
rate. This is achieved by establishing the collection of Pareto points of a single contract,
proving that it is a strictly decreasing and strictly concave frontier, and comparing the
Pareto frontiers of different contracts. These results may be helpful for the illustration of
risk choices and the design of Pareto-optimal contracts.
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1. Introduction

In the continuous-time model of asset management, an investor authorizes a portfolio man-
ager to allocate the total wealth process X = {Xt : 0 ≤ t ≤ T}. There is a contract �(XT ) sharing
profit and loss between the two parties based on the performance of the wealth at the termi-
nal evaluation time T > 0. Such a model involves different economic parties (the investor, the
manager, etc.) and various relationships (conflict, win–win, etc.) between them.

As indicated in [32], many effects may prevent the manager from simply maximizing his/her
own utility, including reputation consideration, capital raising, etc. As a result, the utility of the
other party (the investor) is a major concern for the manager. From the perspective of welfare,
it is ideal if both parties benefit and the total welfare is fully utilized. In this regard, Pareto-
optimality, which means that the utility of one party cannot be improved without reducing the
utilities of the other parties, is widely applied to study the complex relationship between the
principal and the agent; see, e.g., [13]. Here we are interested in the following questions: (a)
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What is the Pareto-optimal portfolio? (b) What is the difference between the optimal portfolio
oriented to the investor and the one oriented to the manager? (c) Is there any contract that yields
a Pareto improvement (strictly improves the utilities of both parties) over other contracts?

In this paper, we study Pareto portfolio selection and compare different contracts from the
perspective of a central planner. The central planner can be interpreted in various ways: as
Pareto efficiency in welfare economics, a regulatory institution in finance, etc. A centrally
planned perspective is sometimes a starting step for the principal–agent problem. The paper
[21] uses the centrally planned perspective to solve for the optimal portfolio delegation when
the parties have CRRA utilities. The paper [12] equivalently studies utility optimization with
bargaining power in the principal–agent problem; see also [31]. The centrally planned problem
can also be applied to solve a constrained utility maximization problem in the hedge fund
context. In the fundraising stage, the investor pays great attention to how his/her utility is
realized. To increase attraction, the manager typically incorporates a participation constraint
into the investment decision model, requiring the investor to achieve at least a lower-bound
reservation utility; see [32] and [22].

Generally, we present the classic formulation of multi-objective programming (cf. [27],
[34], and [11]) and the definition of Pareto-optimality.

Definition 1. (Multi-objective programming and Pareto-optimality.) A multi-objective prob-
lem is given by

sup f(X) ≡ (f1(X), . . . , fm(X)), such that X ∈D,

where D is the decision domain and f = (f1, . . . , fm) : D →R
m is a multidimensional function

with m ≥ 2. A feasible solution X∗ ∈D to the above problem is called (Pareto-) optimal if and
only if there exists no other solution X ∈D such that fi(X∗) ≤ fi(X) for all i = 1, . . . , m and
fj(X∗) < fj(X) for at least one index j ∈ {1, . . . , m}.

As explained, such a problem aims to deal with multiple objectives in potential conflict,
and a solution is Pareto-optimal if there is no way to improve one objective without worsening
at least one of the other objectives. This definition implies that there may be many solutions
satisfying Pareto-optimality.

In our context, the centrally planned portfolio selection problem is formulated in the sense
of two-objective programming:

sup
π∈V[0,T]

(
E
[
Û1
(
�
(
Xπ

T

))]
,E
[
Û0
(
Xπ

T − �
(
Xπ

T

)− x0
)])

, (1)

where V[0, T] is the set consisting of all portfolio allocation processes π = {πt : 0 ≤ t ≤ T}, Xπ
T

is the corresponding terminal wealth, and X0 = x0 ∈R is the initial wealth. Both objectives are
expected utility maximization, where Û1(·) and Û0(·) are utility functions of the profit and loss
(P&L) of the manager and the investor, respectively. Here �(·) is the function of the terminal
fund wealth Xπ

T representing the manager’s P&L under a certain contract. The residue wealth
Xπ

T − �
(
Xπ

T

)− x0 is the investor’s P&L.
As in Definition 1, a portfolio π∗ ∈ V[0, T] with terminal wealth Xπ∗

T is called Pareto-
optimal to Problem (1) if there exists no portfolio π ∈ V[0, T] with terminal wealth Xπ

T
such that E

[
Û1
(
�
(
Xπ∗

T

))]≤E
[
Û1
(
�
(
Xπ

T

))]
and E

[
Û0
(
Xπ∗

T − �
(
Xπ∗

T

)− x0
)]≤E

[
Û0
(
Xπ

T −
�
(
Xπ

T

)− x0
)]

, where at least one of the inequalities holds strictly. That is, a Pareto-optimal
portfolio is one for which there exists no strictly better portfolio with respect to the two dif-
ferent objectives. Generally, there are many Pareto-optimal portfolios for Problem (1). The
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Pareto point is a two-dimensional vector of the two parties’ expected utilities under one
optimal portfolio. The collection of all Pareto points forms a set in the two-dimensional
plane:

PF �
{(
E
[
Û1
(
�
(
Xπ∗

T

))]
,E
[
Û0
(
Xπ∗

T − �
(
Xπ∗

T

)− x0
)])}

π∗∈O[0,T] ⊂R
2, (2)

where O[0, T] is the set consisting of all optimal portfolios π∗ to Problem (1). In particu-
lar, the model solved here is based on S-shaped utilities Û0 and Û1 (cf. [33]) and a recently
popular first-loss contract � (cf. [16]). The details of the model setting will be discussed in
Section 2.

Our paper contributes in two ways. First, we provide a new asymptotic approach to find-
ing the optimal portfolio. For the centrally planned problem (1), we solve out the closed-form
Pareto-optimal portfolio π∗ in Theorem 1. We divide π∗ into two cases (the first-loss case and
the option case), which shows that a first-loss contract can sometimes behave like an option
contract. Further, we decompose π∗ into three terms (π∗ = π (1) + π (2) + π (3) with Merton
term π (1), aggressive term π (2), and conservative term π (3)), and then propose an asymptotic
analysis with respect to the market state. The asymptotic approach includes a monotonic anal-
ysis, a dynamic analysis, and a terminal-time analysis. It can be adopted to illustrate various
economic insights, including the fact that the portfolio under a convex contract becomes more
conservative under a better market state (cf. [9]) and that the wealth process is always above
the liquidation boundary (cf. [5]).

The classification result for the optimal wealth can be also seen as a sequel to [22]. The
reference points in the composite S-shaped utilities of the manager and the investor are the
same (both x0 in (7)) in our model, while the reference points are set to be different in [22].
In addition, the closed-form optimal portfolio is lacking in [22]. By contrast, the present paper
focuses on the implementation of the asymptotic approach. The relevant discussion about the
optimal portfolio in Theorem 2 is the main contribution.

Second, we find a novel contract providing a Pareto improvement. We first investigate the
pattern of the collection (2). In Theorem 3 it is proved to be a strictly decreasing and strictly
concave frontier, and hence it is referred to as a Pareto frontier. Next, we use Pareto frontiers
to compare different contracts and find that among first-loss contracts with long evaluation
time, the investor benefits from the contract with smaller incentive rate and smaller manage-
rial ownership proportion. When the evaluation time is short, we discover a means of Pareto
improvement by simultaneously adding the investor’s utility into the manager’s investment
objective and increasing the manager’s incentive rate. The improvement is shown to hold in
the sense of both expected utility and certainty equivalent.

Finally, we compare our setting and results with those in some related literature. Problem
(1) has some connection to the classical risk-sharing problem in insurance. A seminal work,
[7], proposed and studied this problem in the reinsurance market. Recent advances on the topic
include [28], [1], [6], [8], and [2]. The goal of the risk-sharing problem is to establish the
Pareto-optimal solution (i.e., equilibrium solution) for all agents, given a fixed total risk. The
criteria of the agents include various kinds of risk measures. In contrast, the total wealth Xπ

T
in Problem (1) is not fixed, and can be optimized according to the objective. As a result, our
problem does not aim to share the risk, but to maximize the expected utility of all the agents.

In addition, the paper [15] investigates the weighted utility optimization problem for the
participating endowment contract and suggests the existence of a Pareto improvement through
parametric sensitivity analysis. In this paper, we not only claim the existence, but also specify
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the means of obtaining a Pareto improvement: by simultaneously considering the investor’s
utility and increasing the manager’s incentive rate. Actually, we use a different method to
achieve this: we establish a Pareto frontier for a single contract, prove certain theoretical
properties of it (Theorem 3), and then numerically compare the Pareto frontiers of different
contracts (Figures 10–11). We hope that this result will be helpful for contract design, where
the aim is to improve the utilities of both parties.

The remainder of the paper is organized as follows. In Section 2, we describe the model
setting of Problem (1). In Section 3, we solve the problem and derive the closed-form solution
in Theorem 1. In Section 4, we propose the approach of asymptotic analysis in Theorem 2.
In Section 5, we establish the Pareto frontier in Theorem 3 and find the contract providing a
Pareto improvement. The conclusions are in the last section. The appendices state the stan-
dard procedure for solving the general non-concave utility maximization problem and give the
proofs of all lemmas and theorems.

2. Model setting

In this section, we describe the model setting for our centrally planned portfolio selection
problem (1). The key features include a complete market with a liquidation boundary, S-shaped
utilities, and a first-loss contract.

2.1. Financial market

The financial market is composed of one risk-free asset and one risky asset, where the
former has a risk-free return rate r and no volatility, while the latter has a higher expected
return rate μ>r and a positive volatility σ>0. Denote by θ � μ−r

σ
>0 the market price of

risk. The augmented filtered complete probability space
(
�,FT , {Ft}0≤t≤T , P

)
in the finan-

cial market is generated by a Brownian motion W = {Wt : 0 ≤ t ≤ T} on (�,FT , P); i.e.,
the equipped filtration F = {Ft}0≤t≤T is denoted by Ft = σ {Wu : 0 ≤ u ≤ t} and satisfies the
usual conditions. The interest rate is a constant r>0, and the price of the risk-free asset R =
{Rt : 0 ≤ t ≤ T} is dRt = rRtdt. The price of the risky asset S = {St : 0 ≤ t ≤ T} is a geometric
Brownian motion satisfying dSt = St

(
μdt + σdWt

)≡ St
(
rdt + σ (dWt + θdt)

)
. As a result, the

financial market is complete, and we denote the state price density process {ξt : 0 ≤ t ≤ T} by
ξt � exp

(−(r + 1
2θ2
)
t − θWt

)
. The wealth process X = {Xt : 0 ≤ t ≤ T} is uniquely determined

by a portfolio process π = {πt : 0 ≤ t ≤ T} and an initial wealth x0:

dXt = rXtdt + πtσ (dWt + θdt). (3)

For any time t ∈ [0, T], πt represents the amount of wealth invested in the risky asset at time t.
A portfolio π belongs to an admissible portfolio set V[0, T] if and only if

(i) π is an {Ft}0≤t≤T -progressively measurable R-valued process and
∫ T

0 |πt|2dt < ∞
almost surely, and

(ii) X is not lower than the liquidation boundary, i.e., Xt ≥ bx0e−r(T−t) almost surely for all
t ∈ [0, T].

The first condition guarantees the existence and finiteness of the wealth process X. The
second condition comes from the so-called liquidation boundary bx0, which ensures that
the wealth at time t is always above the liquidation level bx0e−r(T−t), where b ∈ [0, 1). The
liquidation boundary is also considered in the studies of [17] and [16].
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Payoff

Utility

Investor
Manager

FIGURE 1. S-shaped utilities: Û1 (manager), Û0( · −x0) (investor).

2.2. S-shaped utilities and first-loss contracts

In our model, we assume that the investor (i = 0) and the manager (i = 1) have S-shaped
utilities:

Ûi(x) =
{

xpi , x ≥ 0,

− λi(−x)qi , x < 0.
(4)

The functions Û0(·) and Û1(·) reflect respectively the investor’s and the manager’s preferences,
which are S-shaped utilities as in cumulative prospect theory. They are illustrated in Figure 1.
Note that in Figure 1 we plot Û0( · −x0) instead of Û0(·) to make the curves clearer. For i = 0, 1,
pi ∈ (0, 1) and qi ∈ (0, 1) respectively measure the degrees of risk-aversion and risk-seeking,
and λi > 1 measures the degree of loss-aversion. The investor and the manager compare their
P&L with a reference point 0.

The S-shaped utility is related to cumulative prospect theory (cf. [33]), where the individual
displays loss-aversion below a certain reference level and risk-aversion above that level. The
theoretical results in this area from behavioral economics are supported by empirical evidence
(cf. [3]) and have been successfully applied in many fields of decision-making, including in
the contexts of hedge funds (cf. [20]) and insurance (cf. [23]). Although the investor is not
a decision-maker for the investment as the manager is, the investor also sets a profit goal as
his/her own reference level in the S-shaped utility in order to choose an appropriate contract.

Next we consider a recently popular first-loss contract (cf. [16]). The mechanism of the
contract is as follows. There is a guarantee benchmark and a first-loss capital. The guarantee
benchmark is the initial fund wealth, and the first-loss capital is provided by the manager in the
total fund wealth. When the fund wealth is just below the guarantee benchmark, the manager
has to lose first and the investor loses nothing until the first-loss capital is all lost. As a reward,
a higher incentive rate for good performance is shared with the manager. The reference level in
the S-shaped utilities and the guarantee benchmark in the first-loss contract naturally fit each
other. This is why we use S-shaped utilities and the first-loss contract in our model; this is
also reflected in [4] and [20], which study S-shaped utilities, and in [16], which studies both of
them.

Specifically, the manager’s P&L is given by a function �(XT ) of the terminal wealth XT ,
i.e.,

�(x) =

⎧⎪⎨⎪⎩
(ω + α(1 − ω))(x − x0), x ≥ x0,

x − x0, (1 − ω)x0 ≤ x < x0,

− ωx0, bx0 ≤ x < (1 − ω)x0.

(5)
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FIGURE 2. P&L: �(XT ) (manager), XT − �(XT ) − x0 (investor).

The investor’s P&L is given by XT − �(XT ) − x0. A first-loss contract has two parameters:
ω ∈ [0, 1] is the proportion of managerial ownership in the fund wealth, and α ∈ [0, 1] is the
incentive rate for good performance above the benchmark x0. In a first-loss contract, the man-
ager provides the first-loss capital ωx0. The investor does not suffer a loss until the terminal
wealth is under (1 − ω)x0. Practically, the manager is incapable of covering the whole loss of
funds for the investor, and thus the liquidation boundary is (much) lower than the minimum
guarantee (i.e., 0 < bx0 < (1 − ω)x0). Figure 2 gives a numerical demonstration of the above
details.

We do not want too many contract parameters involved. Thus, we consider a specific first-
loss contract and fix it in the optimization problem. Nevertheless, our insights regarding the
centrally planned problem (1) and the following results can be applied in other models.

3. Optimal solutions

In this section, we investigate our centrally planned portfolio selection problem (1) and
obtain closed-form solutions. Above all, we state a weighted utility optimization problem:

sup
π∈V[0,T]

E
[
Uγ

(
Xπ

T

)]
, (6)

where the objective function is a weighted utility of the terminal payoffs of the investor and
the manager,

Uγ

(
Xπ

T

)= (1 − γ )Û0
(
Xπ

T − �
(
Xπ

T

)− x0
)+ γ Û1

(
�
(
Xπ

T

))
,

with γ ∈ [0, 1] interpreted as the weight of the manager’s utility. By composition, one can see
that the reference points of the actual utility functions of the investor, Û0

( · −�(·) − x0
)
, and

the manager, Û1
(
�(·)), are both x0. Analytically, we have

Uγ

(
Xπ

T

)=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

γ (ω + α(1 − ω))p1
(
Xπ

T − x0
)p1

+ (1 − γ )((1 − α)(1 − ω))p0
(
Xπ

T − x0
)p0 , Xπ

T ≥ x0,

− γ λ1
(
x0 − Xπ

T

)q1, (1 − ω)x0 < Xπ
T < x0,

− γ λ1(ωx0)q1 − (1 − γ )λ0
(
(1 − ω)x0 − Xπ

T

)q0, Xπ
T < (1 − ω)x0.

(7)
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FIGURE 3. Investor’s composite S-shaped utility U0

(
Xπ

T

)
≡ Û0

(
Xπ

T − �
(

Xπ
T

)
− x0

)
and its concave

envelope.

Terminal Wealth
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FIGURE 4. Manager’s composite S-shaped utility U1

(
Xπ

T

)
≡ Û1

(
�
(

Xπ
T

))
and its concave

envelope.

The cases of γ = 0 and γ = 1 correspond to the composite utility functions of the investor and
the manager; see Figures 3–4.

We proceed to solve the centrally planned problem (1). Proposition 1 shows that the solution
to Problem (1) can be characterized by that to Problem (6). Recall from Section 1 that the
optimal solution to Problem (1) is in the Pareto sense as in Definition 1.

Proposition 1. For any fixed γ ∈ [0, 1], the optimal solution to Problem (6) is Pareto-optimal
to Problem (1).
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FIGURE 5. Single utilities and weighted utilities.

Problem (6) is the so-called weighting problem, or the weighted sum method in the litera-
ture on multi-objective optimization, and contributes to finding the Pareto-optimal solution; see
[27] and [11]. However, the equivalence of the weighting problem (6) and the centrally planned
problem (1) does not hold in general for non-concave utilities. Indeed, the converse statement
in Proposition 1 requires some conditions on convexity. For example, if

{
Xπ

T : π ∈ V[0, T]
}

is
a convex set and U0 and U1 are strictly concave functions, we can prove that a Pareto optimum
for Problem (1) is an optimal solution to some weighting problem (6). Technically, these con-
ditions guarantee the existence of some γ ∈ [0, 1] via the hyperplane separation theorem. We
refer to Theorems 14–16 in [11] and Theorem 2.1 in [8] for more details.

Next, one applies the standard procedure for non-concave utility optimization, which is
provided in Appendix A, to solve Problem (6), as the utility Uγ is non-concave in our model.
The key step is to solve the corresponding utility maximization problem

sup
XT∈D

E
[
U∗∗

γ (XT )
]
, (8)

where D is defined as the set consisting of all terminal wealth values generated by all portfolios;
the expression for D is given in Appendix A. We use concavification techniques to establish
the concave envelope of Uγ . This is defined as the smallest concave function dominating Uγ

and is denoted by U∗∗
γ ; see Figure 6 for an illustration. The concave envelope is also defined by

the Legendre transform; see Equation (24) in Appendix A. Lemma 1 discusses the existence of
two tangent lines and establishes the concave envelope of Uγ ; it is applied to obtain a solution
to Problem (1) in Theorem 1.

Lemma 1.

(1) There exists a unique tangent point (1 + c1)x0 ∈ (x0, +∞) deduced from (bx0, Uγ (bx0))
to Uγ |(x0,+∞), which satisfies

Uγ ((1 + c1)x0) − Uγ (bx0)

(1 + c1)x0 − bx0
= U′

γ ((1 + c1)x0). (9)
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Terminal Wealth
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FIGURE 6. Weighted utilities and concave envelopes.

Define κ1 as the slope of the tangent line:

κ1 � U′
γ ((1 + c1)x0). (10)

(2) There exists a unique tangent point (1 + c2)x0 ∈ (x0, +∞) deduced from ((1 −
ω)x0, Uγ ((1 − ω)x0)) to Uγ |(x0,+∞), which satisfies

Uγ ((1 + c2)x0) − Uγ ((1 − ω)x0)

(1 + c2)x0 − (1 − ω)x0
= U′

γ ((1 + c2)x0). (11)

Define κ2 as the slope of the tangent line:

κ2 � U′
γ ((1 + c2)x0). (12)

From the procedure for finding the concave envelope of Uγ in Lemma 1, we notice that
(1 − ω)x0 is a non-differentiable point for Uγ , as the left and right derivatives for Uγ (x) at
x = (1 − ω)x0 are not the same. Define κ3 as the slope of the chord between (bx0, Uγ (bx0))
and ((1 − ω)x0, Uγ ((1 − ω)x0)):

κ3 �
Uγ ((1 − ω)x0) − Uγ (bx0)

(1 − ω)x0 − bx0
. (13)

For analytical tractability, we assume that the investor and the manager have the same
preference parameters: p0 = p1 = p, q0 = q1 = q. Without this assumption, the method of non-
concave utility optimization is valid, but the solution is not explicit. As a result, we obtain the
closed-form optimal wealth process and the optimal portfolio in Theorem 1.

Theorem 1. The closed-form optimal wealth process X∗ and the optimal portfolio π∗ for
Problem (1) are given by the following:
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(1) (First-loss case.) If κ2 < κ3, then the optimal terminal wealth X∗
T is

X∗
T =

(
b1{

ξT>
κ3
ν∗
} + (1 − ω)1{ κ2

ν∗ <ξT≤ κ3
ν∗
} +

(
1 + c2

(
κ2

ν∗ξT

) 1
1−p
)
1{

ξT≤ κ2
ν∗
}) x0,

(14)

and the optimal wealth process X∗ is

X∗
t = ξ−1

t E
[
ξTX∗

T |Ft
]

= x0e−r(T−t)
(

b + (1 − ω − b)�(g3,t) + ω�(g2,t) + c2
�′(g2,t)

�′(d2,t)
�(d2,t)

)
.

(15)

The optimal amount allocated to the risky asset, i.e., the optimal portfolio π∗, is

π∗
t = θ

(1−p)σ
X∗

t︸ ︷︷ ︸
Merton term

+ 1

σ
√

T−t

(
�′(g3,t) · (1−ω−b

)+�′(g2,t) · (ω+c2
))

x0e−r(T−t)︸ ︷︷ ︸
aggressive term

+ −θ

(1−p)σ

((
1−�(g3,t)

) · b+(�(g3,t)−�(g2,t)
) · (1−ω)+�(g2,t) · 1

)
x0e−r(T−t)︸ ︷︷ ︸

conservative term

� π
(1)
t + π

(2)
t + π

(3)
t .

(16)

(2) (Option case.) If κ2 ≥ κ3, then the optimal terminal wealth X∗
T is

X∗
T =

(
b1{

ξT>
κ1
ν∗
} +

(
1 + c1

(
κ1

ν∗ξT

) 1
1−p
)
1{

ξT≤ κ1
ν∗
}) x0, (17)

and the optimal wealth process X∗ is

X∗
t = ξ−1

t E
[
ξTX∗

T |Ft
]

= x0e−r(T−t)
(

b + (1 − b)�(g1,t) + c1
�′(g1,t)

�′(d1,t)
�(d1,t)

)
.

(18)

The optimal amount allocated to the risky asset, i.e., the optimal portfolio π∗, is

π∗
t = θ

(1 − p)σ
X∗

t︸ ︷︷ ︸
Merton term

+ �′(g1,t)

σ
√

T − t
(1 + c1 − b)x0e−r(T−t)︸ ︷︷ ︸
aggressive term

+ −θ

(1 − p)σ

((
1 − �(g1,t)

) · b + �(g1,t) · 1

)
x0e−r(T−t)︸ ︷︷ ︸

conservative term

(19)

� π
(1)
t + π

(2)
t + π

(3)
t ,

where �(·) is the standard normal cumulative distribution function; the parameter ν∗ (a
Lagrangian multiplier) is given by E[ξTX∗

T ] = x0; κ1, κ2 and κ3 are respectively defined in
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Equations (10), (12), and (13); and gi,t (i = 1, 2, 3) and di,t (i = 1, 2) are functions of the
slope κi:

gi,t = log
(

κi
ν∗ξt

)
+
(

r− θ2
2

)
(T−t)

θ
√

T−t
, di,t = gi,t + θ

√
T−t

1−p . (20)

Theorem 1 shows that a first-loss contract can sometimes behave like an option contract.
There are two cases of the optimal terminal wealth, which we call respectively the option case
and the first-loss case. In the option case, the optimal terminal outcome is either liquidation or
profit for both parties. Thus, it behaves like an option: either out of the money or in the money.
This is why it is called the option case. In the first-loss case, the optimal terminal wealth shows
the typical feature of the first-loss contract, which has a third outcome: the manager loses all
the first-loss capital ωx0 while the investor loses nothing. For the manager, the latter outcome
is as bad as liquidation. However, for the investor, it is a better outcome than liquidation.

We numerically plot some Pareto-optimal portfolios in Figure 7, where U0 belongs to the
first-loss case while U0.5 and U1 belong to the option case. The option case (U0.5 and U1) has
a one-peak–two-valley pattern for the optimal portfolio, which originates from one linear part
in the corresponding concave envelope. Some of the literature refers to a peak–valley pattern
in the option case (cf. [17]). This reflects that aggressive risk-taking behavior happens when
the fund wealth is smaller than the benchmark x0 and the time to evaluation is limited.

Significantly, the first-loss case (U0) has a two-peak–three-valley pattern for the optimal
portfolio, which originates from two linear parts in the corresponding concave envelope.
Compared to the option case, the first-loss case is less risk-seeking at the first-loss residue
capital (1 − ω)x0. An intuitive explanation is that the optimal terminal wealth has the third
outcome of staying at the first-loss residue capital (1 − ω)x0, which is favorable to the investor.
When the investor is relatively more weighted in the Pareto problem (1), the concave enve-
lope of Uγ consists of

(
(1 − ω)x0, Uγ ((1 − ω)x0)

)
and the optimal wealth is the first-loss case,

which is shown in Figure 6.
We emphasize that even if the assumptions p0 = p1 and q0 = q1 do not hold, the pattern of

the optimal portfolio is similar to Figure 7 if the concave envelope of the objective function
is similar. This is because the shape of the optimal portfolio totally depends on the shape of
the concave envelope of the objective. From the expression for the objective Uγ , the concave
envelope is still categorized into two cases: two linear sections or one linear section. The former
possibility leads to the option case for the terminal wealth, while the latter leads to the first-
loss case. Furthermore, the option case leads to a one-peak–two-valley pattern for the portfolio,
while the first-loss case leads to a two-peak–three-valley pattern.

4. Asymptotic analysis approach

4.1. Three-term decomposition of the optimal portfolio

To further illustrate the patterns in Figure 7 based on Theorem 1, we analyze the structure
of the optimal portfolio, which is significantly different from that in the classical theory (cf.
[25, 26]). To be precise, the optimal portfolio is decomposed into three terms in Theorem 1,
and the second and third terms reflect the novelty of the optimal portfolio solved out in our
model.

The first term, π
(1)
t = θ

(1−p)σ X∗
t , is the Merton term, the constant-percentage risky invest-

ment based on the CRRA utility. In [25, 26], the optimal percentage allocated to the risky asset
is a constant θ

(1−p)σ .
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FIGURE 7. The optimal percentage allocated to the risky asset π∗
t

X∗
t

with respect to the wealth X∗
t . The

market parameters are r = 0.05, σ = 0.3, θ = 0.12. The utility parameters are p = 0.5, q = 0.6, λ = 2.25.
The guarantee benchmark (initial wealth) is x0 = 20, the liquidation boundary is bx0 = 10, and the first-
loss residue capital is (1 − ω)x0 = 18. The incentive rate is α = 0.4. The Merton line is θ

(1−p)σ = 0.8.

The second term, π
(2)
t , is called the aggressive term. It increases the allocation on the

risky asset, and it arises from the non-concavity of the weighted utility. We observe that π
(2)
t

is related to the linear intervals of the corresponding concave envelope. Quantitatively, the
aggressive term is a sum of the product of each linear interval length, the function of the linear
interval slope, and the exponential discount factor.

The third term, π
(3)
t , is called the conservative term. It decreases the allocation to the risky

asset, and it arises from certain wealth levels related to the concave envelope: the liquidation
boundary bx0, the first-loss residue capital (1 − ω)x0, and the benchmark x0. Quantitatively, the
conservative term is a weighted sum of a certain multiple of these wealth levels. The multiple
is the product of the Merton constant θ

(1−p)σ and the exponential discount factor. The weight is
the function of the slope of the corresponding linear part’s slope; the weights can be interpreted
as probabilities, with the sum 1.

4.2. Asymptotic analysis of the optimal portfolio

In this subsection, we conduct an asymptotic analysis of X∗ and π∗ in Theorem 2 below
and discuss the resulting economic insights.
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Theorem 2. We have the following statements on X∗ and π∗:

(i) (Monotonic analysis.) X∗
t and π

(1)
t are decreasing with respect to ξt, while π

(3)
t is

increasing with respect to ξt. In the first-loss case, π
(2)
t is increasing if

ξt ∈
(

0,
κ2

ν∗ e
(

r− θ2
2

)
(T−t)

)
,

and π
(2)
t is decreasing if

ξt ∈
(

κ3

ν∗ e
(

r− θ2
2

)
(T−t)

, +∞
)

.

In the option case, π
(2)
t is increasing if

ξt ∈
(

0,
κ1

ν∗ e
(

r− θ2
2

)
(T−t)

)
and decreasing otherwise.

(ii) (Dynamic analysis.) As ξt → 0, we have

X∗
t → +∞, π∗

t → +∞,
π∗

t

X∗
t

→ θ

(1 − p)σ
, π

(2)
t → 0,

π
(3)
t

− θ
(1−p)σ x0e−r(T−t)

→ 1.

(iii) (Dynamic analysis.) As ξt → +∞, we have

X∗
t

bx0e−r(T−t)
→ 1, π∗

t → 0,
π∗

t

X∗
t

→ 0, π
(2)
t → 0,

π
(3)
t

− bθ
(1−p)σ x0e−r(T−t)

→ 1.

We list the above results of (ii) and (iii) as follows:

TABLE 1. Dynamic analysis.

X∗
t π∗

t
π∗

t
X∗

t
π

(2)
t π

(3)
t

ξt → 0 +∞ +∞ θ
(1−p)σ 0 − θ

(1−p)σ x0e−r(T−t)

ξt → +∞ bx0e−r(T−t) 0 0 0 − θ
(1−p)σ bx0e−r(T−t)

(iv) (Terminal-time analysis.) In the option case, we have the following:

TABLE 2. Option case: terminal-time analysis.

X∗
T π∗

T
π∗

T
X∗

T
π

(2)
T π

(3)
T

ξT < κ1
ν∗

(
1 + c1

(
κ1

ν∗ξT

) 1
1−p
)
x0

θ
(1−p)σ

(
κ1

ν∗ξT

) 1
1−p c1x0

θ
(1−p)σ

X∗
T−x0
X∗

T
0 − θ

(1−p)σ x0

ξT = κ1
ν∗ {bx0, (1 + c1)x0} +∞ +∞ +∞ − θ

(1−p)σ
b+1

2 x0

ξT > κ1
ν∗ bx0 0 0 0 − θ

(1−p)σ bx0
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(v) (Terminal-time analysis.) In the first-loss case, we have the following:

TABLE 3. First-loss case: terminal-time analysis.

X∗
T π∗

T
π∗

T
X∗

T
π

(2)
T π

(3)
T

ξT < κ2
ν∗

(
1 + c2

(
κ2

ν∗ξT

) 1
1−p
)
x0

θ
(1−p)σ

(
κ2

ν∗ξT

) 1
1−p c2x0

θ
(1−p)σ

X∗
T−x0
X∗

T
0 − θ

(1−p)σ x0

ξT = κ2
ν∗ {(1−ω)x0, (1+c2)x0} +∞ +∞ +∞ − θ

(1−p)σ
1+1−ω

2 x0

κ2
ν∗ < ξT (1 − ω)x0 0 0 0 − θ

(1−p)σ (1 − ω)x0

<
κ3
ν∗

ξT = κ3
ν∗ {bx0, (1 − ω)x0} +∞ +∞ +∞ − θ

(1−p)σ
1−ω+b

2 x0

ξT >
κ3
ν∗ bx0 0 0 0 − θ

(1−p)σ bx0

A basic observation for our analysis is that ξt, the state price process at time t, can be
interpreted as an indicator showing whether the market is in a good state (small ξt) or a bad
state (large ξt).

Theorem 2(i) provides a monotonic analysis and shows that the wealth process X∗
t is

decreasing with respect to ξt. This statement additionally explains why a small ξt means a good
market state (leading to a large wealth X∗

t ) and a large ξt means a bad market state (leading
to a small wealth X∗

t ). More importantly, our three-term decomposition provides an approach
for the monotonic analysis, because the monotonicity of π∗

t with respect to ξt is unknown in

general. While the first term π
(1)
t , as a multiple of X∗

t , is decreasing in ξt, the conservative term

π
(3)
t is increasing in ξt. The combined effect of the three terms is that the optimal strategy π∗

t
is not monotone in ξt. Yet we can use the decomposition to show the monotonicity of the sep-
arate terms. If the market improves (ξt decreases), the first term π

(1)
t contributes to an increase

on the risky investment, although the third term π
(3)
t decreases. If the market gets worse (ξt

increases), the first term π
(1)
t contributes to a decrease on the risky investment, although the

third term π
(3)
t increases. Two further scenarios (ξt → 0 and ξt → +∞) are respectively ana-

lyzed in Theorem 2(ii)–(iii), where π
(1)
t is a dominating term. In the middle range of ξt, the

monotonicity of π∗
t is highly affected by the aggressive term π

(2)
t and the conservative term

π
(3)
t .

Theorem 2(ii) provides a dynamic analysis and shows that when the market is in a good
state (ξt → 0), the wealth is well accumulated and the optimal percentage allocated to the risky
asset is asymptotically the Merton constant θ

(1−p)σ . The aggressive term π
(2)
t tends to zero,

showing that there is no need to take on more risk in the good state. The conservative term π
(3)
t

tends to θ
(1−p)σ x0, the Merton constant multiplied by the initial wealth x0. This shows that in

the good state, the weighted sum π
(3)
t is tracking one of the wealth levels, the benchmark x0.

Theorem 2(iii) shows that when the market is in a bad state (ξt → +∞), the investment
performs poorly and tends to be liquidated, and the optimal strategy is to invest everything in
the risk-free asset. The aggressive term π

(2)
t tends to zero, showing that it is impossible to take

on any risk in the asymptotic liquidation state. The conservative term π
(3)
t tends to θ

(1−p)σ bx0,
the Merton constant multiplied by the liquidation boundary bx0. This shows that in the bad
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state, the weighted sum π
(3)
t is tracking one of the wealth levels, the liquidation boundary

bx0. As a result, the amount allocated to the risky asset tends to 0 when the optimal wealth
tends to be liquidated, and the wealth is never below the liquidation level bx0e−r(T−t) (which
coincides with [5, 14, 16]). In addition, (ii) and (iii) show that if the wealth X∗

t increases, the

higher wealth level which π
(3)
t is tracking will increase, and thus the conservative term π

(3)
t

will increase.
Theorem 2(iv) provides a terminal-time analysis and shows the asymptotic behavior as one

approaches the terminal evaluation time T in the option case. We compare the state price ξT

with a threshold value κ1
ν∗ . When the market is in a good state (ξT < κ1

ν∗ ), the optimal final

wealth is higher than the benchmark x0 and results in a profit. The term π
(2)
t tends to zero,

and π
(3)
t tends to − θ

(1−p)σ x0, which is coincident with (ii). However, the optimal percentage
θ

(1−p)σ
X∗

T−x0
X∗

T
is smaller than the Merton constant θ

(1−p)σ , implying that the optimal investment

becomes more conservative when the time is limited and the market is good (which coincides
with [9]). The bad state is coincident with (iii).

Interestingly, when the market is in a specific state (ξT = κ1
ν∗ ), the optimal portfolio π∗ tends

to infinity while the optimal wealth process X∗ tends to liquidation, implying that the best
strategy is to gamble as much as possible, but that the resulting outcome is either liquidation or
profit for both parties. In this case, π

(2)
t and π

(3)
t behave strangely. The aggressive term tends

to infinity, reflecting the strategy of gambling for a profit, while the conservative term tends to
θ

(1−p)σ
b+1

2 x0, the exact midpoint between the conservative terms in (ii) and (iii). Theorem 2(v)
shows similar asymptotic behavior as one approaches the terminal evaluation time T in the
first-loss case.

To sum up, because of π (2), the portfolio gambles on the risky asset whenever the utility
is not strictly concave, resulting in two peaks in the first-loss case and one peak in the option
case; because of π (3), the portfolio becomes conservative at some wealth levels, resulting in
three valleys in the first-loss case and two valleys in the option case. The term π (3) further
explains why the portfolio becomes more conservative in a better market state (cf. [9]) and the
total wealth is always above the liquidation boundary bx0 (cf. [5]).

5. Pareto improvement

5.1. Pareto frontier

In this subsection, we establish the collection of Pareto points (2) under the optimal
portfolio π∗ given in Theorem 1. Based on Proposition 1, we can equivalently establish
PF ≡ {(E[U1

(
X̂γ

)]
,E
[
U0
(
X̂γ

)])
: γ ∈ [0, 1]

}⊂R
2, where, with a little abuse of notation,

X̂γ � Xπ∗,γ

T denotes the terminal wealth of the optimal portfolio π∗,γ in Problem (6) with
weight γ ∈ [0, 1]. The point

(
E
[
U1
(
X̂γ

)]
,E
[
U0
(
X̂γ

)])
is a manager–investor expected utility

(EU) pair.
Our first result is Theorem 3 below, showing that the collection (2) is a decreasing and con-

cave frontier, which is referred to as the Pareto frontier (PF). Above all, we need to introduce
the manager’s single utility maximization problem,

sup
X∈D

E
[
Û1
(
�(XT )

)]
, (21)

and the investor’s single utility maximization problem,

sup
X∈D

E
[
Û0
(
XT − �(XT ) − x0

)]
. (22)

https://doi.org/10.1017/apr.2023.50 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.50


772 Z. LIANG AND Y. LIU

Manager EU

0.35

0.4

0.45

0.5

0.55

0.6

0.65

In
ve

st
or

 E
U

=0.05, =0.2
=0.05, =0.4
=0.1, =0.2
=0.1, =0.4

Manager EU

0.14

0.16

0.18

0.2

0.22

0.24

In
ve

st
or

 E
U

=0.05, =0.2
=0.05, =0.4
=0.1, =0.2
=0.1, =0.4

-1.4 -1.2 -1 -0.8 -0.6 0.15 0.2 0.25 0.3 0.35 0.2 0.25 0.3 0.35 0.4 0.45
Manager EU

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

In
ve

st
or

 E
U

=0.05, =0.2
=0.05, =0.4
=0.1, =0.2
=0.1, =0.4

FIGURE 8. Fixed-weight contract comparison: each circle point corresponds to a manager–investor EU
pair under a contract with (ω, α). For all panels, T = 0.01; left panel, γ = 0; middle panel, γ = 0.5; right
panel, γ = 1.

Similarly to Theorem 1, we show in Proposition 2 that there exist (distribution-wise unique)
solutions to Problems (21) and (22).

Proposition 2. There exist a (distribution-wise unique) optimum X̂1 to Problem (21) and a
(distribution-wise unique) optimum X̂0 to Problem (22).

We now characterize the PF, in Theorem 3.

Theorem 3. We have the following:

1. (Strictly decreasing.) If
(
E[U1(X̂0)],E[U0(X̂0)]

) �= (E[U1(X̂1)],E[U0(X̂1)]
)
, then

E
[
U1
(
X̂γ

)]
is strictly increasing with respect to γ ∈ [0, 1], and E

[
U0
(
X̂γ

)]
is strictly

decreasing with respect to γ ∈ [0, 1]. Moreover, the collection (2) is a strictly decreasing
frontier.

2. (Strictly concave.) For any Pareto point
(
E
[
U1
(
X̂γ

)]
,E
[
U0
(
X̂γ

)])
, there exists an affine

function with slope − γ
1−γ

passing through the point and dominating the collection (2).
Moreover, if the collection (2) is continuous, then it is a strictly concave frontier with
pointwise sub-differential − γ

1−γ
.

Theorem 3 states that the collection (2) is a strictly decreasing and strictly concave frontier
if it is not reduced to a single point. A decreasing PF shows that the total welfare is shared
between the investor and the manager. Nevertheless, in some multi-objective problems (e.g.,
when U1 is a multiple of U0), if Problem (21) and Problem (22) have the same solution, the PF
will reduce to a single point (i.e.,

(
E
[
U1
(
X̂0
)]

,E
[
U0
(
X̂0
)])= (E[U1

(
X̂1
)]

,E
[
U0
(
X̂1
)]))

.

5.2. Comparison of fixed-weight contracts

We first compare different contracts with the weight γ fixed (γ = 0, 0.5, 1); see
Figures 8–9. Each contract contains two parameters (ω, α). Recall in Equation (5) that ω is
the manager’s proportion in the total asset and α is the incentive rate for the wealth above the
benchmark x0.

We find that there is no Pareto improvement, in terms of the utilities of both the investor and
the manager, between any two fixed-weight contracts. In any subfigure, for any two contracts,
there is no contract outperforming the other one in both objectives, no matter whether the
evaluation time is long or short. This motivates us to incorporate the weight parameter γ as
one of the contract parameters in order to seek possible Pareto improvement.
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FIGURE 10. PFs of different contracts (left panel, T = 20; right panel, T = 0.01). Each circle point corre-
sponds to a manager–investor EU pair (a Pareto point) under a contract with (ω, α, γ ). A PF is plotted by
a three-point curve, consisting of three Pareto points, for γ = 0, 0.5, 1, under a specific contract setting
(ω, α). In the right panel, each three-point curve represents a PF which is decreasing and concave. In the
left panel, each three-point curve is almost reduced to a single point.

In addition, when the evaluation time is long, we can see that the EUs of the investor (and
of the manager) are similar for different weight parameters. The investor gets a higher EU for
a smaller incentive rate α and a smaller managerial ownership proportion ω. This finding will
be revisited below.

5.3. A contract providing a Pareto improvement

In this subsection, we focus on PFs of different contracts. We propose a novel contract,
simultaneously changing the weight and the parameter to improve the utilities of both parties,
as illustrated in Figure 10, which depicts several PFs under different sets of contract parameters
(ω, α).

In the left panel of Figure 10, when the evaluation time is long (T = 20), the Pareto-optimal
portfolios are quite similar and do not involve gambling (see the fourth subfigure in Figure 7).
As a result, the PF of each contract is almost reduced to a single point, as if the Pareto points
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of each PF are clustered around the single point. Meanwhile, the PFs of different contracts
are separated. Graphically, a new frontier of these PFs appears and is again decreasing, which
shows that the total welfare is shared among the different contracts when the evaluation time
is long. We find that among first-loss contracts with long evaluation time, the investor benefits
from contracts with smaller incentive rate α or smaller managerial ownership proportion ω.

Significantly, we can find a contract providing a Pareto improvement from the right panel
of Figure 10. When the evaluation time is short (T = 0.01), the performance of Pareto-optimal
portfolios under each contract is much different (see the first subplot in Figure 7). As a result,
the PFs of different contracts are clustered. If we treat the objective weight γ as a parameter of
a contract, there exists some contract dominating another contract with a different weight. For
instance, the contract with ω = 0.05, α = 0.4 and objective weight γ = 0.5 dominates another
contract with ω = 0.05, α = 0.2 and objective weight γ = 1 on the PF, which indicates that one
contract has been found to be strictly better than others.

Therefore, if we simultaneously consider the investor’s utility in the investment objective
and increase the incentive rate, we can obtain a Pareto improvement on some other contract
(ω = 0.05, α = 0.2, γ = 1) in the traditional maximization of the single utility of the manager.
This may be beneficial for investors and also helpful in enabling fund managers to design
competitive contracts.

5.4. Certainty equivalent

To enlarge the scope of our results above, we investigate the certainty equivalent in addition
to the expected utility. Denote by Û−1

i the inverse function of Ûi, i = 0, 1. For γ ∈ [0, 1], we
define the P&L certainty equivalents of the manager and the investor under the optimal wealth

X̂γ (note that X̂γ ≡ Xπ∗,γ
T ) as follows:

CE1
(
X̂γ

)
� Û−1

1

(
E
[
Û1
(
�
(
X̂γ

))])
, CE0 � Û−1

0

(
E

[
Û0
(
X̂γ − �

(
X̂γ

)− x0
)])

.

In our context, the certainty equivalent means the guaranteed amount of cash allocated to the
corresponding agent, who would consider this to be the same amount as the optimal terminal
wealth. That is,

Û1
(
CE1

(
X̂γ

))=E
[
Û1
(
�
(
X̂γ

))]
, Û0

(
CE0

(
X̂γ

))=E
[
Û0
(
X̂γ − �

(
X̂γ

)− x0
)]

.

Indeed, as Ûi, i = 0, 1, are increasing, this is equivalent to maximizing the manager’s (or
the investor’s) expected utility and certainty equivalent. The advantage of using the certainty
equivalent is that we can compare the numerical values for the manager and the investor on the
same scale. We define the Pareto frontier of the certainty equivalents (PFCE) as follows:

PFCE =
{(

CE1
(
X̂γ

)
, CE0

(
X̂γ

))
:γ ∈ [0, 1]

}
⊂R

2.

Figure 11 shows the PFCEs under the different contract settings. The curves in Figure 11 show
a similar pattern to those in Figure 10, and the behaviors in terms of CE and EU are similar.

From the left panel of Figure 11, we find that if the evaluation time is long (i.e., T is large),
the investor has a higher certainty equivalent if the contract has a smaller incentive rate α or a
smaller managerial ownership proportion ω. In the right panel of Figure 11, if the evaluation
time is short (i.e., T is small), we can find a similar means of Pareto improvement on CE. If
we simultaneously consider the investor’s utility in the investment objective and increase the
incentive rate (ω = 0.05, α = 0.4, γ = 0.5), we can obtain a Pareto improvement over some
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FIGURE 11. PFCEs of different contracts (Left panel: T = 20, Right panel: T = 0.01). Each circle points
means an Manager-Investor CE pair (a Pareto point) under a contract with (ω, α, γ ). A PFCE is plotted
by a three-point curve, consisting of three Pareto points of γ = 0, 0.5, 1 under a specific contract setting
(ω, α). In the right panel, each three-point curve represents a PF, which is decreasing and concave. In the
left panel, each three-point curve is almost reduced to a single point.

other contract (ω = 0.05, α = 0.2, γ = 1) in the traditional problem of maximization of the
single utility of the manager. This indicates that the Pareto improvement results hold in wide
generality, as the numerical values for the manager and the investor are compared on the same
scale of CE.

6. Conclusion

We formulate the centrally planned portfolio selection problem under S-shaped utilities and
a recently popular first-loss contract. The optimal portfolio shows that a first-loss contract can
sometimes behave like an option contract. We propose an asymptotic analysis approach and
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decompose the optimal portfolio into three terms (the Merton term π (1), the aggressive term
π (2), and the conservative term π (3)). From our asymptotic analysis, we find that because of
π (2), the portfolio involves gambling on the risky asset whenever the utility is not strictly con-
cave, resulting in two peaks in the first-loss case and one peak in the option case. Furthermore,
we find that among first-loss contracts with long evaluation time, the investor benefits from
contracts with smaller incentive rate and smaller managerial ownership proportion. In addi-
tion, when the evaluation time is short, the contract involving consideration of the investor’s
utility and increasing the incentive rate leads to a Pareto improvement.

The approach of asymptotic analysis can be clearly applied to more general models to
illustrate economic phenomena. The structure of the optimal portfolio also holds for other
non-concave utility optimization problems. The Pareto improvement is shown qualitatively in
our paper. We leave for future research the question of how to address the Pareto improvement
in a quantitative way, together with the above questions.

Appendix A. Standard procedure for non-concave utility maximization

In this section, based on the martingale and duality methods (cf. [19]) and concavifica-
tion techniques (cf. [9], [20], [16]), we state the standard procedure for non-concave utility
maximization.

The first step is to transform the optimization problem for controlled allocation processes
into that for terminal wealth variables, i.e., to transform Problem (6) to Problem (23). Based
on the martingale method, if the optimal terminal wealth X∗

T is obtained, the optimal allocation{
π∗

t : 0 ≤ t ≤ T
}

can be duplicated through a martingale representation. The terminal wealth
optimization problem is

sup
XT∈D

E[Uγ (XT )], (23)

where
D � {XT : XT ∈FT , E[ξTXT ] = x0; XT ≥ bx0, a.s.}.

The second step of the martingale method is to solve out the optimal terminal wealth X∗
T

of Problem (23) by duality methods and concavification techniques, because the utility Uγ is
non-concave. By the theory of convex analysis (cf. [30]), the concave envelope of Uγ is given
by its biconjugate function U∗∗

γ :⎧⎪⎨⎪⎩
U∗

γ (y) � sup
x∈dom Uγ

(Uγ (x) − yx),

U∗∗
γ (x) � inf

y∈dom U∗
γ

(U∗
γ (y) + xy).

(24)

Applying Lagrange duality methods to Problem (23), we find that the optimal terminal wealth
is given by

X∗
T =X(ν∗ξT ) = arg sup

x∈domU

(
Uγ (x) − ν∗ξTx

)= ((U∗∗
γ

)′)−1(
ν∗ξT

)
.

The uniqueness of X∗ holds because U∗∗
γ is concave and ξT has no atom.

The last step is to use the martingale representation to duplicate the optimal terminal wealth
in the financial market. As {ξtX∗

t : 0 ≤ t ≤ T} is a martingale, using the expression for X∗
T we

obtain that
X∗

t = ξ−1
t E

[
ξTX

(
ν∗ξT

)|Ft
]

=E
[
Zt,TX

(
ν∗ξtZt,T

)|Ft
]
,

(25)
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where Zt,T � ξT
ξt

= exp
[− (r + θ2

2

)
(T − t) − θ

(
WT − Wt

)]
. Because Zt,T is independent of Ft,

X∗
t is a function of ξt, i.e.,

X∗
t = f (t, ξt),

where
f (t, ξ ) =E

[
Zt,TX

(
ν∗ξZt,T

)|Ft
]
. (26)

Applying Itô’s lemma to
{
X∗

t , 0 ≤ t ≤ T
}

and comparing to Equation (3), we derive the optimal
allocation:

π∗
t = σ−1

(
−θξt

∂f

∂ξ
(t, ξt)

)
, (27)

where f is defined by Equation (26).

Appendix B. Proofs of lemmas and theorems

B.1. Proof of Proposition 1

For any optimum X̂ to Problem (6), it suffices to prove that there exists no admissible termi-
nal wealth X ∈ D such that E

[
U0
(
X̂
)]≤E[U0(X)] and E

[
U1
(
X̂
)]≤E[U1(X)], and at least one

of the inequalities holds strictly.
We prove this statement by contradiction. Suppose that there exists some X ∈ D satisfying

E
[
U0
(
X̂
)]≤E[U0(X)] and E

[
U1
(
X̂
)]

<E[U1(X)]. We have

E
[
Uγ

(
X̂
)]≡ (1 − γ )E

[
U0
(
X̂
)]+ γE

[
U1
(
X̂
)]

< (1 − γ )E[U0(X)] + γE[U1(X)] ≡E[Uγ (X)],

for any γ ∈ (0, 1]. Then the optimality of X̂ to Problem (6) implies that X̂ has to be the
optimum to Problem (6) with γ = 0 (i.e., Problem (22)). On the other hand, E

[
U0
(
X̂
)]≤

E[U0(X)] implies that X is also an optimum to Problem (22), so the inequality becomes an

equality, E
[
U0
(
X̂
)]=E[U0(X)]. By the uniqueness of the optimal solution, we have X

d= X̂,
contradicting the hypothesis that E

[
U1
(
X̂
)]

<E[U1(X)].

B.2. Proof of Lemma 1

(1) We now solve for the tangent point (denoted by (1 + c1)x0) deduced from the point
(bx0, Uγ (bx0)) to the curve Uγ |[x0,+∞).

We define F1(x) � Uγ (x) − Uγ (bx0) − U′
γ (x)(x − bx0), x ∈ [x0, +∞). As U′

γ (x0 +
) = +∞ and U′

γ ( + ∞) = 0, we obtain that F′
1|(x0,+∞)(x) > 0, F1(x0 + ) = −∞, and

F1( + ∞) = +∞. By the intermediate value property of the continuous function F1,
there exists a unique (1 + c1)x0 ∈ [x0, +∞) (c1 > 0) satisfying F1((1 + c1)x0) = 0, i.e.,
such that (9) holds. In addition, the slope of the tangent line is κ1 � U′

γ ((1 + c1)x0).

(2) We now solve for the tangent point (denoted by (1 + c2)x0) deduced from the point
((1 − ω)x0, Uγ ((1 − ω)x0)) to the curve Uγ |[x0,+∞).

We define F2(x) � Uγ (x) − Uγ ((1 − ω)x0) − U′
γ (x)(x − (1 − ω)x0), x ∈ [x0, +∞). As

U′
γ (x0 + ) = +∞ and U′

γ ( + ∞) = 0, we obtain that F′
2|(x0,+∞)(x) > 0, F2(x0 + ) =

−∞, and F2( + ∞) = +∞. By the intermediate value property of the continuous func-
tion F2, there exists a unique (1 + c2)x0 ∈ [x0, +∞) (c2 > 0) satisfying F2((1 + c2)x0) =
0, i.e., such that (11) holds. In addition, the slope of the tangent line is κ2 � U′

γ ((1 +
c2)x0).
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B.3. Proof of Theorem 1

We use the standard procedure in Appendix A to solve Problem (6). We classify two cases
of the concave envelope of Uγ by comparing κ2 with κ3.

(1) (First-loss case.) If κ2 < κ3, then the concave envelope of Uγ is given by

U∗∗
γ (x) =

⎧⎪⎨⎪⎩
Uγ (bx0) + κ3(x − bx0), bx0 ≤ x < (1 − ω)x0,

Uγ ((1 − ω)x0) + κ2(x − (1 − ω)x0), (1 − ω)x0 ≤ x < (1 + c2)x0,

Uγ (x), x ≥ (1 + c2)x0.

In this case, we obtain that

X(y) � arg sup
x≥bx0

[Uγ (x) − yx] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
1 + c2

(
y

κ2

) 1
p−1
)

x0, 0 < y ≤ κ2,

(1 − ω)x0, κ2 < y ≤ κ3,

bx0, y > κ3.

The optimal terminal wealth is given by

X∗
T =X(ν∗ξT )

=
(

b1{ξT>
κ3
ν∗ } + (1 − ω)1{ κ2

ν∗ <ξT≤ κ3
ν∗ } +

(
1 + c2

(
ν∗ξT

κ2

) 1
p−1
)

1{
ξT≤ κ2

ν∗
}) x0.

Using the martingale representation equations (25) and (27), we have the optimal wealth
process X∗ given by

X∗
t = ξ−1

t E[ξTX∗
T |Ft]

= e−r(T−t)x0

[
b + (1 − ω − b)�(g3,t) + ω�(g2,t) + c2

�′(g2,t)

�′(d2,t)
�(d2,t)

]
,

and the optimal risky asset allocation

π∗
t

X∗
t

=
(

1

1 − p
+ x0

er(T−t)X∗
t

[
1 − ω − b

θ
√

T − t
�′(g3,t) + ω + c2

θ
√

T − t
�′(g2,t)

− 1

1 − p
(b + (1−ω − b)�(g3,t) + ω�(g2,t))

])
θ

σ
,

where g2,t, g3,t, and d2,t are given by Equation (20), and �(·) is the standard normal
cumulative distribution function.

(2) (Option case.) If κ2 ≥ κ3, then the concave envelope of Uγ is given by

U∗∗
γ (x) =

{
Uγ (bx0) + κ1(x − bx0), bx0 ≤ x < (1 + c1)x0,

Uγ (x), x ≥ (1 + c1)x0.

In this case, we obtain that

X(y) � arg sup
x≥bx0

[Uγ (x) − yx] =

⎧⎪⎪⎨⎪⎪⎩
(

1 + c1

(
y

κ1

) 1
p−1
)

x0, 0 < y ≤ κ1,

bx0, y > κ1.
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The optimal terminal wealth is given by

X∗
T =X(ν∗ξT )

=
(

b1{
ξT>

κ1
ν∗
} +

(
1 + c1

(
ν∗ξT

κ1

) 1
p−1
)
1{ξT≤ κ1

ν∗ }

)
x0.

Using the martingale representation equations (25) and (27), we have the optimal wealth
process

X∗
t = ξ−1

t E[ξTX∗
T |Ft]

= e−r(T−t)x0

[
b + (1 − b)�(g1,t) + c1

�′(g1,t)

�′(d1,t)
�(d1,t)

]
,

and the optimal risky asset allocation

π∗
t

X∗
t

=
(

1

1 − p
+ x0

er(T−t)X∗
t

[
c1 + 1 − b

θ
√

T − t
�′(g1,t) − 1

1 − p
(b + (1 − b)�(g1,t))

])
θ

σ
,

where g1,t and d1,t are given by Equation (20), and �(·) is the standard normal
cumulative distribution function.

B.4. Proof of Theorem 2

(i) We prove this statement separately in the two cases.
First-loss case. Using (15), we take the derivative of X∗

t with respect to ξt and obtain

∂X∗
t

∂ξt

= x0e−r(T−t)

⎛⎝(1 − ω − b)�′(g3,t)

(
− 1

ξtθ
√

T − t

)
+ ω�′(g2,t)

(
− 1

ξtθ
√

T − t

)

+ c2�
′(d2,t)

�′(g2,t)

�′(d2,t)

(
− 1

ξtθ
√

T − t

)

+ c2�(d2,t)
�′(g2,t)(−g2,t)

(
− 1

ξtθ
√

T−t

)
�′(d2,t) − �′(d2,t)(−d2,t)

(
− 1

ξtθ
√

T−t

)
�′(g2,t)(

�′(d2,t)
)2

⎞⎠
= −x0e−r(T−t)

ξtθ
√

T − t

⎛⎝(1 − ω − b)�′(g3,t) + (ω + c2)�′(g2,t) + c2�(d2,t)
�′(g2,t)θ

√
T − t

�′(d2,t)(1 − p)

⎞⎠< 0.

Hence the wealth process X∗
t is decreasing in ξt. Using (16), we have

∂π
(1)
t

∂ξt
= θ

(1 − p)σ

∂X∗
t

∂ξt
< 0,

and
∂π

(3)
t

∂ξt
= x0e−r(T−t)

ξt(1 − p)σ
√

T − t

(
(1 − ω − b)�′(g3,t) + ω�′(g2,t)

)
> 0.

Hence π
(1)
t is decreasing in ξt, while π

(3)
t is increasing in ξt. We compute

∂π
(2)
t

∂ξt
= x0e−r(T−t)

ξtσθ (T − t)

(
(1 − ω − b)�′(g3,t)g3,t + (ω + c2)�′(g2,t)g2,t

)
,
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which implies that the monotonicity of π
(2)
t depends on the signs of g3,t and g2,t. Letting

both g3,t > 0 and g2,t > 0 and using κ2 < κ3, we have that π
(2)
t is increasing if ξt ∈(

0, κ2
ν∗ e
(

r− θ2
2

)
(T−t)

)
. Letting both g3,t < 0 and g2,t < 0, we have that π

(2)
t is decreasing

if ξt ∈
(

κ3
ν∗ e
(

r− θ2
2

)
(T−t)

, +∞
)

.

Option case. Using (18), we take the derivative of X∗
t with respect to ξt and obtain

∂X∗
t

∂ξt

= x0e−r(T−t)

⎛⎝(1 − b)�′(g1,t)

(
− 1

ξtθ
√

T − t

)
+ c1�

′(d1,t)
�′(g1,t)

�′(d1,t)

(
− 1

ξtθ
√

T − t

)

+ c1�(d1,t)
�′(g1,t)(−g1,t)

(
− 1

ξtθ
√

T−t

)
�′(d1,t) − �′(d1,t)(−d1,t)

(
− 1

ξtθ
√

T−t

)
�′(g1,t)(

�′(d1,t)
)2

⎞⎠
= −x0e−r(T−t)

ξtθ
√

T − t

⎛⎝(1 + c1 − b)�′(g1,t) + c1�(d1,t)
�′(g1,t)

�′(d1,t)

θ
√

T − t

1 − p

⎞⎠< 0.

Hence the wealth process X∗
t is decreasing in ξt. Using (19), we have

∂π
(1)
t

∂ξt
= θ

(1 − p)σ

∂X∗
t

∂ξt
< 0,

and
∂π

(3)
t

∂ξt
= x0e−r(T−t)

ξt(1 − p)σ
√

T − t
(1 − b)�′(g1,t) > 0.

Hence π
(1)
t is decreasing in ξt, while π

(2)
t and π

(3)
t are increasing in ξt. We compute

∂π
(2)
t

∂ξt
= x0e−r(T−t)

ξtσθ (T − t)
(1 + c1 − b)�′(g1,t)g1,t,

which implies that the monotonicity of π
(2)
t depends on the sign of g1,t. Letting g1,t > 0,

we have that π
(2)
t is increasing if ξt ∈

(
0, κ1

ν∗ e
(

r− θ2
2

)
(T−t)

)
and decreasing otherwise.

(ii) The conclusion holds in both the option case and the first-loss case. For the option case,
using Equation (20), as ξt → 0, we have g1,t → +∞ and d1,t → +∞. Based on the
expression (18) for X∗

t ,

X∗
t → +∞,

�′(g1,t)

�′(d1,t)
→ +∞.

Thus, we obtain that if ξt → 0, then

π
(2)
t → 0,

π
(3)
t

− θ
(1−p)σ x0e−r(T−t)

→ 1,
π∗

t

X∗
t

→ θ

(1 − p)σ
.
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(iii) The conclusion holds in both the option case and the first-loss case. For the option case,
similarly, we can derive that if ξt → +∞, then

X∗
t

bx0e−r(T−t)
→ 1, g1,t → −∞.

Based on the properties of the standard normal probability density function �′(·), we
know that �′(g1,t) → 0, and thus obtain that if ξt → +∞, then

π
(2)
t → 0,

π
(3)
t

− b
1−p

θ
σ

x0e−r(T−t)
→ 1, π∗

t → 0.

(iv) We can verify that the result in (iii) holds when t → T , based on the following facts:

• if ν∗ξT < κ1, then

lim
t→T

g1,t = +∞, lim
t→T

�′(g1,t)

θ
√

T − t
= 0;

• if ν∗ξT = κ1, then

lim
t→T

g1,t = 0, lim
t→T

�′(g1,t)

θ
√

T − t
= +∞;

• if ν∗ξT > κ1, then

lim
t→T

g1,t = −∞, lim
t→T

�′(g1,t)

θ
√

T − t
= 0.

(v) Because the proof is similar to that of (iii), we omit it here.

B.5. Proof of Proposition 2

We use the standard procedure in Appendix A to solve Problem (21) and Problem (22).
Similarly to Theorem 1, we obtain respectively a (distribution-wise) unique optimum X̂1 to
Problem (21) and a (distribution-wise) unique optimum X̂0 to Problem (22).

B.6. Proof of Theorem 3

1. It suffices to prove the following claim: for any 0 ≤ γ1 < γ2 ≤ 1, the corresponding
optima X̂γ1 and X̂γ2 satisfy either{

E
[
U1
(
X̂γ1

)]=E
[
U1
(
X̂γ2

)]
,

E
[
U0
(
X̂γ1

)]=E
[
U0
(
X̂γ2

)]
,

(28)

or {
E
[
U1
(
X̂γ1

)]
<E

[
U1
(
X̂γ2

)]
,

E
[
U0
(
X̂γ1

)]
>E

[
U0
(
X̂γ2

)]
.

(29)

The claim shows that for any 0 ≤ γ1 < γ2 ≤ 1, if X̂γ1 and X̂γ2 do not represent the same
point on the PF, we have E

[
U1
(
X̂γ1

)]
<E

[
U1
(
X̂γ2

)]
and E

[
U0
(
X̂γ1

)]
>E

[
U0
(
X̂γ2

)]
.

Thus, the strictly decreasing result follows directly.
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Now we prove the claim. Because X̂γ1 and X̂γ2 are correspondingly optimal to the
problems with γ1 and γ2, we have

(1 − γ2)E
[
U0
(
X̂γ2

)]+ γ2E
[
U1
(
X̂γ2

)]≥ (1 − γ2)E
[
U0
(
X̂γ1

)]+ γ2E
[
U1
(
X̂γ1

)]
,

(1 − γ1)E
[
U0
(
X̂γ1

)]+ γ1E
[
U1
(
X̂γ1

)]≥ (1 − γ1)E
[
U0
(
X̂γ2

)]+ γ1E
[
U1
(
X̂γ2

)]
.

Thus,

γ2

(
E
[
U1
(
X̂γ2

)]−E
[
U1
(
X̂γ1

)])≥ (1 − γ2)

(
E
[
U0
(
X̂γ1

)]−E
[
U0
(
X̂γ2

)])
,

(1 − γ1)

(
E
[
U0
(
X̂γ1

)]−E
[
U0
(
X̂γ2

)])≥ γ1

(
E
[
U1
(
X̂γ2

)]−E
[
U1
(
X̂γ1

)])
.

(30)

Case 1. If E
[
U1
(
X̂γ2

)]−E
[
U1
(
X̂γ1

)]≤ 0 holds, we have

0 ≥ γ2

(
E
[
U1
(
X̂γ2

)]−E
[
U1
(
X̂γ1

)])≥ (1 − γ2)

(
E
[
U0
(
X̂γ1

)]−E
[
U0
(
X̂γ2

)])
≥ (1 − γ1)

(
E
[
U0
(
X̂γ1

)]−E
[
U0
(
X̂γ2

)])
≥ γ1

(
E
[
U1
(
X̂γ2

)]−E
[
U1
(
X̂γ1

)])
.

Thus,

0 ≥ γ2

(
E
[
U1
(
X̂γ2

)]−E
[
U1
(
X̂γ1

)])≥ γ1

(
E
[
U1
(
X̂γ2

)]−E
[
U1
(
X̂γ1

)])
,

which implies that E
[
U1
(
X̂γ2

)]−E
[
U1
(
X̂γ1

)]= 0. By (30), we have

E
[
U0
(
X̂γ1

)]−E
[
U0
(
X̂γ2

)]≥ 0.

If γ2 < 1, we have
(
E
[
U1
(
X̂γ1

)]
,E
[
U0
(
X̂γ1

)])= (E[U1
(
X̂γ2

)]
,E
[
U0
(
X̂γ2

)])
.

If γ2 = 1, we have E
[
U1
(
X̂γ1

)]=E
[
U1
(
X̂γ2

)]
and E

[
U0
(
X̂γ1

)]≥E
[
U0
(
X̂γ2

)]
, which

implies that X̂γ1 and X̂γ2 both solve Problem (21). Using Proposition 2, we must have

X̂γ1

d= X̂γ2 , and thus
(
E
[
U1
(
X̂γ1

)]
,E
[
U0
(
X̂γ1

)])= (E[U1
(
X̂γ2

)]
,E
[
U0
(
X̂γ2

)])
.

Thus, the equations (28) hold.

Case 2. If E
[
U1
(
X̂γ2

)]−E
[
U1
(
X̂γ1

)]
> 0 holds, we have

0 ≤ γ1

(
E

[
U1

(
X̂γ2

)]
−E

[
U1

(
X̂γ1

)])
≤ (1 − γ1)

(
E

[
U0

(
X̂γ1

)]
−E

[
U0

(
X̂γ2

)])
.

If γ1 > 0, we have E
[
U1
(
X̂γ2

)]
>E

[
U1
(
X̂γ1

)]
and E

[
U0
(
X̂γ1

)]
>E

[
U0
(
X̂γ2

)]
.

If γ1 = 0, we have E
[
U1
(
X̂γ2

)]
>E

[
U1
(
X̂γ1

)]
and E

[
U0
(
X̂γ1

)]≥E
[
U0
(
X̂γ2

)]
. Suppose

E
[
U0
(
X̂γ1

)]=E
[
U0
(
X̂γ2

)]
. This implies that X̂γ1 and X̂γ2 both solve Problem (22).

Based on Proposition 2, we must have X̂γ1

d= X̂γ2 , which contradicts E
[
U1
(
X̂γ2

)]
>

E
[
U1
(
X̂γ1

)]
. Thus, the equations (29) hold. This completes the proof of the claim.
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2. For any Pareto point (u1, u0) ∈ PF, there exists some γ ∈ [0, 1] (which may not be
unique) such that X̂γ solves Problem (6) with γ and

(
E
[
U1
(
X̂γ

)]
,E
[
U0
(
X̂γ

)])=
(u1, u0). This implies that for any admissible terminal wealth XT ,

(1 − γ )E[U0(X)] + γE[U1(X)] ≤ (1 − γ )E
[
U0
(
X̂γ

)]+ γE
[
U1
(
X̂γ

)]
= (1 − γ )u0 + γ u1.

Define the affine function

Lγ (x) �− γ

1 − γ
x + (1 − γ )u0 + γ u1

1 − γ
, x ∈R.

Then the PF is dominated by the affine function Lγ , and the point (u1, u0) lies on Lγ .
Thus, if the PF is continuous, then the PF is strictly concave and − γ

1−γ
is one sub-

differential of the Pareto point (u1, u0). (When γ = 1, the sub-differential is −∞.)
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[13] CVITANIĆ, J. AND ZHANG, J. (2013). Contract Theory in Continuous-Time Models. Springer, New York.
[14] HE, L., LIANG, Z., LIU, Y. AND MA, M. (2019). Optimal control of DC pension plan manager under two

incentive schemes. N. Amer. Actuarial J. 23, 120–141.
[15] HE, L., LIANG, Z., LIU, Y. AND MA, M. (2020). Weighted utility optimization of the participating endowment

contract. Scand. Actuarial J. 2020, 577–613.
[16] HE, X. D. AND KOU, S. (2018). Profit sharing in hedge funds. Math. Finance 28, 50–81.
[17] HODDER, J. E. AND JACKWERTH, J. C. (2007). Incentive contracts and hedge fund management. J. Financial

Quant. Anal. 2, 811–826.
[18] KAHNEMAN, D. AND TVERSKY, A. (1979). Prospect theory: an analysis of decision under risk. Econometrica

47, 263–291.
[19] KARATZAS, I. AND SHREVE, S. E. (1998). Methods of Mathematical Finance. Springer, New York.
[20] KOUWENBERG, R. AND ZIEMBA, W. T. (2007) Incentives and risk taking in hedge funds. Journal of Banking

and Finance 31, 3291–3310.
[21] LARSEN, K. (2005). Optimal portfolio delegation when parties have different coefficients of risk aversion.

Quant. Finance 5, 503–512.
[22] LIANG, Z. AND LIU, Y. (2020). A classification approach to the principal-agent problem of general S-shaped

utility optimization. SIAM J. Control Optimization 58, 3734–3762.
[23] LIN, H., SAUNDERS, D. AND WENG, C. (2017). Optimal investment strategies for participating contracts.

Insurance Math. Econom. 73, 137–155.
[24] MARKOWITZ, H. M. (1952). Portfolio selection. J. Finance 7, 77–91.
[25] MERTON, R. C. (1969). Lifetime portfolio selection under uncertainty: the continuous-time case. Rev. Econom.

Statist. 51, 247–257.
[26] MERTON, R. C. (1971). Optimum consumption and portfolio rules in a continuous-time model. J. Econom.

Theory 3, 373–413.
[27] MIETTINEN, K. M. (1999). Nonlinear Multiobjective Optimization. Kluwer, Boston.
[28] RAVIV, A. (1979). The design of an optimal insurance policy. Amer. Econom. Rev. 69, 84–96.
[29] REICHLIN, C. (2013). Utility maximization with a given pricing measure when the utility is not necessarily

concave. Math. Financial Econom. 7, 531–556.
[30] ROCKAFELLAR, R. T. (1970). Convex Analysis. Princeton University Press.
[31] SANNIKOV, Y. (2008). A continuous-time version of the principal-agent problem. Rev. Econom. Stud. 75,

957–984.
[32] STRACCA, L. (2006). Delegated portfolio management: a survey of the theoretical literature. J. Econom.

Surveys 20, 823–848.
[33] TVERSKY, A. AND KAHNEMAN, D. (1992). Advances in prospect theory: cumulative representation of

uncertainty. J. Risk Uncertainty 5, 297–323.
[34] YONG, J. AND ZHOU, X. (1999). Stochastic Controls: Hamilton Systems and HJB Equations. Springer, New

York.

https://doi.org/10.1017/apr.2023.50 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.50

	Introduction
	Model setting
	Financial market
	S-shaped utilities and first-loss contracts

	Optimal solutions
	Asymptotic analysis approach
	Three-term decomposition of the optimal portfolio
	Asymptotic analysis of the optimal portfolio

	Pareto improvement
	Pareto frontier
	Comparison of fixed-weight contracts
	A contract providing a Pareto improvement
	Certainty equivalent

	Conclusion
	Standard procedure for non-concave utility maximization
	Proofs of lemmas and theorems
	Proof of Proposition 1
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Proposition 2
	Proof of Theorem 3

	Acknowledgements
	Funding information
	Competing interests
	References

